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Chinese hamster ovary cells are among the biotechnologically most relevant production 
systems for biopharmaceuticals. With the availability of the genomic sequences of 
Chinese hamster, rational systems biotechnology-driven approaches to optimize this 
cell factory have become available. Here, we review the current status of noncoding 
RNAs as members of the post-transcriptional operon concept in the context of Chinese 
hamster ovary cell line engineering and bioprocessing. In addition, we suggest that 
they already now keep their promises as tools for increasing specific productivity and 
thus time space yield of biopharmaceutical production, a feature that will allow for 
more cost efficient production processes in the future.

Chinese hamster ovary cells
It can be considered remarkable that a non-
human cell line is the most frequently used 
mammalian cell factory for the production 
of recombinant protein therapeutics. Con-
cerns about merely ‘human-like’ post-trans-
lational protein modifications observed in 
Chinese hamster ovary (CHO) cells are 
outweighed by their ease of handling, the 
availability of metabolic mutants that enable 
antibiotic-free clone selection, resistance to 
human pathogens and consequently a long-
standing regulatory track record as a safe 
biopharmaceutical production host. These 
advantages will likely warrant the future 
bioindustrial use of CHO cells in addi-
tion to the constant striving to overcome 
slow biomass and product accumulation 
compared with nonmammalian hosts  [1], 
genome instability [2] and post-translational 
modifications negatively affecting product 
quality attributes [3]. Development of tools 
that allow to reach these aims strongly 
depends on the in-depth understanding 
of the molecular biology underlying CHO 
cell phenotype. Recent advances in massive 
parallel sequencing technologies have led to 
the rapid accumulation of sequenced CHO 
and Chinese hamster genomes as reference 
genomes [4–6] and transcriptomes, [7] which 

in their draft state revealed the urgent 
need for a universal reference genome for 
Chinese hamster  [3]. The stage is now set 
to allow diving into the details of how the 
now familiar CHO genotypes are linked to 
specific phenotypes, and to use this know-
how for rational design and product-qual-
ity-driven biopharmaceutical production 
processes.

Linking genotype to cell phenotype: 
the RNA operon concept
Essentially, the link between genotype and 
phenotype is gene expression, which is com-
posed of two steps: transcription of DNA 
into RNA; and translation of RNA into 
proteins. This process of utilizing genomic 
information must, however, be performed 
in a highly controlled manner to ensure that 
cells adopt the ‘right phenotype at the right 
time’ by rapidly activating (or deactivating) 
certain functions in response to external or 
internal signals. Cells achieve this flexibility 
through the precise regulation of expression 
of whole sets of genes which together control 
specific cellular functions to maintain the 
biological balance [8].

In prokaryotic cells, RNA transcription 
and protein translation are tightly linked 
and often occur simultaneously. Therefore, 
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prokaryotes have evolved into organizing functionally 
related genes in close genomic proximity, so-called gene 
clusters or operons, that are co-transcribed in a single, 
polycistronic mRNA (Figure 1A). Depending on the 
presence of activating factors, gene operons become 
expressed to give rise to functionally related proteins. 
One of the best studied, constantly revisited examples 
that is also used biotechnologically is the lac-operon, 
where all proteins required for the utilization of lactose 
are encoded in such a polycistronic RNA and therefore 
co-transcribed under the control of one promoter [9].

The higher complexity of eukaryotic and especially 
mammalian cells required the sequestration of chromo-
somal DNA from ribosomes by the nuclear envelope, 
resulting in the decoupling of mRNA transcription and 
translation  [10]. Thereby, each mRNA ‘is assumed to 
function as a free agent,’ and can be selectively combined 
and coexpressed with other functionally related genes, 
which contributes to the higher complexity of eukary-
otic systems (Figure 1B)  [11]. However, the increase in 
complexity of organisms does not seem well reflected 
by the increase in the number of genes, if we consider 
4500 genes to be present in Escherichia coli, and only 
around 4–5-times more (around 20,000–25,000) in 
humans [12].

In addition, it is unclear why such an efficient regu-
latory system like the operon should have been com-
pletely lost or neglected by evolution. Several attempts 
to explain the discrepancy of gene number and organis-
mal complexity are currently available. One mechanism 
that clearly contributes to widely enhancing the amount 
of proteins to up to 100,000 is alternative splicing [13]. In 

addition, however, there is also increasing evidence that 
biological timing of translation of specific mRNAs that 
jointly function in a specific pathway is highly dependent 
on post-transcriptional regulation, which can be exe-
cuted by RNA binding proteins (RBPs), noncoding 
RNAs (ncRNAs), and interactions between RBPs 
and ncRNAs  [14]. These factors can influence mRNA 
sequences (via splicing) and cytoplasmic export, as well 
as activity and stability of transcribed RNA.

As a consequence, the theory of post-
transcriptional RNA operons (PTROs) has been 
coined, which proposes that mammalian cells orga-
nize monocistronic mRNAs in functional groups 
based on specific sequence elements contained within 
untranslated regions (UTR) of mRNAs [15]. Sharing 
of these sequence elements allows mRNAs to become 
members of more than one RNA operon so that 
the encoded proteins can be produced coordinately 
in different combinations as functional groups via 
distinct UTR codes (Figure 1C).

Since single proteins can thus coordinately work in 
completely different functional units and pathways 
defined by sequence elements on their UTR of the 
mRNA, the translational context of a specific protein 
within one functional unit allows again to immensely 
increase the complexity of higher organisms.

Our understanding of such PTROs is at a very early 
stage. Still, it seems clear that specific sequence elements 
of mRNAs are recognized and post-transcriptionally 
regulated by mRNA binding proteins as well as by 
ncRNA species such as miRNAs. The knowledge that 
single miRNAs can target a large variety of mRNAs 
might suggest that they are a specifically valuable tool of 
the post-transcriptional operon concept, as they are able 
to regulate larger – potentially jointly functioning – sets 
of genes [16,17].

These miRNAs have been characterized in depth, so 
that applications of these molecules as diagnostic  [18], 
therapeutic  [19] or cell engineering tools have been 
accomplished  [20,21]. Research with respect to other 
ncRNA species, such as PIWI-interacting RNAs 
(piRNAs) [22] that are likely contributing to post-tran-
scriptional regulation of gene expression are, however, 
still in their infancy.

In the following, the aim of this review is to intro-
duce the reader to the various types of ncRNAs that 
are part of the PTRO, their biosynthesis and mode 
of action, as well as methods of exploring their func-
tion and designing relevant tools for CHO cell culture 
technology.

Types of ncRNAs
The majority of transcribed RNAs in mamma-
lian cells are ncRNAs  [23,24]. Such RNAs can be 

Key terms

Noncoding RNA: The majority of transcribed RNAs 
in mammalian cells are not translated into protein and 
therefore termed as noncoding RNAs (ncRNAs). Such RNAs 
can further be subdivided into small noncoding RNAs 
(sncRNAs) predominantly ranging from 18–32 nt in length 
and long noncoding RNAs (lncRNAs) of more than 200 
nucleotides.

Post-transcriptional RNA operon: A control mechanism 
by which higher eukaryotic cells can achieve coexpression 
of functionally related groups of monocistronic mRNAs. 
Noncoding RNAs (ncRNAs) play a key role in this process.

miRNA: SncRNAs that repress mRNA translation by 
binding and directing protein complexes to complementary 
regions in 3´UTRs.

PIWI-interacting RNA: The largest type of sncRNAs that 
function as epigenetic and post-transcriptional regulators 
of gene expression.

Long noncoding RNAs: LncRNAs are RNA transcripts, 
which are longer than 200 nt after the maturation 
and control gene expression transcriptional and post-
transcriptional level.
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Figure 1. The operon concept for coordinated expression of functionally related genes. (A) DNA operon model in 
prokaryotes. A set of related genes labeled G1–G4 is located in physical proximity (polycistron). Co-transcription is 
regulated by promoter and operator elements in the DNA, which respond to the presence/absence of regulatory 
factors (e.g., ‘repressors’). (B) DNA operon model in eukaryotes. Monocistronic genes that have a coordinated 
function are placed apart from each other in the genome. Coexpression of gene sets in response to environmental 
stimuli is achieved through shared promoter sites and transcription factor presence. (C) Post-transcriptional 

RNA operon model: transcribed mRNAs harbor regulatory sites in their 3´ untranslated regions. Genes with 
coordinated function share a specific RNA binding site; RNA stability and/or translation are regulated through 
hybridization of noncoding RNAs such as microRNAs.
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further subdivided, based on the length of their 
mature construct, into small ncRNAs (sncRNAs) 
predominantly ranging from 18 to 32 nt in length and 
long noncoding RNAs (lncRNAs) of more than 
200 nucleotides. A detailed overview on the biogen-
esis and function of regulatory ncRNAs in eukaryotic 
cells is illustrated in Figure 2. Within the sncRNAs, 
several classes have been defined such as small inter-
fering RNAs (siRNAs), miRNAs and piRNAs, which 
are present in a wide range of higher eukaryotes  [25]. 

A summary of ncRNAs exerting post-transcriptional 
gene regulation, which might be of interest for CHO 
cell engineering, is outlined in Table 1. In general, 
miRNAs act as regulators of endogenous genes, while 
siRNAs and piRNAs are considered predominantly to 
be defenders of genome integrity in response to inva-
sive nucleic acids such as viruses, transgenes and trans-
posons [26,27]. By now reports exist that piRNAs, which 
were originally identified in germ line cells, also occur 
in somatic cells and can silence gene expression [28,29].
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While some sncRNAs already exert gene regulation 
on transcriptional level by silencing promoter DNA 
regions of coding genes and thereby blocking initiation 
of transcription  [41], the majority of small regulatory 
RNAs act as post-transcriptional inhibitors of gene 
expression. These sncRNAs share several common 
mechanisms to provide highly specific inhibition of 
gene expression by binding to complementary mRNA 
sequences. The keystone of this silencing machinery is 
the RNA-induced silencing complex (RISC) compris-
ing a core protein from the Argonaute (AGO) family 
and an sncRNA as guide for mRNA targets [42]. The 
sncRNA-loaded AGO complexes inhibit expression 
of their targets by either endonucleolytic cleavage or 
translational repression [27]. Despite their similar mode 
of action, the various classes of small RNAs arise from 
different biogenesis mechanisms. While miRNAs and 
siRNAs require cleavage of DICER prior to loading 
them onto AGO proteins, piRNAs are processed by 
DICER-independent mechanisms  [43,44]. Even miR-
NAs and siRNAs diverge in their biogenesis mecha-
nisms as siRNAs are excised from long fully comple-
mentary double-stranded RNAs (dsRNA), whereas 
miRNAs are processed from incomplete base-paired 
stem–loop structures  [45]. In the following, we focus 
on the origin and biogenesis of the different small and 
lncRNAs.

Small-interfering RNAs
Since the first clear observation of RNA interference in 
Caenorhabditis elegans  [46], post-transcriptional silenc-
ing of specific genes using siRNAs has become an 
established technology. Originating from exogenous 
sources like viruses  [47], siRNAs can also be experi-
mentally introduced as short hairpin RNA (shRNA) 
for silencing specific genes. Furthermore, siRNAs 
can derive from endogenous elements such as trans-
poson transcripts, repetitive sequences, long stem–
loop structures or sense–antisense transcripts  [48–51]. 
siRNAs are 20–25 base pair long dsRNA molecules 
exhibiting complete sequence complementarity  [52]. 
Exogenous dsRNAs are cleaved in the cytoplasm by 
DICER and loaded onto one of the four different AGO 
proteins  [42,53], while precursor-derived and DICER-
processed endogenous siRNA (endo-siRNA) is loaded 
onto an AGO2 protein (Figure 2C)  [54]. Although 
single-stranded siRNAs can be directly loaded onto 
recombinant AGO2 proteins in vitro [55], dsRNAs pro-
cessed by DICER into single-stranded RNAs require 
assembly of the entire siRNA-induced silencing com-
plex  [26]. The thermodynamic stability at the 5́ -ter-
minus of the dsRNA determines which strand will 
be favored as guide strand  [45]. Despite the similari-
ties with miRNAs regarding association with proteins 

from the AGO family, endo-siRNAs only depend on 
DICER activity but not on DROSHA  [56,57]. Addi-
tionally, the selection of the different AGO proteins 
seems to be dependent on the precursor structure. 
Duplexes exhibiting mismatches, as in case of miR-
NAs, are preferably loaded onto AGO1 whereas per-
fectly base-paired duplexes are preferentially associated 
with AGO2  [54]. Notably, AGO2 represents the only 
protein of the AGO family having slicer activity  [42]. 
This might be the reason why miRNAs predominantly 
induce translational inhibition in mammals, while 
artificial siRNA-mediated RNA interference leads to 
immediate cleavage and degradation of the target tran-
script  [58]. In CHO cells, artificial siRNAs have been 
widely used for specific gene silencing and improving 
apoptosis resistance, glycosylation, metabolism and 
specific productivity [59–80].

MicroRNAs
First identified in 1993 as critical regulators of devel-
opment in nematodes [81], miRNAs are known to play 
key roles in the coordination of almost every cellular 
process in eukaryotes, including proliferation, dif-
ferentiation, apoptosis and development  [82]. Further-
more, miRNAs are known to reorganize chromatin by 
elevating methylation of targeted mRNA promoters 
and inhibiting their expression  [83]. Strikingly, most 
miRNAs are highly conserved among species  [84,85], 
especially at the nucleotide positions 2–8, the so-called 
‘seed’ sequence, which is supposed to be crucial for 
the recognition of the mRNA targets  [42]. miRNAs 
with identical seed sequences are grouped into fami-
lies [86]. However, miRNAs from the same seed family 
frequently can have different roles in vivo, increasing 
the challenge for a clear classification  [87]. In mam-
mals, roughly 50% of miRNA loci are in close prox-
imity to other miRNAs [42] generating clusters which 
are transcribed from single polycistronic transcription 
units [88].

Prevailing transcription of miRNA genes is medi-
ated from an RNA polymerase II into long primary 
transcripts (pri-miRNAs) containing a hairpin struc-
ture (Figure 2A) [89–91]. These transcripts are cleaved in 
the nucleus by the RNase III enzyme DROSHA and its 
cofactor DGCR8 (DiGeorge syndrome critical region 
8) to produce a 60–80 nt long precursor miRNA (pre-
miRNA)  [92]. Exportin-5 (XPO5) transports the pre-
miRNAs from the nucleus into the cytoplasm  [93,94]. 
The RNase III enzyme DICER further processes the 
pre-miRNA into an 18–24 nt short RNA duplex inter-
mediate consisting of a guide strand as well as a pas-
senger strand, which in most cases is discarded [95–97]. 
The mature miRNA guide strand is then loaded onto 
an AGO protein of the miRNA-induced silencing 
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Figure 2. Noncoding RNA biogenesis and function. (A) miRNAs are transcribed from RNA Pol II into long primary transcripts 
containing hairpin structures. The pri-miRNAs are processed in the nucleus by the DROSHA/DGCR8 complex to produce a 60–80 nt 
long pre-miRNAs. The pre-miRNAs are transported from the nucleus into the cytoplasm by XPO5. DICER removes the loop nucleotides 
from the pre-miRNA giving rise to a 18–24 nt short RNA duplex intermediate consisting of a guide strand and a passenger strand. The 
guide strand of the mature miRNA is loaded onto an AGO protein of the miRISC. The miRNA guides the miRISC complex to specific 

mRNA targets, where the miRNA binds the 3´UTR of the transcript leading to mRNA destabilization. (B) Exogenously introduced 
miRNA mimics are directly incorporated into the miRISC complex to bind to their target mRNAs. (C) Endo-siRNAs are transcribed from 
either transposon transcripts, repetitive sequences, long stem–loop structures or sense–antisense transcripts, and are exported into 
the cytoplasm. DICER is trimming the dsRNA and is involved in the loading of the single-stranded siRNA strand onto AGO2. The guide 
strand directs the siRISC to the mRNA target which is immediately cleaved by the endonucleolytic AGO2 domain. (D) Exogenously 
introduced siRNAs from viruses are also processed by DICER and loaded onto one of the four different AGO proteins of the siRISC 
complex. (E) piRNAs are processed from primary piRNA clusters or long precursor sequences. In contrast to siRNAs and miRNAs, 
piRNAs are DICER independent and after nuclear export, an amplification mechanism leads to an accumulation of the piRNAs in the 
cytoplasm. In mice, primary piRNAs associate with MILI which cleaves complementary transcripts. These so-called secondary transcripts 
then bind to MIWI which cleaves complementary transcripts, followed by binding to MILI again to accomplish the cycle. (F) lncRNAs 
are derived from promoter regions, intergenic regions, natural antisense transcripts, enhancer associated regions or pseudogenes. By 
preventing TFs to bind their genomic recognition sites lncRNAs can inhibit gene transcription. After export to the cytoplasm, lncRNAs 
are either binding to mRNAs and ribosomes or miRNAs. Furthermore, lncRNA can also be the source of miRNAs, which are excised 
from the lncRNA transcripts. (G) CircRNAs are generated by splicing of lariat introns or by back splicing circularization. CircRNAs 
usually exhibit multiple miRNA binding sites which serve as endogenous miRNA sponge molecules to regulate intracellular miRNA 
abundance. 
AGO: Argonaute; CircRNA: Circular RNA; DGCR8: DiGeorge syndrome critical region 8; dsRNA: Double-stranded RNA; Endo-
siRNA: Endogenous siRNA; lncRNA: Long noncoding RNA; miRISC: miRNA-induced silencing complex; piRNA: PIWI-interacting RNA; 
pre-miRNA: Precursor miRNA; RNA Pol II: RNA polymerase II; siRISC: siRNA-induced silencing complex; TF: Transcription factor; 
UTR: Untranslated region; XPO5: Exportin-5.
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complex. The miRNA guides the complex to specific 
mRNA targets, where the miRNA imperfectly binds 
the 3 -́untranslated region (3´UTR) of the transcript 
leading to its silencing  [98–100]. This imperfect target 
recognition lowers target specificity of the miRNA and 
allows single miRNAs to fine-tune the expression of 
several dozens of mRNA targets and genes  [30,58,101]. 
Targeting over 60% of mRNA transcripts  [102] and 
regulating complex networks by evading an increase 
in translational burden makes them interesting tar-
gets for phenotype modification  [103]. For Cricetulus 
griseus (C. griseus), 307 mature miRNAs and 200 
precursor sequences are currently annotated in the 
latest miRBase version (release 21). However, when 
compared with human (2588 mature miRNAs) and 
mouse (1982 mature miRNA) this indicates that the 
number of mature miRNAs in C. griseus is likely to be 
underestimated, mainly due to the experimental limi-
tation to CHO cell lines during the identification pro-
cess [104,105]. This implies considerable potential for the 
discovery of novel miRNA sequences in this biophar-
maceutical relevant expression host in the future. Still, 

already now, different strategies for exploiting miR-
NAs for CHO cell line engineering were applied such 
as transient transfection of a human miRNA mimics 
library  [39] or the utilization of chimeric hairpin vec-
tors for miRNA overexpression  [33]. However, until 
the recent publication of the hamster genome [4–6], the 
lack of genomic sequence information substantially 
hindered miRNA research in CHO cells  [106] as chi-
meric vectors were shown to be outperformed by vec-
tors encoding endogenous miRNA sequences from C. 
griseus [40,107]. Despite these hurdles, the application of 
different miRNAs successfully improved process rel-
evant parameters such as growth, specific productivity, 
apoptosis and stress resistance.

PIWI-interacting RNAs
piRNAs are 24–32 nt long single-stranded sncRNAs. 
First discovered in small RNA profiling studies in 
Drosophila melanogaster (D. melanogaster) develop-
ment [108], piRNAs were later also found in mammals 
through immunoprecipitation of the PIWI protein 
from testis and subsequent sequencing of the attached 
RNAs [109,110]. The best known function of piRNAs is 
the silencing of mobile transposon elements in the germ 
line  [27]. These elements threaten the genomic integ-
rity by moving through insertion or transposition to 
new sites and thereby disrupting the host genome [111]. 
Enriched in the germ line, there are also indications 
that piRNA function reaches beyond silencing of 
transposable elements. In D. melanogaster, Fasciclin 4 
(FAS3) is a target of PIWI-associated piRNAs and is 

Table 1. Successful applications of engimiRs in Chinese hamster ovary cells.

miRNA name miRNA function Type of stable miRNA 
engineering

Putative target genes in 
CHO

Ref.

cgr-miR-7a Antiproliferative and 
pro-productive

Inhibition STMN1; CAT; PSME3; 
RAD54L; SKP2

[30–32]

cgr-miR-17 Pro-productive Overexpression NCOA3; JAK1; BCL2; 
CCND1; CFL2; DDX5

[33–35,36]

cgr-miR-466h Pro-apoptotic Inhibition BCL2L2; BIRC6; DAD1; 
STAT5a; SMO

[37,38]

hsa-miR-557 Pro-proliferative Overexpression Unknown [39]

hsa-miR-1278 Pro-productive Overexpression Unknown [39]

cgr-miR-19b Pro-productive Overexpression HNRNPF [34,36]

cgr-miR-20a Pro-productive Overexpression CFL2; DDX5 [34,36]

cgr-miR-17–92a 
cluster

Pro-productive Overexpression – [34,35]

cgr-miR-30a Pro-proliferative Overexpression Unknown [40]

cgr-miR-30c Pro-productive Overexpression Unknown [40]

cgr-miR-30e Pro-productive Overexpression Unknown [40]

CHO: Chinese hamster ovary.

Key terms

miRNA mimic: Synthetic small RNA molecules that are 
delivered to biological systems to mimic the activity of 
specific mature miRNA species.

miRNA sponge: RNA transcripts that harbor several 
preferential binding sites for mature miRNAs, thereby 
preventing the binding of miRNAs to endogenous mRNA 
targets and reducing their biological activity.



www.future-science.com 233future science group

ncRNAs, post-transcriptional operons & Chinese hamster ovary cells    Review

important for the intermingling of the germ line and 
somatic cells in ovaries [28]. Several studies also reveal 
their involvement in epigenetic regulation  [29] where 
MILI (also known as PIWIL2) and MIWI (also known 
as PIWIl4) from knockout mice indicate that PIWI 
homologs have similar function in heterochromatin 
control in both mice and flies  [112]. For their biogen-
esis, two different pathways are proposed: the primary 
transcription pathway and an amplification mecha-
nism (Figure 2E). In contrast to miRNAs and endo-
siRNAs, piRNAs do not require DICER for their pro-
cessing [43]. piRNAs possess a high degree of diversity 
with hundreds of thousands of individual sequences 
mapping to relatively small numbers of genomic loci 
called piRNA clusters. piRNA clusters have neither 
phasing nor overlapping sequences  [109–110,113]. From 
these locations they are either transcribed direction-
ally  [113–115], directly from piRNA clusters  [113–114,116] 
or from long precursor sequences as single strands 
without significant secondary structures  [27]. Tran-
scriptional tendency might be species specific [117]. The 
different processing steps generating mature piRNAs 
still remain unclear. However, in mice, the mature 
piRNA has been shown to be loaded onto MIWI pro-
teins  [110,114]. There are also reports that piRNAs can 
form piRNA-induced silencing complexes with PIWI 
proteins, which recognize and cleave complementary 
RNA targets  [27,118]. After piRNA export from the 
nucleus, a ping-pong- amplification mechanism leads 
to an accumulation of piRNAs in the cytoplasm [113]. 
Originally proposed in D. melanogaster, this ping-pong 
mechanism also applies to mouse prepachytene piR-
NAs  [115]. In mice, the primary piRNA is associated 
with MILI which cleaves complementary transcripts. 
These so-called secondary transcripts then bind to 
MIWI, which again cleaves complementary transcripts 
that can bind to MILI, thus completing the cycle [113].

Recently, piRNA sequences and expression were 
characterized in six different CHO cell lines [22]. Com-
putational analysis using pro-TRAC and the CHO 
genome resulted in the identification of more than 
25,000 individual piRNAs in 540 piRNA clusters. 
The functions of piRNAs and their high abundance 
in CHO cell lines indicate their potential application 
in cell line engineering, even though experimental 
evidence for their effects in CHO cells is still missing.

Long noncoding RNAs
lncRNAs are RNA transcripts, which are longer than 
200 nt after the maturation step (Figure 2F) [119,120] and 
are involved in many levels of gene regulation such as 
transcription by preventing binding of transcription fac-
tors, translation by binding to mRNA and ribosomes, 
chromatin remodeling, splicing and protein stability [121–

124]. They have a cell-specific expression pattern [125] and 
subcellular distribution [126]. Promoter regions, intergenic 
regions, natural antisense transcripts, enhancer-associ-
ated regions or pseudogenes are considered as sources 
for transcription  [122,127–128]. Similar to mRNAs, post-
transcriptional processing steps such as 5́ -capping, RNA 
editing, polyadenylation and alternative splicing are pres-
ent during lncRNA maturation  [23,129]. lncRNAs have 
also been associated with a variety of diseases such as 
cancer [130–132]. Expression levels of the metastasis-asso-
ciated lung adenocarcinoma transcript 1 (MALAT1), 
for instance, are elevated in several cancer types and 
increased cell proliferation was observed when MALAT1 
is overexpressed [133]. Moreover, MALAT1 is known as 
a prognostic biomarker for lung cancer and has criti-
cal regulatory functions in lung cancer metastasis  [134]. 
Recent experiments including MALAT1 showed that 
not all lncRNAs possess a poly(A) tail to protect for deg-
radation [135]. Instead, a triple-helical secondary structure 
at the 3 -́end of nonpolyadenylated MALAT1 prevents 
degradation of this lncRNA.

Recently, regulation of miRNA activity has been 
demonstrated for a particular lncRNA entity in 
eukaryotic cells termed competing endogenous RNAs 
(ceRNAs) [136]. ceRNAs harbor miRNA response ele-
ments which are complementary to specific miRNAs 
thus competing with miRNA binding sites in the 
3 -́UTR of target mRNAs (Figure 2F). This feature 
enables to precisely modulate the abundance of cer-
tain miRNAs in the cell [136]. However, these sponges 
seem to be expressed only at basal levels, often contain 
low numbers of miRNA targets sites and are prone to 
miRNA-mediated destabilization  [137–139]. Moreover, 
the question if ceRNAs are also expressed by CHO 
cells still remains to be elucidated. Further subdivi-
sion of lncRNA classes is difficult as many lncRNAs 
are associated with different regulatory pathways and 
many functions still seem to be unknown [140].

Circular RNAs
Very recent studies discovered another interesting and 
novel class of ncRNAs capable of regulating miRNA 
activity in the cell. First shown to encode subviral 
agents in plants  [141], circular RNA (circRNA) was 
generally dismissed for years as an experimental arti-
fact or genetic accident [142]. However, computational 
evidence from mammals indicates that circRNAs are 
more abundant than previously anticipated with thou-
sands of circRNAs present in human and mouse tis-
sues  [143,144]. circRNAs are considered as a large class 
of endogenous RNAs acting as post-transcriptional 
regulators due to their involvement in the regulation 
of miRNA abundance by functioning as miRNA 
sponges (Figure 2G) [144,145]. In comparison to linear 
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ceRNA sponges, circRNAs possess ten-times higher 
miRNA binding capacity than any reported ceRNA 
transcript [144]. Due to their circular nature they pos-
sess no accessible termini, rendering them resistant to 
miRNA-mediated RNA destabilization  [146]. Owing 
to these properties circRNAs are interesting tools for 
the control of endogenous miRNA expression levels 
in vivo.

Cell engineering using ncRNAs
Driven by an increasing demand for more efficient 
animal cell-based expression systems for recombinant 
proteins, novel genetic tools have entered the field of 
cell engineering. Among these new technologies, non-
coding regulatory RNAs such as siRNAs and miR-
NAs have emerged as smart instruments to control 
gene expression [147,148]. MicroRNAs do not add to the 
translational burden of producer cell lines, and as they 
might act as controller elements of post-transcriptional 
operons, they might help to shift the overall cell behav-
ior by targeting multiple, synergistic pathways. Fur-
thermore, a huge variety of other ncRNAs like piRNAs, 
lncRNAs or circRNAs that certainly play a substan-
tial role in the cell’s fate exist [22,29,145,149], and might, 
therefore, be of special interest for biotechnological 
applications in the future.

miRNA expression profiling in CHO cells
One bioprocessing strategy that seems ideal involves a 
short growth phase characterized by high proliferation 
rates in the beginning followed by a nongrowing highly 
efficient production phase, which is maintained for as 
long as possible in order to achieve high total prod-
uct yield  [150,151]. One frequently applied approach to 
achieve these goals is to reduce temperature in a bipha-
sic bioprocess. Shifting the temperature at the end of the 
exponential growth phase expands the longevity of the 
cells in bioreactors and ultimately increases final prod-
uct yields [152,153]. Evaluation of the positive effect of a 
temperature by establishing miRNA profiles on a cross-
species microarray revealed miR-21 and miR-24 to be 
upregulated during a biphasic process as well as in the 
stationary phase of a standard batch cultivation  [154]. 
In another study, differentially expressed miRNAs 
were investigated 24 h after a temperature shift  [31]. 

Here, six miRNAs (miR-219, miR-518d, miR-126, 
miR-30e, miR-489 and miR-345) were identified to be 
significantly up and four to be down regulated (miR-
7, miR-320, miR-101 and miR-199). In a combined 
approach to monitor both mRNA and miRNA expres-
sion pattern of CHO-K1 suspension batch cultures, 
more than 1400 mRNAs and 100 miRNA were found 
to be differentially expressed comparing lag, exponen-
tial and stationary growth phase  [155]. These results 
underscore the highly dynamic nature of a cell’s mRNA 
and miRNA transcriptome and have identified several 
targets that might be able to mimic the temperature 
shift effects on growth versus productivity [31].

To prolong cultivation time and to adapt cells to 
the stress environment of a bioreactor, inhibition of 
apoptosis is a common approach for cell line engineer-
ing and an interesting topic for miRNA research [156]. 
Cross-species microarray studies between CHO cells 
cultivated in fresh or nutrient-depleted media showed 
an upregulation of the miR-297–669 cluster during 
apoptotic cell death [37]. Of the 28 miRNA members of 
the miR-297–669 cluster, 18 were found to be upregu-
lated in depleted culture media [37]. In mice, the miR-
297–669 cluster is located in intron 10 of the Sfmbt2 
gene on chromosome 2. In CHO cells, differential 
miRNA expression of members of the miR-297–669 
cluster was confirmed by qRT-PCR for miR-466h and 
miR-669c. However, localizing of the miR-297–669 
cluster onto the chromosomal locus within the CHO 
genome is not yet possible as genomic sequence annota-
tions are not yet fully accomplished, but will certainly 
be available in the near future.

By comparing low and high-producing CHO cell 
lines, several miRNAs have been identified to be poten-
tially involved in production and secretion of different 
recombinant proteins [157,158]. In microarray screenings 
comparing parental CHO-DG44 with IgG-producing 
cells, miR-221 and miR-222 were detected to be signif-
icantly downregulated in IgG-producing cells [158]. As 
the transcriptome and the miRNA profiles of a cell are 
changing in response to progressive nutrient consump-
tion and the accumulation of metabolites [155], miRNA 
profiles of non, low and high-producing CHO cells 
were investigated during a steady-state cultivation [157]. 
In addition to 83 differentially expressed miRNAs, 
the authors observed that producer cells generally 
exhibit higher miRNA expression levels than nonpro-
ducing cells indicative of a critical role of miRNAs in 
recombinant protein production.

miRNAs as tools for CHO cell engineering
As described above, miRNAs play a critical role in 
CHO cell behavior and thus are obvious candidates 
for state-of-the-art genetic engineering to improve 

Key terms

engimiRs: Prefix for microRNAs that can be used for cell 
line engineering to improve traits such as growth rate or cell-
specific protein productivity (‘engineering miRNAs’).

Anti-miRs: Synthetic small RNA molecules with or without 
chemical modifications, which are designed to hybridize 
to endogenous miRNA sequences, thereby reducing their 
biological activity.
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of CHO production cell lines  [156,159]. The term 
‘engimiR’ describes a miRNA that is manipulated 
to improve bioprocess relevant cellular characteristics 
of mammalian manufacturing cell lines, turning it 
into a valuable instrument for cell engineering [21,160]. 
Indeed, there are multitudes of conceivable cell func-
tions, which can be exploited by engimiRs such as the 
protein production machinery, secretory pathway, cell 
cycle, metabolism or cell death represented by apopto-
sis, necrosis or autophagy [156,161–165]. A comprehensive 
list of successful engimiR applications for CHO cell 
engineering is summarized in Table 2.

The outcome of the above-mentioned studies has 
already provided a preliminary list of potential engi-
miRs that might have beneficial influence on CHO 
cell behavior. However, reported data sets from pro-
filing studies first had to be functionally validated to 
confirm that these miRNAs will actually confer the 
expected phenotype. The fact that the expression of 
a miRNA changes under certain culture conditions 
could be causative for the changes behavior or it could 
be a consequence. In the latter case, manipulating the 
expression of the miRNA would probably not have the 
desired effect. In addition, given the dynamics of gene 
expression in cells, the impact of miRNAs is always 
depending on the presence and the pattern of target 

mRNAs available under a given condition. Thus, over-
expressing a miRNA that has a certain effect on cell 
phenotype when present in the stationary growth phase 
might have a different or no effect during exponential 
growth. The precise effect of each stably manipulated 
engimiR therefore needs to be individually verified.

Depending on the expected mode of action, miRNA 
expression can be either enforced or diminished result-
ing in an increased or decreased target gene repression, 
respectively. Transiently elevated miRNA expression lev-
els can be facilitated by introducing small RNA duplexes, 
called miRNA mimics (Figure 3A), into cultured mam-
malian cells, thereby imitating the endogenous miRNA 
function [169,170]. In this context, miR-7a was discovered 
to be downregulated upon temperature downshift in 
CHO cells, and unexpectedly, ectopic overexpression of 
miR-7a-5p led to a decrease in cell growth, but increased 
specific recombinant protein productivity  [31]. Similar 
controversial observations were made by Loh and col-
leagues for the miR-17–92a cluster which was found to be 
downregulated in high-producing CHO cells compared 
with low-producing clones [34]. Nevertheless, stable over-
expression of selected members of the miR-17–92a clus-
ter, but not their inhibition as expected, enhanced cell-
specific IgG productivity, whereas combined enforced 
expression of all members of the miR-17–92a cluster did 

Table 2. Successful applications of small interfering RNAs in Chinese hamster ovary cells.

Targeted pathway siRNA target gene  Engineered phenotype Ref.

Cytoskeleton CFL1 65% (SEAP) and 47% (tPA) increase in specific 
productivity

[63]

Cell cycle ATR Fourfold increase in specific IgG productivity and 
threefold improved IgG titer

[166]

Metabolism LDHA 45–79% reduced lactate concentrations and diminished 
glucose consumption

[68]

  PDHK 68–90% increase in IgG titer [80]

Apoptosis Caspase 3 and 7 Enhanced cell viability and 55% increase in hTPO titer [60]

  ALG2, REQ, FAIM Elevated cell density and culture longevity; 1.2–2.5-fold 
increase in IFN-γ titer

[76]

  Bax and Bak Enhanced cell viability and 35% increase in IFN-γ titer [59]

Protein expression DHFR >100% increase in specific IgG productivity and 30% 
improved stability of transgene expression

[64]

Glycosylation NEU3 60% decrease in sialidase activity led to increased sialic 
acid content in IFN-γ

[72] 

  NEU1 and NEU3 98% decrease in sialidase activity led to 26–33% increase 
in sialic acid content of IFN-γ

[79]

  FUT8 Reduction in core fucose by 60–88% resulted in 100-fold 
improved ADCC of the produced IgG

[61,70]

  GMD Production of 100% defucosylated recombinant 
antibodies if culture medium lacks L-fucose

[66]

  FUT8 and GMD Production of fully nonfucosylated antibodies with 
improved ADCC

[168]
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Figure 3. Modulation of miRNA expression or function in cell engineering. (A) miRNA mimics are small double-
stranded RNA molecules that can be directly introduced into the cytoplasm of mammalian cells to transiently 
increase the cellular abundance of a miRNA. miRNA mimics are chemically modified such that only one of the 
two RNA strands is specifically loaded into the miRISC complex to post-transcriptionally regulate the endogenous 
target mRNAs. (B) miRNA function can be experimentally modulated by different modes of action: to transiently 
prevent a specific gene from being regulated by miRNAs, short single-stranded RNA oligonucleotides which are 
complementary to the target mRNA and thereby blocking the binding site (target site masking oligo), can be 
delivered to inhibit miRNA target recognition. For transient sequestration of a given miRNA, single-stranded 
antisense oligonucleotides (antagomiRs or anti-miRs) or miRNA sponge/eraser molecules can be introduced into 

the cell to inhibit the targeted miRNA. Genomic deletion of the miRNA binding site in the 3´UTR of a target mRNA 
can be used to stably prevent the regulation of a single gene by a specific miRNA. In contrast, genomic removal 
of a pre-miRNA sequence leads to stable loss of miRNA function and to dysegulation of several target genes. 
(C) Long-term ectopic overexpression or loss of miRNA function can be facilitated by stable genomic integration 
or knockdown/out of pre-miRNA genes. In this conjunction, intracellular transfer of miRNA expression or sponge/
decoy vectors is usually enabled by either nonviral or virus-mediated delivery systems followed by a selection 
process to obtain stable transfectants. 
miRISC: miRNA-induced silencing complex; pre-miRNA: Precursor miRNA; UTR: Untranslated region.
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not improve culture performance  [34]. These data were 
also in line with findings by Jadhav et al. who discovered 
that miR-17–5p represents an engimiR as this miRNA 
increased recombinant protein expression in CHO cells 
by about threefold [35].

In contrast to miRNA overexpression, short-term 
inhibition of cellular miRNAs can be achieved 

using specific antisense oligonucleotides, so-called 
antagomiRs or miRNA inhibitors (Figure 3B), which are 
often chemically modified to increase half-life [171–173]. 
AntagomiRs directly bind to their target miRNA lead-
ing to the formation of RNA duplexes which are finally 
degraded in the cell [174]. While Barron and coworkers 
could not observe any reversed effects after transient 
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inhibition of miR-7a-5p, stable inhibition resulted in 
an increase in both culture longevity and recombi-
nant secreted alkaline phosphatase (SEAP) yields in 
CHO cells [32]. Stable repression of endogenous miR-
NAs with negative effects on CHO cell behavior thus 
represents another way to take advantage of engimiRs 
in cell engineering. Besides miRNA sponge or decoy 
molecules, which are reporter genes such as the green 
fluorescent protein harboring multiple miRNA bind-
ing sites within their 3´UTR [175], there are also other 
possibilities to suppress cellular abundance of a given 
miRNA (Figure 3B) [176]. Druz et al. stably suppressed 
miR-466h, a proapoptotic miRNA in CHO cells 
by shRNA-mediated knockdown of pre-miR-466h, 
resulting in prolonged cultivation periods and a 53.8% 
increased IVC in recombinant CHO–SEAP cells due 
to delayed onset of caspase 3/7 activation  [37,38]. The 
authors illustrated that the knockdown of pre-miR-
466h led to an upregulation of antiapoptotic genes 
bcl2l2, dad1, birc6, stat5a, smo which are supposed to 
be targets of miR-466h-5p according to bioinformatics 
target prediction tools [37,38].

An alternative strategy for stable miRNA knock-
out represents genome editing using the CRISPR/
Cas9 system  [177–179]. Toward this end, pre-miRNA 
sequences of disadvantageous engimiRs can be specifi-
cally excised from genomic DNA of CHO production 
cells, presumably leading to improved phenotypes as 
miRNA activity will be completely lost (Figure 3B). 
The recently published ‘CRISPy’ tool, which repre-
sents a novel bioinformatics database that can be used 
to identify small guide RNA target sequences in CHO 
cells necessary for CRISPR/Cas9-mediated genome 
editing  [180], has the potential to substantially drive 
miRNA knockout studies in biotechnological context.

A broader functional investigation on miRNAs 
capable of increasing the yield of an antibody-produc-
ing CHO cell line was reported by Strotbek et al. [181]. 
Upon screening of an entire human miRNA mimics 
library, they discovered that two human miRNAs 
(hsa-miR-557 and hsa-miR-1287) lacking a homolog 
in CHO positively impact cell growth and specific 
IgG production in CHO cells. Although the applica-
tion of high-throughput miRNA screenings is promis-
ing techniques for elucidating miRNA function  [182], 
to gain deeper insights into the complex nature of 
miRNA-mediated gene regulation, screening protocols 
should be geared to a multifaceted cellular readout [40]. 
This is supported by the fact that common concepts of 
miRNA function generally comprise: the cumulative 
reduction in expression of several components of a cel-
lular pathway mediated by a single miRNA; the coop-
erative function of different miRNAs targeting various 
essential effector genes of the same regulatory network; 

and the fact that a single miRNA can maintain a 
cellular balance by fine-tuning the expression of both 
activators and inhibitors of a functional regulator 
simultaneously [183–186]. It is therefore fundamental to 
comprehensively analyze miRNA function in CHO 
cells and not only the impact of single miRNAs on a 
particular phenotype. The widespread regulation of 
crucial cellular pathways by miRNAs in mammalian 
cells was recently unveiled by a functional, genome-
wide, multiparametric miRNA screen in recombinant 
CHO–SEAP cells  [40]. The authors discovered an 
unexpectedly large number of engimiRs substantially 
improving bioprocess relevant cellular characteristics 
such as cell proliferation, recombinant protein produc-
tion or cell death (represented by apoptosis and necro-
sis). Interestingly, this comprehensive screen revealed 
a whole ‘engimiR family’, the miR-30 miRNA family, 
to substantially increase recombinant protein yields 
by enhancing either growth or cell-specific productiv-
ity [40]. Taken together all these data indicate that engi-
miRs are indeed attractive tools for next-generation 
cell engineering strategies of CHO production cells in 
the post genomic era.

Stable overexpression of miRNAs represents a 
valuable tool to improve CHO cell phenotypes and 
there are several technical methods to facilitate stable 
miRNA expression in CHO cells (Figure 3C). Since 
miRNAs are transcribed as precursor (pre-)miR-
NAs, consisting of a stem–loop structure which is 
subsequently processed by the endogenous RNase III 
enzyme Dicer, these sequences are used for the con-
struction of expression vectors, where the miRNA 
coding sequence is cloned into the 5́  or 3 -́UTR of a 
reporter gene (e.g.,  green fluorescent protein or anti-
biotic resistance). Importantly, the generated pre-
miR must exhibit several key features allowing for 
correct binding and processing by Dicer  [187,188], and 
exact loop sequences which are supposed to criti-
cally influence miRNA functionality  [189]. Before 
the publication of the CHO genome, plasmid-based 
overexpression was accomplished by piecing together 
the sequences of mature CHO miRNAs and ectopic 
flanking and loop sequences from mouse (‘artificial 
chimeric miRNA constructs’)  [33,181]. However, these 
artificial constructs were shown to perform inferior 
to native constructs, which use amplified and sub-
cloned endogenous pri-miRNAs based on the CHO 
genome sequence  [190], and were successfully applied 
for overexpression studies [34,40].

Additional currently available methods for miRNA 
overexpression are viral vector approaches such as 
adeno-associated viral (AAV) (Figure 3C), retroviral or 
adenoviral vectors  [191]. AAV vectors emerged as one 
of the most studied vectors for gene therapy [192], and 
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have been successfully used to transduce a variety of 
genes into a number of cell types in vitro as well as 
in vivo [193–195]. However, there are no studies available 
which have evaluated the compatibility of AAV vec-
tors and CHO cells regarding transduction efficiency 
and the ability to confer stable transgene expression. 
Although lentivirus-mediated miRNA overexpression 
has been widely applied in conjunction with human or 
murine cell lines  [196–198], no miRNA overexpression 
has yet been reported for CHO cells employing viral 
vectors. This might be due to the inherent resistance 
of CHO cells to viral infection [199], or the requirement 
for more restrictive laboratory safety levels when work-
ing with recombinant viruses and the unsuitability of 
using viral vectors in cell lines to be used for produc-
tion of safe human therapeutics. Nonetheless, the abil-
ity of viral vectors to mediate persistent miRNA (over)
expression in CHO cells as well as the rapid generation 
of stable cell lines may promote their application in the 
future as a valuable alternative to traditional plasmid-
based miRNA introduction, at least for the purpose of 
high-throughput screening experiments.

Besides the cellular production of therapeutic 
proteins, there will be alternative biopharmaceuti-
cal formats, which might be enhanced by the use of 
engimiRs. Preclinical as well as clinical grade manu-
facturing of viral vectors for gene therapy, oncolytic 
viral therapy or vaccination, using, for eample, AAV, 
adeno or lentiviral vectors, is preferably accomplished 
by stable cell lines, but also includes transient produc-
tion processes  [200–203]. Among many others, the pre-
dominantly applied cell types comprise HeLa, BHK, 
Vero or HEK293 cells as well as the baculovirus/SF9 
expression system [204–209]. These production platforms 
might profit from the stable expression of engimiRs, 
which would raise virus titers by increased vector rep-
lication, improved growth characteristics of the host 
cell or enhanced protein production capacity. Further-
more, host cell defense mechanisms, which can hinder 
efficient viral vector production, might be attenuated 
by engimiRs  [210–213]. However, this will require the 
identification and verification of appropriate engimiRs 
for each of the specific production host cell systems.

Cell engineering using miRNAs might not only be 
restricted to the utilization of the small RNA molecule 
itself. The application of engimiRs improving CHO 
production cells may be further promoted by modu-
lating the endogenous miRNA biogenesis machinery 
in these cells such that an engineered cell is able to 
increase cellular engimiR abundance more efficiently. 
Expression of crucial processing or cargo proteins 
could be enforced to accelerate intracellular miRNA 
maturation. In this conjunction, most promising can-
didates are, for example, DROSHA, DGCR8, XPO5, 

DICER, TRBP, AGO1–4 or GW182, representing key 
mediators for the generation and function of the sin-
gle-stranded mature miRNAs [86]. Hackl and cowork-
ers reported that the expression level of DICER in 
CHO cells correlates to an increase in overall expres-
sion levels of mature miRNAs which finally resulted in 
an increased cell growth  [214]. The authors suggested 
that increased levels of DICER proteins allowed for 
more rapid maturation of endogenous miRNAs which 
had beneficial influence on cell proliferation  [214]. Of 
note, induction of NDP52-mediated selective autoph-
agy has been demonstrated to be causative for target-
ing DICER and AGO2 for degradation, thus regulat-
ing miRNA activity in the cell [215]. This underscores 
the interconnected nature of cellular processes and 
miRNA biogenesis to ensure a homeostasis in the 
cell. Although overexpressing particular effector pro-
teins of the canonical miRNA biogenesis pathway will 
further increase translational burden of the cell, this 
example nicely illustrates the potential of engineering 
the endogenous miRNA biogenesis in CHO produc-
tion cells. Furthermore, the combined overexpression 
of such proteins and engimiRs might be an attrac-
tive approach for further achievements in the field of 
miRNA-mediated cell engineering in the near future.

Potential of other ncRNAs for cell engineering
Since their discovery as a novel class of sncRNAs influ-
encing germline development and function  [216], piR-
NAs have further been shown to be critically involved 
in epigenetic gene regulation by mediating histone 
modifications and DNA methylation  [217]. PIWI 
proteins have been demonstrated to be functionally 
associated with HP1a at the piRNA target site and 
thereby mediating methylation of histone H3 lysine9 
in D. melanogaster ovarian somatic cells  [218–220]. 
Moreover, piRNAs are supposed to direct DNA meth-
ylation on both transposon and nontransposon loci in 
mammals, albeit the exact mechanisms are still to be 
elucidated  [115,221]. In this conjunction, acetylation is 
another key epigenetic modification and alterations 
in histone acetylation, for example, by inhibition of 
histone deacetylases have already been connected to 
improved protein production in CHO cells  [222,223]. 
Yet, the question remains whether certain piRNAs 
can actually affect histone acetylation legitimat-
ing their more detailed examination. However, these 
examples, together with the fact that piRNA function 
appears to be evolutionarily well conserved, illustrate 
that piRNAs might indeed be valuable alternatives to 
current strategies where other sncRNAs are applied 
for cell engineering. As mentioned above, the presence 
of piRNAs in CHO cells has already been confirmed 
by Gerstl and colleagues who successfully identified 
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>25,000 piRNA species, and additionally presented a 
number of differentially expressed piRNAs in differ-
ent CHO cell lines [22]. Of note, considering that the 
number of piRNAs per cell can include up to 100,000 
different species [29], it is needless to mention that the 
large number of piRNAs will significantly increase the 
difficulty to identify piRNAs suitable for cell engineer-
ing and to control their expression precisely to enable 
fine-tuned changes in phenotype.

For many years the prevailing opinion about 
lncRNAs had been that lncRNAs are rare and only 
few functional transcripts possess relevant activity 
in the cell  [149]. However, rising numbers of recently 
published literature examining biological functions 
of lncRNAs enabled deeper insights into this exciting 
class of ncRNAs. The broad functionality of lncRNAs 
comprising gene transcription control, regulation of 
alternative splicing, nuclear organization, epigenetic 
gene silencing, chromatin modification and modula-
tion of miRNA expression might attract researchers 
to explore the potential of lncRNAs for CHO cell 
engineering [126,138,224–226]. The first hint of a success-
ful implication of lncRNAs for CHO cell line opti-
mization was the stable overexpression of a lncRNA 
that transcriptionally silences the NF-κB inhibitor α 
(NFKBIA) [227]. NFKBIA inactivates NF-κB, which is 
a positive regulator of cell growth  [228,229], thus stable 
inhibition of NFKBIA using the lncRNA improved 
culture performance of an antibody-producing 
CHO cell line finally resulting in enhanced product 
titers  [227]. This example demonstrates that it might 
be worth to further investigate this exciting class of 
ncRNAs in CHO cells. Moreover, the phenomenon 
that lncRNAs can also bind to and therefore regulate 

cellular miRNA expression – so-called ceRNAs – adds 
another level of complexity onto ncRNA-mediated reg-
ulatory networks, but also provides new opportunities 
for tailored cell engineering strategies. In this context, 
endogenous miRNA ‘sponge’ molecules represented 
by circRNAs  [145], which modulate cytosolic abun-
dance of particular miRNAs, is another smart cellular 
tool to fine-tune post-transcriptional gene silencing. 
No circRNAs have been identified in CHO cells yet, 
but re-analysis of existing NGS data sets from CHO 
transcriptomics may presumably enable the discovery 
of these endogenous miRNA regulators in CHO cells 
and their exploitation for cell line engineering in the 
future. The recently identified circRNA ciRS-7, which 
targets miR-7 by more than 70 complementary bind-
ing sites  [146], speculatively has high potential to be 
applicable in CHO cells for stable attenuation of miR-7 
expression increasing culture longevity and thus recom-
binant protein yields [32]. The advantages of circRNAs 
over ceRNAs or classical artificial miRNA ‘sponge’ 
constructs would be that circRNAs lack accessible ter-
mini, rendering them resistant to miRNA-mediated 
RNA destabilization and exonucleolytic decay [146].

Conclusion & future perspective
Research on ncRNAs is currently boosted by the 
availability of next-generation sequencing meth-
ods and new and surprising classes of ncRNAs have 
been identified over the last few years. When looking 
at next-generation sequencing data sets for CHO, it 
also becomes clear that not yet all ncRNAs have been 
identified and annotated and most probably we will 
live through a couple of exciting surprises during the 
next few years. In addition, proof of principle has been 

Executive summary

Background
•	 Chinese hamster ovary (CHO) cell factories represent one of the most important production systems for 

biopharmaceuticals.
•	 Novel approaches to CHO cell line development and optimization will benefit from the wealth of genomic and 

transcriptomic data by enabling precise control over cell metabolism by regulating gene expression.
Noncoding RNAs for the regulation of gene expression
•	 Noncoding RNAs (ncRNAs) are essential for precise regulation and fine-tuning of gene expression in 

mammalian cells, and consequently the control of cellular behavior.
•	 This is achieved by coordinated regulation of gene expression through ncRNAs, which resembles the well-

known operon concept.
The use of ncRNAs in CHO cell line development
•	 Specific types of ncRNAs, namely microRNAs and piwiRNAs, have been sequenced and annotated as well as 

thoroughly characterized in CHO cells.
•	 Proof of concept has been given that by engineering the transcription of specific miRNAs protein productivity 

can be improved.
Future perspective
•	 Albeit the progress, numerous types of ncRNAs are yet to be discovered and characterized in CHO cells.
•	 It is very likely that ncRNAs will be one of the most valuable tools for future cell factory engineering.
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provided that at least miRNAs can markedly enhance 
the biotechnologically relevant characteristics of CHO 
cells in terms of proliferation, avoiding apoptosis, stress 
resistance as well as specific productivity. Still, one 
missing link for industrial-scale application of miRNA 
engineered cell lines is their application to CHO pro-
ducer cells with industry scale productivity of around 
6 g/l. If such productivity can still be boosted, it is 
just a matter of time until such engineered CHO cell 
lines will produce biopharmaceuticals that will make 
it to the clinics. While miRNA engineering is the 
most advanced application of ncRNAs, the other vari-
ants discussed in this review also bear the potential 
of sophisticated, post-transcriptional operon-based 
regulatory engineering strategies over the next years.
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