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Friedreich ataxia (FRDA) is an autosomal recessive, neurodegenerative disease. 
It affects primarily the nervous system and the heart. Progressive gait and limb 
ataxia, dysarthria, loss of vibration and proprioceptive sense are characteristic 
neurological symptoms in FRDA. In approximately 96% of patients FRDA is 
caused by a triplet guanine-adenine-adenine expansion within the first intron 
of the FXN gene on chromosome 9q13. Increased numbers of guanine-
adenine-adenine repeats are suggested to interfere with FXN transcription via 
heterochromatin-mediated silencing and result in frataxin deficiency in FRDA. 
Genetic and biological studies support the role of frataxin as a multifunctional 
protein in iron-dependent mitochondrial pathways. Multicenter, randomized-
controlled Phase III trials in FRDA failed to prove disease modifying properties 
of candidate substances until to date. Phase II studies attributed idebenone, 
a synthetic short chain quinine analogue of co-enzyme Q10, some clinical 
benefit. Recent Phase III trials, however, testing idebenone have been negative 
or are still ongoing. Candidate substances currently tested in small randomized 
controlled or open-label trials are deferiprone, a mitochondrial iron chelator 
that forms chemically inert molecules by binding to iron, and conventional 
recombinant human or carbamylated erythropoietins. Both classes of 
candidate substances are currently under investigation to assess their efficacy 
and/or safety profile in Phase II trials. Pioglitazone is a peroxisome proliferator 
activated receptor g molecule currently tested in a 2-year randomized, double-
blind, placebo-controlled safety and efficacy study. Preclinical candidate 
substances in FRDA are histone deacetylase inhibitors. Promising findings 
in animal models will have to be replicated in human cellular models such 
as reprogrammed induced pluripotent stem cells from FRDA patients. A still 
unmet issue in FRDA is to establish well shaped clinical study designs in small 
study cohorts within a reasonable time frame. Therefore, large natural history 
studies as well as the introduction of validated bio- and surrogate markers are 
essential issues for future clinical trials. 
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Friedreich ataxia (FRDA) is an autosomal recessive, neurodegenerative disease. It 
is caused by a guanine-adenine-adenine (GAA) trinucleotid expansion in intron 1 
of the FXN gene, leading to decreased expression of the mitochondrial protein 
frataxin. FRDA primarily affects the nervous system and the heart. Its first descrip-
tion derives from Nicolas Friedreich in the second half of the 19th Century. FRDA 
is the most common of the recessive ataxias. It seems to be restricted to individuals 
from Europe, the Middle East, North Africa and India. Its prevalence appears to be 
closely related to the frequency of large, normal alleles for FXN as these are virtually 
absent in people from East Asia and in American Indians [1]. In Europe, heterozygous 
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mutation carriers seem to decrease in frequency with a 
south to north-east gradient [2–4]. Overall prevalence is 
approximately one in 30,000 to one in 50,000 in most 
populations, carrier frequency approximately one in 85 
in Caucasians [3,5,6]. The high prevalence in Western 
Europe may be explained by a population bottleneck 
in one of the so called ‘ice-age refugees’ in which small 
populations survived. A two-step model merges the 
duplication of an ancestral (GAA)9 allele and a second 
mutational event that was restricted to Indo-European 
and North African populations with an enlargement 
of the (GAA)18 allele into an unstable range of more 
than 34 GAA units and explains the lack of FRDA in 
sub-Saharan Africans [1–3,7–11]. In accordance with this 
hypothesis, all large normal and expanded allele carriers 
share a common haplotype.

Clinical presentation
The age of onset in FRDA is typically around puberty, 
but early and late onset variants do exist. GAA repeat 
length of the shorter allele correlates with age of onset, 
accounting for approximately 50% of phenotype varia-
tion [12]. Progressive gait and limb ataxia, dysarthria, as 
well as loss of vibration and proprioceptive sense are char-
acteristic neurological symptoms in FRDA. Loss of deep 
tendon reflexes, extended plantar response and abnormal 
eye movements accomplish the spectrum of neurologi-
cal features often seen in FRDA. Perception of light 
touch, pain and temperature may initially be normal and 
decrease with disease progression. Pyramidal involve-
ment and progressive weakness becomes severe mainly 
in late stage disease. Ataxia and balance impairment 
limit mobility and create the necessity of a wheelchair 
approximately 15 years after disease onset [13].

Non-neurological features in FRDA include hyper-
trophic cardiomyopathy and diabetes mellitus. Heart 
disease can be severe and can cause premature death, par-
ticularly in early-onset cases. Electrocardiography shows 
widespread T-wave inversion in virtually all patients. 
Conduction disturbances occur in approximately 10%. 
Supraventricular ectopic beats and atrial fibrillation are 
occasionally detectable and increase the risk of throm-
boembolic complications and may lead to heart failure. 
Echocardiography detects left ventricular hypertrophy 
in 50–65% of FRDA patients, showing increasing inci-
dence in patients with larger GAA alleles [12,14]. Severe 
cardiomyopathy with progressive deterioration of left 
ventricular ejection fraction and chronic heart failure, 
however, is rare. The prevalence of foot deformities and 
scoliosis in FRDA is high [15,16]. Pes cavus can be seen in 
> 90% of patients, whereas range-of-motion limitations 
in other joints are uncommon in early FRDA. Secondary 
to immobility and spasticity a range of joint abnormali-
ties may though occur. Scoliosis is seen in approximately 

60% of FRDA patients, associated with severe, progres-
sive hyperkyphosis [17,18]. Progressive curves are seen 
before the age of 10 years, whereas nonprogressive curves 
tend to present during or after puberty. Patients should 
be carefully screened and surgical treatment should be 
considered. Diabetes mellitus or impaired fastening glu-
cose may be part of the clinical spectrum of FRDA. Oral 
glucose testing is therefore recommended annually [13]. 

Neuropathology
Characteristic neuropathological features in FRDA are 
atrophy of dorsal root ganglia and thinning of dorsal 
roots. Especially large myelinated fibers of the dorsal col-
umn tend to be sparse in FRDA. A reduction of spinal 
cord diameters is therefore evident and seems to be most 
pronounced in the thoracic region [19,20]. In addition, neu-
ropathology in FRDA reveals subsequent atrophy of the 
dentate nucleus, as well as spinocerebellar and corticospi-
nal tracts. Histopathological studies indicate for neuronal 
iron dysmetabolism and inappropriate myelination in 
FRDA [20]. Atrophy of the cerebellar hemispheres and the 
vermis cerebelli, however, remains mild and might only 
be seen in later disease stages. Peripheral neuropathy in 
FRDA may primarily be related to hypomyelination by 
deficient interaction between axons and Schwann cells. 
Axonal degeneration of peripheral nerves is present in 
FRDA but remains slow in disease progression [21]. 

Diagnostic criteria, clinical assessment 
& rating scales 
Diagnostic criteria for FRDA have been suggested 
by Anita Harding in the 1980s [22]. They stipulate a 
slowly progressive, recessive ataxia that is not explained 
by other primary causes. Ataxia should start before the 
age of 25 years and is characterized by absent tendon 
reflexes of the lower limbs as well as dysarthria that 
occur within 5 years of disease onset [22]. These criteria 
provide for a sensitivity of 63% and a positive predictive 
value of 96% [23]. Lower GAA repeat numbers go along 
with a later onset and slower course of disease, as well 
as retained tendon reflexes [12].

For the assessment of ataxia in FRDA patients and 
the monitoring of disease progression three appropri-
ate scales - the ‘International Cooperative Ataxia Rating 
Scale (ICARS)’ [24], the ‘Friedreich Ataxia Rating Scale’ 
(FARS) [25], as well as the recently validated ‘Scale for 
the Assessment and Rating of Ataxia (SARA)’ [26] may 
be used. SARA is composed out of eight items yield-
ing in a total numeric score from 0 (no ataxia) to 40 
(severe ataxia). Initially SARA was invented for rating 
of autosomal dominant ataxia. Validity and reliability of 
the scale in FRDA have been shown recently [27]. Mean 
time to administer SARA in patients is 14.2 ± 7.5 min 
(range: 5–40 min). Single SARA items comprise gait 
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(score 0–8), stance (score 0–6), sitting (score 0–4), 
speech disturbance (score 0–6), finger chase (score 
0–4), nose-finger test (score 0–4), fast alternating hand 
movements (score 0–4) and heel-shin slide (score 0–4). 
Limb kinetic functions are rated independently for both 
sides. The mean score is introduced in the total score. 
SARA scores significantly correlate with ICARS and 
FARS total scores  [27]. FARS is a disease specific scale 
for rating ataxia severity in FRDA and thus also con-
siders symptoms especially occurring in FRDA. FARS 
consists of five separate sub-scores (bulbar system, 
upper extremities, lower extremities, peripheral system 
and upright stability) and results in a score from 0 to 
125 with higher scores representing more severe ataxia. 
Performance measures that have been modified for the 
use in FRDA have been introduced into the FARS. 
These measures include a 9-hole peg test for fine motor 
coordination, a timed 25-foot walk for ambulation, a 
speech test using the phrase ‘PATA’, and a low-contrast 
letter acuity vision test. Additionally ‘activities of daily 
living’ (ADL) and a ‘functional disability scale’ can be 
implemented into the FARS, resulting in a maximum 
score of 167 points [28,29]. Progression of FRDA has 
been measured with FARS, showing more valid data in 
a 2-year period than after 1 year [30]. ICARS is a widely 
used semi-quantitative ataxia rating scale designed to 
represent the classic features of ataxia. ICARS is a hun-
dred percent scale with higher percentages indicating 
more severe ataxia. Postural and stance disturbances 
(32%) and limb ataxia (52%) engage the largest parts 
of this scale. The compartmentalization makes it pos-
sible to determine sub-scores [24]. ICARS has shown high 
inter-rater reliability in genetically confirmed ataxias [31]. 
Usefulness of ICARS for interventional trials was ques-
tioned recently concerning practicability and sub-scale 
structure [32]. Additionally several overlapping ICARS 
rating items have shown to lead to inconsistent rating [33].

Genetics & pathophysiology
Genetic testing of FRDA is available on a routine basis. 
In approximately 96% of patients FRDA is caused by 
a homozygous triplet GAA expansion within the first 
intron of the FXN gene on chromosome 9q13 [34]. 
Repeat expansions within the FXN gene can range from 
66 repeats (normal is <40 repeats) up to more than 
1000 GAA repeats. The majority of expanded alleles 
contain between 600 and 1200 GAA repeats. There is 
an inverse correlation between the age at onset, sever-
ity of disease and associated systemic symptoms with 
the size of the smaller GAA repeat expansion probably 
reflecting residual frataxin expression from the respec-
tive allele [5,6,35–37]. Approximately 4% of individuals 
with FRDA are compound heterozygote for a GAA 
expansion in one FXN allele and a point mutation in 

the other allele resulting in distinct phenotype sever-
ity  [6,32,35,38]. Penetrance is complete in homozygotes 
and in compound heterozygotes [34]. Tissue mosaics 
as often found in mitochondrial disorders may also 
contribute to an individual clinical phenotype [39,40].

Unlike other triplet repeat diseases such as poly
glutamine expansion and RNA toxicity diseases, GAA 
expansions in FXN are intronic and do not alter the 
frataxin protein sequence. GAA repeat expansion leads 
to triplex DNA formation which may interfere with 
the transcription of the FXN gene [41–44] and hetero-
chromatin-mediated silencing [45], resulting in limited 
production of frataxin. Frataxin is highly conserved 
across species with homologs in bacteria, yeast, plants, 
and animals. In humans, frataxin mRNA is translated 
into a precursor protein containing 210 amino acids 
(frataxin1–210) [46,47]. Post-translational processing gen-
erates at least two frataxin isoforms (frataxin42–210 and 
frataxin81–210). Recent reports suggest both isoforms 
relevant to FRDA pathophysiology [48]. 

Despite intensive research, the exact physiological 
functions of frataxin remain the subject of debate. 
Genetic and biological studies support a pivotal role of 
frataxin as a multifunctional protein in different iron-
dependent mitochondrial pathways [34,49]. Frataxin is 
suggested to act as a mitochondrial iron chaperone [50] 
or as an iron sensor regulating the iron-sulfur (Fe-S) 
cluster biogenesis [51]. In vitro studies suggest that iron 
binding may trigger the oligomerization of frataxin and 
lead to radical scavenging of toxic iron in a bioavailable 
form in consequence [52]. Both monomeric and oligo-
meric forms of frataxin were shown to interact with vari-
ous potential iron acceptors. In vitro frataxin was shown 
to interact with ferrochelatase and to provide the iron 
that is needed in the last step of heme synthesis [53,54]. 
Frataxin may also interact with mitochondrial aconi-
tase, a Fe-S-containing protein, which protects against 
the disassembly of the Fe-S cluster by facilitating iron 
transfer to aconitase [55]. Moreover, both monomeric 
and oligomeric forms of frataxin were proposed to be the 
iron donor protein for de novo Fe-S cluster biosynthe-
sis [51,56–61]. Fe-S clusters are critical prosthetic groups 
present in proteins involved in essential cellular pro-
cesses ranging from nuclear genome stability to protein 
translation in mitochondrial metabolism [62]. De novo 
Fe-S cluster assembly, a mitochondrial process in 
eukaryontes, relies on the assembly of a Fe-S cluster on 
a scaffold protein (ISCU) from inorganic iron and sul-
fur, followed by the transfer of the scaffold bound Fe-S 
cluster to the target apoproteins. Both the synthesis and 
the final transfer to apoproteins require the help of addi-
tional proteins [63]. The exact function of these proteins 
is currently unknown. Still, in vitro iron loaded human 
frataxin has been shown to deliver iron to ISCU  [50]. 
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The iron-donor function of frataxin has recently been 
challenged in vitro since it behaves as an iron-dependent 
inhibitor of Fe-S cluster assembly through specific inter-
action with scaffold proteins in kinetic studies of Fe-S 
cluster biosynthesis  [51]. Impaired mitochondrial iron 
handling in FRDA and mitochondrial iron accumula-
tion causes in consequence an impairment of respiratory 
chain function and contributes to increased oxidative 
stress and cellular damage  [64–66]. Loss of iron sulfur 
proteins including the respiratory chain complexes I, 
II, III and aconitase result in reduced ATP generation 
as confirmed in FRDA ataxia patients by MRI [67]. 
However, the level of importance of an oxidative stress 
component in FRDA has been discussed controversially. 
Still, deficient mitochondrial ATP production in tissue 
that depends on oxidative phosphorylation such as the 
nervous system is likely to be responsible for cellular 
dysfunction and cell death. Moreover, if oxidative stress 
via dysfunctional lipid peroxidation, impaired scaveng-
ing of superoxide radicals and reduced ATP formation 
may play a role in disease progression of FRDA remains 
to be elucidated.

Biomarker & surrogate markers
■■ Frataxin

Assays to quantitatively measure the amount of frataxin 
protein have been established recently [68,69]. Frataxin 
levels are usually quantified per µg total protein content 
to allow standardized measures. Absolute frataxin levels, 
however, vary considerably in recently published studies, 
which may be addressed to distinct cell lysis protocols 
and frataxin protein detection methods. Compared with 
healthy controls FRDA patients show a mean residual 
frataxin expression of 20–35% [68–71]. The amount of 
frataxin expression is inversely correlated to the number 
of GAA repeats. Late onset FRDA patients therefore 
display higher frataxin levels ranging from 40–90% of 
control values [70]. Until to date frataxin measurements 
have mainly been performed out of isolated periph-
eral blood mononuclear cells and cultured cell lines 
of FRDA patients. Recent reports also suggest buccal 
cells, whole blood and skeletal muscle [71,72] as appropri-
ate specimens for frataxin detection. Still, considering 
frataxin’s important role as a biomarker in clinical trials 
the range of frataxin levels in normal controls, FRDA 
carriers and FRDA patients in different tissues should 
be studied in depth.

■■ Markers of oxidative stress
Oxidative stress is caused by the presence of any of a 
number of reactive oxygen species, which the cell is 
unable to counterbalance. This may result in damage 
to one or more biomolecules including DNA, RNA, 
proteins and lipids. Detection of oxidative stress may be 

based on DNA/RNA damage, lipid peroxidation, pro-
tein oxidation or the detection of reactive oxygen species 
in general. In principle, a sole assay addressing oxidative 
stress may be rather nonspecific for the detection of 
neurodegenerative cell loss in FRDA patients. Moreover, 
reactive oxygen species markers in patients may be 
afflicted by multiple confounders during clinical trials. 

■■ MRI techniques
MRI has been used as a biomarker in a first clinical 
FRDA trial by measuring iron content in the den-
date nucleus [73]. In addition to special iron detection 
methods, new MRI techniques such as voxel-based 
morphometry, fiber tracking or MR-spectroscopy are 
prone to become valid in  vivo surrogate markers in 
future clinical studies. Several nontherapeutic studies 
using voxel-based morphometry have revealed a cor-
relation of patients’ clinical scores and disease duration 
with brain white matter atrophy [74–76]. Detection of 
neurochemical patterns in specific brain areas using 
MR-spectroscopy was suggested to differentiate distinct 
ataxias [77]. MRI scans with higher field force (3–5 tesla) 
will provide for better spatial differentiation. The valid-
ity of MRI-techniques as a biomarker in therapeutic 
trials, however, warrants further investigation.

Cardiac MRI and spectroscopy are adequate meth-
ods for detection of interventricular septum thickness, 
left ventricular mass and estimation of mitochondrial 
function [78,79]. Their relevance as a biomarker, how-
ever, is disputable as cardiomyopathy is not evident in 
all FRDA patients and ataxia severity lacks correlation 
with cardiac hypertrophy. Application of a cardiac MRI 
in clinical trials will therefore be limited to therapeutic 
compounds addressing cardiac involvement in FRDA. 

■■ Clinical rating scales
Precision in ataxia rating is limited because of the 
semi-quantitative approach in all ataxia rating scales. 
Moreover, both inter- and intra-rater variability as well 
as ceiling effects in case of patients with more advanced 
disease stages contribute to a lack of accuracy in clinical 
rating. New tools and improvement of rating scales will 
be necessary for small but significant clinical benefit 
in future trials [80]. The introduction of quantitative 
clinical measurements (based on existing clinical ataxia 
symptoms) using electronic-based portable devices 
would therefore be helpful. Additionally, functional 
scores and speech assessment have to be developed to 
improve clinical outcome measures. 

Clinical studies
Most therapeutic approaches in FRDA focus on anti-
oxidant treatment to protect mitochondria from oxida-
tive stress and iron accumulation. Alternatively, therapy 
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strategies also target enhancing the transcription or pro-
tein stabilization of frataxin. Nevertheless, until to date 
randomized-controlled trials in FRDA are sparse. The 
following paragraphs provide an overview of candidate 
substances tested for the use in FRDA, ongoing trials 
and future perspectives. PubMed was searched for arti-
cles published before March 2011 including the search 
terms ‘Friedreich ataxia’ in combination with ‘therapy’ 
and ‘treatment’. Studies conducted before availability 
of genetic testing [34] were given low priority. Ongoing 
clinical trials were identified via the database of the 
US NIH [201].

■■ Idebenone 
The basic pathophysiological approach of impaired 
mitochondrial function due to oxidative stress has led 
to broad application of antioxidant agents for the treat-
ment of FRDA. The majority of clinical therapeutic 
studies were carried out using idebenone, a synthetic 
short chain quinine analogue of co-enzyme Q10. It acts 
as an electron carrier in the mitochondrial respiratory 
chain and therefore allocates the production of ATP. 
Besides, idebenone inhibits lipid-peroxidation, serves 
as a free radical scavenger and may therefore addition-
ally prevent mitochondria from oxidative damage [81]. 
After absorption idebenone is rapidly metabolized and 
conjugated into several metabolites showing dose pro-
portional pharmacokinetics in healthy human subjects 
up to 2250 mg/day [82,83]. However, cerebrospinal fluid 
analysis suggest idebenone to be less distributed to the 
brain than to other tissues [84]. 

Several clinical trials have been conducted with ide-
benone in FRDA patients. A majority, however, are lack-
ing controlled or blinded study designs. A single-center 
randomized placebo-controlled trial (Phase II) assessed 
idebenone in 47 children using different dosages of ide-
benone (5, 15 and 45 mg/kg). Primary end point was 
a change in 8-hydroxy-2’-deoxyguanosine, a urinary 
marker of oxidative stress, after 6 months of treatment. 
Secondary outcome measures included ataxia rating 
(ICARS and FARS) and measures of ADL. Whereas 
the primary outcome was failed, a subgroup analysis of 
ambulatory patients showed significant improvement 
in ICARS. Moreover, higher dosages of idebenone 
were suggested to be superior compared with the lower 
dosage and placebo [28]. Two subsequent multicenter, 
randomized-controlled Phase  III trials (MICONOS 
and IONIA) were carried out to assess efficacy of ide-
benone treatment for neurological and cardiac symp-
toms in FRDA. IONIA included seventy ambulatory 
children (age 8–18 years) with genetic proven FRDA. 
Participants were randomized into three treatment arms 
(placebo, low-dose and high-dose idebenone). Primary 
outcome was change in ICARS score after 6 months. 

Secondary outcomes included changes in FARS rating, 
performance measures and ADL. IONIA failed to show 
significant improvement compared with placebo in each 
of the two end points [85]. Moreover, idebenone did not 
decrease left ventricular hypertrophy or alter cardiac 
function [86]. Upcoming results of the MICONOS trial 
(more than 200 ambulatory as well as wheelchair bound 
FRDA patients for a study duration of 1  year) will 
enlighten the issue if larger studies of longer duration are 
prone to assess the therapeutic potential of idebenone in 
FRDA [87]. The primary outcome of the MICONOS 
study is absolute change in ICARS from baseline to 
year one. Secondary outcome measures include reduc-
tion of left ventricular mass index detected by MRI and 
echocardiography as well as the improvement in peak 
workload assessed by a modified exercise test.

Numerous earlier studies using idebenone 5 mg/kg/
day showed significant impact on cardiac hypertrophy 
determined by echocardiography [88–91], although only 
one study was conducted as a randomized-controlled 
trial [91]. Still, these results could not be replicated in 
other studies [92,93]. Open label studies investigating 
clinical effects of idebenone treatment in FRDA patients 
showed decrease in ICARS Score [92] and stabilization 
of motor symptoms [94].

Until to date no multicenter, randomized-controlled 
trial showing idebenone to have clinical benefit on 
neurological symptoms in FRDA has been reported. 
Positive effects of idebenone on cardiac hypertrophy 
are still lacking clinical significance [95]. By all means 
idebenone therapy has been shown to be safe and well 
tolerated as solely low side effects of high dosages have 
been reported in FRDA patients of all ages [28,87,96]. 
Benefit of idebenone treatment in FRDA to stabilize 
disease progression may additionally depend on disease 
stage and age at initiation of idebenone treatment [92,94], 
which has been insufficiently considered in clinical tri-
als so far. Table 1 gives an overview of recent idebenone 
trials in FRDA. 

■■ Other antioxidants
Apart from idebenone co-enzyme Q10 and vitamin E 
have been suggested for antioxidant treatment of FRDA. 
Co-enzyme Q10 plays a role in mitochondrial ATP pro-
duction. Vitamin E is a naturally occurring lipid soluble 
antioxidant. The combination of co-enzyme Q10 and 
vitamin E revealed improvement of energy metabolism 
in cardiac- and skeletal muscle assessed with MRI in an 
open label trial on ten FRDA patients. Moreover changes 
in ICARS score suggested stabilization of disease pro-
gression as compared with a cross sectional group of 
FRDA patients [97,98]. Evidence for l-carnitin is based 
on one double-blind crossover placebo-controlled trial, 
though conducted in a heterogeneous study population 
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of ataxias. FRDA patients showed improvement of coor-
dination and muscle tone [99]. A randomized placebo-
controlled trial in FRDA patients could not confirm 
these results. No improvement on echocardiographic or 
neurological features could be achieved [100]. 

■■ Deferiprone
The pathophysiological evidence of mitochondrial iron 
accumulation in FRDA has led to the consideration of 
implementing iron chelation as a therapeutic strategy. The 
iron chelator deferiprone forms chemically inert molecules 
by binding to iron. In contrast to conventional iron chela-
tors deferiprone is capable to cross the blood brain barrier 
and target mitochondria [101]. Deferiprone was tested in 
a first open label trial on nine adult FRDA patients over 
6 months. Magnetic resonance imaging revealed signifi-
cant decrease of iron content in the dentate nucleus [73]. 

Moreover, modest clinical improvement as measured by 
the ICARS scale was found. Hematopoietic or neurologi-
cal side effects did not occur within this dosage regimen. 
However, in vitro data suggest loss of aconitase activity by 
excessive iron chelation [102]. Results of a 1 year random-
ized, double-blind, placebo-controlled Phase II study with 
the primary outcome safety and tolerability are underway. 

■■ Combined therapy with idebenone 
& deferiprone
A prospective open-label single-arm clinical trial in 20 
FRDA patients combining idebenone and deferiprone for 
11 months revealed improvement in iron deposition in 
deep cerebellar nuclei measured by MRI. While cardio-
myopathy improved significantly, neurological functions 
remained stable. Side effects comprised neutropenia and 
the reduction of plasma iron parameters [103]. 

Table 1. Recent idebenone trials in Friedreich ataxia and their main neurological and cardiac findings.

Trial Study design No. of 
patients

Study 
duration 
(months)

Main neurological findings Main cardiac findings Ref.

Rustin et al. 
(1999)

Open-label 3 4–6 N/A Decrease of left-ventricular 
mass index

[88]

Schols et al. 
(2001)

Randomized-
controlled

9 1.5 No changes in clinical 
ataxia rating

No changes in 
echocardiographic measures

[93]

Artuch et al. 
(2002)

Open-label 9 12 Reduction in ICARS score after 
3 months, correlation between 
idebenone serum values 
and ICARS difference after 
12 months

No changes in 
echocardiographic measurements

[92]

Hausse et al. 
(2002)

Open-label 38 24 N/A 20% reduction in left ventricular 
mass and improvement in 
shortening fraction

[89]

Mariotti et al. 
(2003)

Randomized-
controlled

28 12 No improvement in 
clinical rating

Significant reduction of 
interventricular septal thickness and 
left ventricular mass

[91]

Buyse et al. 
(2003)

Open-label 8 12 Progressive ataxia Reduction of left ventricular 
mass index

[90]

Di Prospero 
et al. (2007)

Randomized-
controlled

48 6 Higher doses associated with 
neurological improvement

N/A [96]

Ribai et al. 
(2007)

Open-label 104 6–84 Worsening of ICARS score 
over time

Decrease of left ventricular mass 
index without improvement of 
cardiac function

[117]

Pineda et al. 
(2008)

Open-label 24 36–60 Stabilization in 
pediatric patients, progression 
in adult patients

No progression of cardiomyopathy 
in pediatric and adult patients

[94]

Lynch 
et al. (2010), 
Lagedrost 
et al. (2011)

Randomized-
controlled

70 24 No significant alterations No improvement of 
echocardiographic or 
ECG parameters

[85,86]

ECG: Electrocardiography; ICARS: International Cooperative Ataxia Rating Scale; N/A: Not available.
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■■ Pioglitazone 
Pioglitazone is a peroxisome proliferator activated recep-
tor g molecule. It induces the expression of enzymes 
involved in mitochondrial metabolism including super-
oxide dismutase. Pioglitazone crosses the blood brain 
barrier and is suggested to improve antioxidant defense 
mechanisms. A 2-year randomized, double-blind, 
placebo-controlled safety and efficacy study in FRDA 
with the primary out-come measure of stabilization in 
ICARS is currently ongoing.

■■ Erythropoietins
Due to their neuroprotective capacities erythropoi-
etins have received considerable attention within the 
last years [104,105]. In vitro erythropoietin incubation of 
isolated lymphocytes and fibroblasts of FRDA patients 
has led to upregulation of the protein frataxin without 
affecting mRNA expression [106,107]. Open label studies 
in FRDA patients administering subcutaneously recom-
binant human erythropoietin (rhuEPO) have been con-
ducted in different dosages and regimens. Continuous 
rhuEPO application (three-times weekly) showed frataxin 
upregulation of 27% (range: 15–63%) after 2 months 
in ten patients. Moreover, reduction of oxidative stress 
parameters as measured by peroxides and 8-hydroxy-2’-
deoxyguanosine were shown [108]. A further open label 
extension study on eight out of these ten patients revealed 
clinical improvement as measured by SARA and FARS 
rating after a study period of 6 months [109]. Intermittent 
high dose application of rhuEPO in monthly intervals 
resulted in a cumulative long lasting increase in frataxin 
levels without clinical improvement in two open label 
studies on FRDA patients [110,111]. Due to the well known 
hematopoietic stimulation potential of erythropoietin 
close meshed monitoring of blood cell count is essen-
tial. Elevated hemoglobin and hematocrit levels require 
phlebotomies, especially in continuous dosing regimens. 
Though carbamylated erythropoietin could provide the 
benefit of increase in frataxin levels [112] without affecting 
red blood cell count or iron metabolism. Currently a first 
clinical Phase II trial using carbamylated erythropoietin 
in FRDA is underway. 

■■ Histone deacetylase inhibitors
Histone deacetylase (HDAC) inhibitors are promis-
ing candidate substances for the future treatment as 
they may directly reverse the primary cause deficient 
frataxin expression in FRDA. HDAC inhibitors may act 
on DNA transcription by reversing heterochromatin-
mediated silencing of the FXN gene with subsequent 
increase of frataxin mRNA expression and protein 
in lymphoid cell lines of FRDA patients [45]. HDAC 
inhibitors have also been shown to increase frataxin 
expression in brain and heart in a KIKI mouse model 

for FRDA [113]. Moreover, FRDA disease phenotype 
could partially be reversed in a GAA repeat expansion 
YG8R mouse model after 5 months of HDAC inhibi-
tor treatment [114]. In murine models HDAC inhibitors 
were well tolerated [113–115], their safety and efficacy pro-
file in humans, however, requires further investigation. 
Preclinical trials are currently underway.

Future perspective
Promising advances for the treatment of FRDA rely on 
several pathophysiological considerations (Figure 1). The 
prevention of oxidative stress through an improvement of 
mitochondrial respiratory chain function and the alloca-
tion of ATP production underlies the use of idebenone, 
a synthetic short chain quinine analogue of co-enzyme 
Q10. Unfortunately, after some hope during Phase II 
clinical trials, results of recent Phase III clinical trials 
using idebenone to achieve clinical benefit were somehow 
disappointing [85]. Also deferiprone, an intracellular iron 
chelator entered into a clinical Phase II studies. While 
findings in MRI surrogates appeared to be promising, 
secondary clinical outcome measures did not detect 
consistent benefit [73]. A second Phase II study is cur-
rently addressing safety and tolerability and will provide 
for further data. Recent advances in the understanding 
of mitochondrial iron metabolism point to a complex 
interaction between mitochondrial iron content and 
frataxin function. In the light of these findings the role 
of iron chelators as a long-term therapeutic approach in 
FRDA will have to be reconsidered. Pioglitazone is sug-
gested to improve antioxidant defense mechanisms and 
is currently tested in a 2-year randomized, double-blind, 
placebo-controlled safety and efficacy study in FRDA. 
Erythropoietins are candidate substances in FRDA 
therapy. Multimodal properties of erythropoietins may 
explain laboratory findings, namely an upregulation of 
cellular frataxin content. They may also explain clinical 
improvement through symptomatic effects on muscle 
strength and endurance, similar to enhanced motor 
performance in athletes with illicit use. Erythropoietins 
are also prone to influence frataxin function per  se 
considering their multiple functions on intracellular 
and mitochondrial iron handling. Thus, conventional 
erythropoietins have considerable short-comings in their 
safety profile because of their hematopoietic side effects. 
Therefore nonhemotopoietic derivatives of erythropoi-
etin such as carbamylated erythropoietin may have a 
role in future FRDA therapy [112]. A clinical Phase II 
study with carbamylated erythropoietin in FRDA is cur-
rently under way. Only recently, preclinical studies using 
HDAC inhibitors in cell cultures and in mouse models 
provided for promising data in FRDA [45,113]. Reversing 
heterochromatin-mediated silencing of the FTX gene 
with subsequent increase of frataxin is an elegant and 
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tempting therapeutic approach. Still, considering limited 
experience in epigenetic therapy approaches in general 
and concerns about the specificity of HDAC inhibitors 
in vivo have to be overcome. New techniques such as 
induced pluripotent stem cells from FRDA patients [116] 
that are re-differentiated to neuronal cell lines will have 
major impact on candidate substance development and 
testing in the near future. For the first time candidate 
substances will be developed in human disease spe-
cific cell lines and adapted for special needs in distinct 
neuro-degenerative conditions.

Disease modifying treatment 
options may address either neuro-
protection or neurorescuing, since 
the regeneration potency in neu-
ronal tissue appears to be remote. 
Therefore large natural history 
studies, validated biomarkers and 
disease progression markers are 
pivotal in FRDA. A large natural 
history study has been launched in 
Europe with support of the European 
Community only recently (European 
Friedreich Ataxia Consortium for 
Translational Studies). Remarkable 
efforts have been made to validate 
scales for the assessment of ataxic 
symptoms. Thus, semi-quantita-
tive measures remain prone to be 
aff licted by subjective interpreta-
tion. Therefore, the development of 
quantitative tools for the assessment 
of ataxia is of importance for clinical 
studies. The design of future clinical 
studies in FRDA will be challenged 
by the following issues: 

■■ To develop tailored study 
schedules in small study populations 
for substance testing with appropriate 
tools and in applicable time frames;

■■ To bear in mind that clini-
cal effects of candidate substances 
may not reverse neuronal cell loss in 
advanced disease stage;

■■ To give patients afflicted by 
rare disease the right to participate 
in clinical trials regardless of their 
disease stage. 

To date, these issues represent 
major pitfalls in disease-modifying 
therapeutic trials in FRDA.
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Figure 1. Scheme of pathophysiological mechanisms in Friedreich ataxia and their 
associated relevant therapeutic point of application.
GAA: Guanine-adenine-adenine; HDAC: Histone deacetylase; rhuEPO: Recombinant 
human erythropoietin.
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