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Near-infrared spectroscopy in upstream

bioprocesses

The quality of upstream processes and

their products strongly depends on the

control of all influencing parameters. However, several relevant parameters are not
measured in standard bioreactor systems. Near-infrared spectroscopy (NIRS) is one
promising technology capable of becoming the missing link in sensor technology.
This review gives an overview of the technological principles and the technological
progress. A broad range of possible applications is presented, forming in its entirety a
valuable toolbox for process risk mitigation. Recent applications of NIRS in upstream
bioprocesses are discussed. Moreover, the review includes regulatory aspects in
implementation, calibration and validation of NIRS instrumentation and models.

The (bio)pharmaceutical industry is cur-
rently going through a phase of substantial
changes. The reasons are complex. Major
contributors are the decline in selling prices
due to increasing market share of generica
and biosimilars as well as expiring patents of
former blockbusters. Additionally, regulatory
aspects increase the costs and prolong the
development of new pharmaceuticals. The
resulting serious cost pressure requires highly
efficient development and production pro-
cesses. Optimal processes include the control
of every process parameter having an impact
on the product or the process itself. Why is
controlling biotechnological production pro-
cesses more challenging compared with other
continuous production processes?
Biotechnological production processes are
usually divided into two areas. The cultivation
of cells starts with precultures from a cell bank.
The series of cultivations until final harvest is
defined as the upstream part. The downstream
part includes all steps to process the resulting
cell broth to meet purity and quality require-
ments regarding the final formulation of the
product. Depending on the type of cell that
is cultivated the upstream processes can be
classified into microbial fermentations (bacte-
ria, fungi, yeasts and algae) or cell cultivation
(mammalian cells and insect cells).

Any Dbiotechnological cultivation rep-
resents a complex process, including bio-
logical (e.g., uptake, conversion and deg-
radation rates), physicochemical (e.g., pH,
fractioning of inorganic carbon) and physi-
cal (e.g., concentrations, mass transfers and
aggregation) variations. The complexity is
further increased as cultivations are dynamic
processes where all parameters are time
dependent. The complete biology changes
with proceeding process time, mainly due to
cell age and the increase of biomass, result-
ing in an increased uptake, conversion and
degradation of nutrients. Depending on
process conditions, the same biological sys-
tems can follow different reaction pathways.
Moreover, similar process settings at one
stage do not necessarily result in similar pro-
cess quality as biological systems memorize
former process conditions [1]. For optimal
process understanding real-time control of
every parameter having an impact on prod-
uct or process quality is crucial. In order
to control a parameter, it needs to be con-
stantly monitored. Thus, sensor technology
is of particular importance when it comes to
bioprocess development or bioprocess con-
trol. Spectroscopic techniques offer distinct
advantages over other sensor technologies
as they often provide noninvasive real-time
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Classification: Multivariate data analysis methods
beneficial for media classification, harvest point
determination or raw material control.

measurements without the need for sampling and
sample preparation.

According to the Aspen Brooks survey [2] almost
every fourth bioprocess user expects spectroscopic
tools to be industrial standard practice in bioprocesses
within the next 5 years. However for most spectro-
scopic techniques the robustness of the instrumenta-
tion still hampers the implementation in production
facilities. From instrumental point of view near-infra-
red spectroscopy (NIRS) is likely the most advanced
technique with regard to robustness and reliability.
NIRS does not require any laser excitation; instead a
simple halogen lamp can be employed. In contrast to
mid-infrared (MIR) spectroscopy, near-infrared (NIR)
light can be guided via standard fused silica or polymer
fibers instead of using sensitive halide fibers with high
attenuation. This simplicity resulted in NIRS being
the workhorse of spectroscopic techniques in process
analytics for more than 20 years [3].

There are numerous terms describing the adaption
of a measurement system or sensor to a process such
as on-line, in-line, at-line, off-line, i situ and real-
time, among tohers. In this publication we follow the
definition of the US FDA, claiming in-line measure-
ments when no sample is removed from the process,
on-line when measuring in a bypass mode and at-line/
off-line, when a sample is removed from the process
and measured in close proximity/in far distance of the
process stream [4]. The following chapter will give an
overview on the measurement principle of NIRS, its
spectral information and instrumentation. Addition-
ally, opportunities and challenges of varying data anal-
ysis tools will be discussed. Finally, a progress overview
of NIRS applications in biotechnological upstream
processes is presented.

Theory

Near-infrared spectroscopy

Spectroscopy in general describes the analysis of the
interaction of matter with electromagnetic radiation.
NIRS belongs to the group of molecular spectrosco-
pies. Together with MIR and Raman spectroscopy, it
is part of the subgroup of vibrational spectroscopies.
Two major effects contribute to a vibrational spectrum
with varying percentage, depending on the excita-
tion wavelength and the sample itself. First, scatter-
ing effects result in varying spectral backgrounds and
reveal physical information of the sample. The amount
of scattering and thus detected physical information

decreases with increasing wavelength and therefore is
the highest for dispersive Raman and the lowest for
MIR spectroscopy. Second, vibrational spectra contain
chemical information. Raman detects inelastic scatter-
ing of monochromatic radiation whereas MIR spec-
troscopy and NIRS detect the absorption of broad-
band light (NIR: 800-2500 nm £ 12,500-4000 cm,
MIR: 2500-25,000 nm £ 4000—-400 cm™) [5].

Depending on the vibrational energy of molecular
bonds in the sample, different discrete portions of energy
of the provided broadband light can be absorbed. The
absorbed energy of each molecular bond depends on the
involved atoms, the type of bond (e.g., single or double)
and its structural surrounding. Thus, the wavelength

2 energy) of the absorbed light gives insight into the

molecular structure of the molecules that contribute
to a specific sample. As only molecular vibrations are
detected, atomic ions species and metals do not absorb
infrared light. Additionally, black samples completely
absorb infrared light independent of wavelength or
contained molecular bonds, thus no light reaches the
detector and no spectrum is obtained.

Although the chemical information of MIR spec-
troscopy and NIRS is mostly equivalent, the origin
differs. In MIR spectroscopy fundamental oscillations
that result in narrow bands are detected and absorp-
tion bands do not necessarily overlap. This allows for
simple quantification models via band height or area in
some cases. On the other hand in NIRS detects over-
tones and combination bands. The number of over-
tone and combination vibrations exceeds the number
of ground vibrations by several orders. This results in
broader spectral bands originating from overlapping
vibrations [5,6]. Contrary to MIR spectroscopy quan-
tification models, extraction of the chemical informa-
tion from NIR cannot be done in a univariate way
using band height or area. Instead multivariate tools
like principal component analysis (PCA) and partial
least squares (PLS) are employed to extract the desired
chemical or physical information from the spectra [7].

Multivariate data analysis

Multivariate data analysis (MVDA) tool offers the
distinct advantage of revealing hidden patterns in
datasets as well as interactions between parameters.
Spectra consist of hundreds, sometimes thousands of
data points, called variables in MVDA. Evaluating
one variable at a time (univariate analysis) results in
hundreds and thousands of similar or even contradic-
tive outcomes. This is why data reduction is one of the
key achievements of MVDA. All variables containing
similar information are bundled and variables without
relevant information (noise) are separated from the
important ones [7]. The decision of which multivariate

154

Pharm. Bioprocess. (2015) 3(2)

fsg

future science group



method has to be employed depends on the purpose
of its application. This can be either classification or
quantification. Application examples for classification
in upstream are media classification and harvest point
determination. Most methods include a PCA. The fol-
lowing chapter will give an excursus on data pretreat-
ments followed by an intuitive explanation of the most
commonly used mathematical methods PCA and PLS
on the example of a spectral dataset.

Data pretreatments

Spectral data are often pretreated to account for vary-
ing background and/or scatter effects. However, pre-
treatments should only be applied with reason and
not arbitrarily. The reason should be either physical or
chemical motivated, such as the correction of physical
scattering or a specific instrument signal. First of all
the optimal pretreatment depends on the nature of the
parameter. Process parameters as pH or temperature
require unit variance normalization to account for the
different parameter scaling. It equalizes the impact of
each parameter on the model. If applied to spectro-
scopic data, unit variance scaling will amplify the noise
of regions with low variation and negate useful spectral
information. Thus for spectroscopic data, only mean
centering should be used, sometimes in combination
with a scatter correction when appropriate.

Several pretreatments are used to correct for baseline
shifts, slopes or curvatures. They reduce the impact of
particle size, scattering and other influencing factors,
for example, drifts from instrument instabilities [7].
For example, varying particle sizes will cause a baseline
shift in the spectra as the spectral pathlength is defined
by the particle size [8]. Pretreatments should be applied
in the same order as the physical effects occur in the
measurement line (e.g., instrument, light pathway,
sample).

Typical methods for baseline/scatter correction
include first and second derivatives, multiple scatter cor-
rection, extended multiple scatter correction standard
normal variate transformation and orthogonal scatter
correction [9]. Constant underlying backgrounds and
other systematic effects can be reduced by derivatives.
Variations in the optical pathlength due to particle size
variation of solid samples, emulsions and dispersions
require multiplicative scatter corrections. In principle all
scatter corrections aim to separate chemical and physi-
cal information. The intuitive approach is to find a band
that is affected by variations of optical pathlength but
not influenced by changes of the sample composition.
However, the overlapping bands in NIRS hamper this
simple method. Several efficient approaches as multiple
scatter correction and extended multiple scatter correc-
tion include spectra shifting and scaling to fit a target

Near-infrared spectroscopy in upstream bioprocesses

spectrum. The mean spectrum of the spectral dataset
is used as target spectrum. This leads to three difficul-
ties. First, spectral outliers contribute to the mean spec-
trum. Second, for quantitative analysis, the calibration
set is often based on different products and the spectral
mean does not correlate with any single product but is
an artificial generated spectrum. Third, the mean spec-
trum depends on the overall dataset and thus changes
whenever a new spectrum is acquired. Standard normal
variate transformation overcomes these issues; the cor-
rection is done separately for each single spectrum and is
not based on an overall mean spectrum. Each spectrum
is first centered to 0 (subtraction of spectral mean), fol-
lowed by normalization (dividing by the standard devia-
tion of the complete spectrum). The basis of orthogonal
scatter correction is the assumption that spectral infor-
mation with predictive quality is orthogonal (noncorre-
lated) to noise or other influence factors. Both are sepa-
rated with the help of PLS algorithms (see section ‘Least
squares algorithms’).

The decision whether a scatter correction is
required, strongly depends on the nature of the analyte
and the scattering characteristics of the sample. Most
solid samples require scatter correction, whereas liquid
homogeneous solutions do not justify any scatter cor-
rection pretreatments. Figure 1 gives an overview of
when to apply each pretreatment or scatter correction.

Principal component analysis

PCA consists of three major steps. First, the data are
transformed. Second, the data are reduced including
a separation between useful information and noise.
Third, the visualization of the data is adapted to
human beings, accounting for our poor capability of
recognizing patterns in huge data tables.

Inaspectrum intensities are plotted over wavelengths
(Figure 2A). It consists of N data points, one data point
per recorded wavelength. Figure 2A displays a dataset
of simplified spectra consisting of two wavelengths A,
and A,. In a first step an N-dimensional coordinate
system is created, one axis for each wavelength. Now
the spectrum with originally N data points is trans-
formed into a single point in this N-dimensional coor-
dinate system. This is done for each spectrum of the
dataset resulting in a data cloud in this N-dimensional
coordinate system (two dimensions in the example in
Figure 2B). Next a new axis is inserted covering the
biggest variation of the dataset. This means the algo-
rithm looks for the largest weighted distance between
the data points (£ spectra) and creates a new axis in
this direction. This new axis is called principal compo-
nent 1 (PC1); the number indicates that it covers the
biggest variation in the dataset. The angle of the new
axis will be in between the original wavelengths axes.
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Figure 1. Application of scatter corrections with regard to sample characteristics and nature of analyte.

Therefore, the original axes contribute more or less to
the new PC1 and information of different axis is com-
bined in the new PC. Now a second axis (PC2) can be
added being orthogonal to the PCI. It is set in a way
that covers the second biggest variation in the dataset
(Figure 2C). As the axis is orthogonal by definition, the
information does not correlate at all with the informa-
tion of PCI. Following PCs are again orthogonal to all
preceding PCs. As a result, most variations in a dataset
of hundreds or thousands of variables (wavelengths)
are combined in a few PCs.

Finally, the visualization is optimized in so-called
score plots where two or three PCs (often the first two
or three PCs) are plotted against each other. In this
plot grouping or separation patterns become very obvi-
ous as the first PCs present most of the variance in the
dataset in a condensed way. An example of a score plot
of a cultivation process is given in Figure 3.

This procedure automatically separates useful infor-
mation and noise: Wavelengths that show the biggest
variations in the dataset will dominate the direction of
PCI. On the other hand wavelengths with no varia-
tions in the dataset will hardly influence the direc-
tion of the PC. This information is visualized in the

loadings plot which shows the impact of each variable
on the model. Here, it is implied that areas without
variation in the dataset do not hold valuable informa-
tion. With other words, sample properties that cause
no significant variation in the spectral response can-
not be modeled. The reason can be either that there
are no molecular vibrations in the recorded spectral
range (NIR inactive) or that the parameter variations
of the sample set are too small to influence the spectral
response significantly.

PCA reveals the biggest variations in the dataset,
independent of its origin. No additional information
but the spectra itself is used for classification. It is a
powerful tool as long as arbitrary variations are not
very high compared with the structured variations that
shall be revealed.

When previous knowledge about class member-
ship or quantitative attributes is available, least squares
algorithms offer distinct advantages as they take this
extra information into account.

Least squares algorithms
Least squares algorithms include the most common
algorithm for quantification purposes, PLS and clas-
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sification algorithms such as partial least squares dis-
criminant analysis (PLS-DA) [10]. Besides the spectra,
qualitative information of the measured samples is part
of the dataset. Depending on the specific algorithm this
can be classification information (PLS-DA) or quanti-
tative data from reference analyses (PLS). In contrary
to the normal PCA algorithm, the biggest variations do
not define the orientation of the generated PCs. Instead
directions are chosen that correlate best with the trend
of the reference values (PLS) or that give the biggest dis-
tance between the predefined classes (PLS-DA). Thus
PC1 does not necessarily cover the biggest variation in
the dataset anymore. It covers the biggest variation in the
dataset that correlates with the known sample informa-
tion. These models when applied on real-time acquired
spectra of unknown samples enable on-line prediction
of analyte concentrations or class memberships.

Application examples of MVDA in upstream
processes

MVDA can be applied manifold when analyzing NIR
spectra in upstream processes. First qualitative models
can be used for classification purposes and for process
control with batch trajectories (see section ‘Batch tra-
jectories’). Sometimes quantitative models are used to
support classification models, however the primary
use is monitoring and/or control of critical process
parameters or critical quality attributes.

Classification

In media preparation, NIRS can be used to classify
the media. Here, the spectrum of the media or media
powder is used as a fingerprint of ‘good’ media, which
means media of batches that delivered satisfying prod-
uct quality and quantity. The classification of the pow-
der reveals variations in raw material quality. Classifi-

®
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Near-infrared spectroscopy in upstream bioprocesses

Process trajectory: Road of process evolution that displays
whether an actual batch process runs similar to good
historical batches.

cation on the liquid media identifies handling errors,
for example, whether all components were added in the
right amount [11,12].

At the end of the upstream process a classifica-
tion can be made to define the optimal harvest time.
Spectra are taken around harvest times and defined as
good or bad harvest time points. After model building,
optimal harvest points are predicted for new batches.

Batch trajectories

NIRS is a multiparameter technique and detects mul-
tiple variations that occur during upstream processes.
Figure 3 displays a typical score plot of a complete cell
cultivation run, visualizing process variations over
time. In this example, the first PC can be linked to the
cell count whereas PC2 indicates the cell metabolism.
Now for each measurement the value on any PC (so-
called score values) can be plotted against process time.
Usually, a PLS is applied with process maturity being
the qualitative parameter instead of reference values.
The resulting line is called batch or process trajectory
and describes the process evolution of this specific
batch. If this is done for a set of N batches that were
considered as good, an average trajectory can be cal-
culated, often referred as ‘golden batch trajectory’.
Adding upper and lower limits based on the standard
deviation of the N batches at each time point results in
a road of process evolution as shown in Figure 4, some-
times also named as batch evolution model (BEM) or
batch control chart. This method allows operators to
monitor deviations from desired process behavior in

A, Wavelength A,

Review

Figure 2. Principle of principal component analysis. (A) Dataset of simplified spectrum based on two wavelengths A1 and 1.2, (B) plot
of complete dataset (L1 against 1.2), (C) new axis in direction of biggest variation in dataset (2 PC1 and PC2).
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Figure 3. Example of a score plot from a cell cultivation.
The axis score 1 and score 2 are the two principal
components (new coordinates) that summarize the
spectra variations over the cultivation. Each point
represents one collected spectra. The cultivation
evolves from point A to point B (increase in score 1)

and time point C shows a point where the metabolism
changes, for example, exhaustion of a nutrient or start
of catabolism of intermediate metabolites.

real time. Process deviations are indicated by the actual
batch trajectory leaving the defined road of process
evolution. Even if the precise reason for the deviation
or the link to a control parameter might not be obvi-
ous, guided sampling and off-line analysis can be trig-
gered, thus reducing the time delay of counteractions
significantly. This leads to a more event-based process
control strategy [13].

In addition to BEMs, an extra step in data reduction
can be taken. The so-called batch level models, rear-
range the data in a new PCA model. Complete runs
are classified revealing patterns or clusters in the set
of batches. This allows visualizing and analyzing simi-
larities between complete batches and the detection of
general outliers, which is beneficial for the development
of general process strategies.

Quantification

The quantitative evaluation of NIR spectra is likely
the most common application of NIRS in upstream
processes. Several parameters can be monitored simul-
taneously, including chemical parameters as nutrients,
metabolites and product titer. Additionally, physical
parameter as cell count, optical density and viability

Model validation: Methods to determine the prediction
capabilities of a model.

Cross-validation: Model validation method only to be
used in case of small datasets as all samples are used for
model building, tendency of too-optimistic results.

External test set validation: Model validation method
which uses samples for validation which are not used for
model building, for upstream processes, complete batches
should be used as test sets to challenge the model.

can be modeled, whereby special attention has to be
paid to data pretreatment as the physical informa-
tion originates from scattering (see section ‘Data
Pretreatments’).

Model validation

Model validation is part of every model building
process. There are two commonly used methods for
model validation, cross-validation and external test
set validation [7]. The first divides the calibration test
set into N blocks of spectra. Then a model is generated
from N-1 spectral blocks and the last block is predicted.
This procedure is repeated until every block was N-1
times part of the calibration test set and one time of the
validation test set. An average prediction error of the N
models is calculated which is called standard error of
cross-validation.

External test set validations form a more demanding
and realistic validation. The sample set is divided into
two parts. The first part is used for model building
(calibration set). The model is then applied to predict
the second part of the sample set (validation test set).
It is important not to use repetitive measurements in
calibration and validation test set. A sample including
all repetitive measurements (or repacks) should either
be in the calibration or the validation test set. The
range of the analyte concentration as well as the pro-
cess variations for the validation set must be covered
by the calibration set variables as statistical models are
designed for interpolation but not for extrapolation.

Cross-validation is only to be used when the num-
ber of calibration samples do not allow for an exter-
nal test set validation. The reason is that all samples
are in both, the calibration and the validation test set.
Thus, the validation test set is not independent from
the calibration set.

For bioprocesses, complete batches should be used
as external test set for model validation. Only then,
the validation set is truly independent. Selecting every
fourth sample of each batch as a validation test set
will give too optimistic results mainly due to the rea-
son that interpolation is one of the key features of this
kind of model building. Thus, calibration and valida-
tion samples are very similar and just differ slightly by
sampling time.

Methods

NIR instrumentation

NIR systems can be based on several measurement
principles. One difference can be how the wavelength-
dependent information is gathered. The wavelength
separation can be done either on the illumination or
the detector side. In the first case, the sample is illu-
minated with monochromatic (or narrow band) light
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demanding for a sequential detection without the
need of a diffractive element. In the latter case, the
sample is illuminated with broadband (or so-called
white) light. A diffractive element is employed on the
detector side to gain wavelength depending informa-
tion. Following the most common instrument types
are briefly discussed and a comparison is displayed in
Table 1 [14,15].

Historically, the first NIR devices were modified
UV-Vis spectrometers with a scanning grating and
an NIR sensitive lead(I)sulfide (PbS) detector. The
monochromator is used to select specific wavelengths
for excitation. The interacted light is detected without
any wavelength selection. More recent instruments
employ a simple indium gallium arsenide photodiode
instead of the PbS detector, however the overall prin-
ciple remains the same. The advantage is the very high
sensitivity as on the detection side the light is not atten-
uated by any diffractive element. Additionally, sample
heating is minimized as no broadband light source is
used. On the other hand, the spectrum is acquired
sequentially, one wavelength fraction at a time. After
each measurement, the grating is repositioned and the
next data point is acquired. Thus, this technique is
not suited for process adaptation whenever the sam-
ple might vary over time. In worst case the resulting
spectrum is a mix of spectral information, the lower
wavelengths originating from another sample than the
higher wavelengths. Another drawback is the perma-
nent requirement of a wavelength standard to correct
for the inaccuracy and low repeatability of the posi-
tioning of the grating. The best applications for this
kind of instruments are off-line measurements with-
out sample movement, whenever highest sensitivity is
crucial.

The monochromator can be replaced with a wheel
of interference filters. The detector side can remain
untouched. The number and selection of filters in
combination with the bandwidth of the filters deter-
mines the range and resolution. The biggest advantage
compared with scanning grating instruments is the
increased speed as the filters are changeable hundreds
of times per second. No precise positioning is required,
resulting in a higher robustness. Even though the spec-
tra are acquired sequentially, the overall measurement
time for a complete spectrum is in the range of tens
of ms, resulting in a quasi-simultaneous measure-
ment. However, the number of filters is limited and
must be preselected. Thus, such an instrument has to
be designed for a specific application. A new applica-
tion will require preliminary trials in which the set of
wavelengths and therefore the set of filters are defined,
followed by a change of filters. Additionally, any prod-
uct variation that was not included when defining the

Near-infrared spectroscopy in upstream bioprocesses

instrument’s filter set might require new application
tests and a redefinition of the filter set. In summary, fil-
ter devices are well suited for process application when-
ever the process and/or the product do not change over
a long period of time.

Fourier transform (FT) devices employ broadband
light and a (Michelson) interferometer. First, a beam
splitter divides the light into two fractions. One beam
is guided via a moving mirror toward the sample and
the other to a reference arm with a fixed mirror. Both
reflected beams are unified afterward again and inter-
fere depending on the contained wavelengths and the
mirror position on the sample side. The recorded inter-
ferograms are mathematically processed to an absorp-
tion spectrum via Fourier transformation. The scan-
ning data acquisition of the interferograms in the time
domain leads after Fourier transformation to a com-
plete simultaneous spectrum in the frequency domain.
However, several scans might be necessary to improve
signal to noise ratio. The moving mirror and the posi-
tioning of the beam splitter make the FT systems with
Michelson interferometer sensitive to vibrations and
shocks. Thus, the optimal application for FT systems
is laboratory use.

Diode array spectrometers also employ broadband
excitation. After interaction with the sample, the light
is guided to a grating mirror and the diffracted light is
imaged on a linear plate of photodiodes (diode array).
Advantageous for process application is the exceptional
robustness due to the lack of moving parts. The spec-
tral resolution is limited by the number of photodi-

Score 1

Time

Figure 4. Example of a batch control chart. The chart
plots the values of score 1 against batch age and
includes control limits (+3 standard deviation) around
the ‘golden batch’. The score values summarize the
spectra variations over the cultivation. Each line
represents the evolution of one batch. On the example
we can see one batch (blue line) leaving the control
limits of the model. This indicates a different spectral
variation which could be caused by, for example, early
loss of cell viability or contamination of the cultivation.
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Process validation: Validation of the process in its entity,
for near infrared this comprises the instrument itself, the
software, the model and the interfaces. Major steps are
installation qualification, operational qualification and
performance qualification.

odes. However, care has to be taken when employing
a higher number of photodiodes with the same overall
chip size as sensitivity is reduced. The optimal sensitiv-
ity is reached with lower resolution, though the broad
nature of NIR bands does not demand high resolution.
Spectra are acquired simultaneously, being advanta-
geous for process applications with fast product varia-
tions. Multichannel spectrometer allow for fiber and
fiber free coupling. So-called free beam optics offer the
distinct advantage of large sample spots. Thus, a higher
amount of product is measured simultaneously, result-
ing in less fluctuation of the measured signal. Addition-
ally, light losses due to fiber coupling and fiber trans-
port are minimized. The lack of fragile fiber optical
cables increases the robustness. Furthermore spectral
distortions due to fiber bending or temperature effects
are avoided. In summary, multichannel spectrometers
are optimal for versatile process use.

Ultimately, the decision of which instrument to use
is very application dependent. While for lab equip-
ment extra weight is given to spectra resolution and
wavelength accuracy, for a production environment,
measurement speed, compatibility with existing stan-
dard ports and robustness of the device have higher
relevance.

Process validation
Regarding NIRS, process validation in its entity com-
prises the instrument itself, the software, the model
and the interfaces. Major steps are: installation quali-
fication, operational qualification and performance
qualification. The regulatory requirements for setting
up a monitoring procedure using NIRS can be found
in the US Pharmacopeia (USP), Chapter 1119 and EU
Pharmacopoeia (EUP), Chapter 2.2.40. The docu-
ments encompass guidelines for the qualification of the
spectroscopic hardware and for the validation of the
chemometric methods [16,17]. These documents focus
on laboratory applications and lack detailed descrip-
tions for in-line process analytical technology (PAT)
applications as recommended by the FDA in 2004 [4].
However, they are described in the following paragraph
as they represent the base on which further industry
guidelines were issued that are described afterward.
According to the pharmacopeias the hardware qual-
ification of an NIR device should be divided into three
qualification steps: installation qualification, opera-
tional qualification and performance qualification.
During installation qualification, it is tested whether
the device is installed according to the manufacturer
specifications. Therefore, the necessary steps differ
between instrument types. Operational qualification
demonstrates that the device operates within its speci-
fications. Recommended specifications can be found in
the pharmacopeias and the industry standard guide-
lines. Properties to be tested are, for example, wave-
length uncertainty, photometric linearity and spectro-
photometric noise. For the performance qualification,

Table 1. Comparison of near-infrared instrument types.

Comparison parameter Scanning grating Filter wheel Fourier transform Diode array
spectrometer
Signal-to-noise ratio ++ + +
Wavelength range ++ o + (no additional Vis +
range available)
Resolution Variable o to + - Variable + to ++ Variable o to +
Wavelength accuracy - (standard required) o ++ +
Measurement speed - ++ (only few + +
wavelengths)
Simultaneous spectra - + o ++
acquisition
Sample heating ++ + o o
Robustness o + o ++
Process adaption - Free beam optic Fiber Fiber or free beam optic
Optimal application Quantitative off-line Fixed process without Laboratory use quality  Versatile process use
analysis matrix variations measurements
+: Good; ++: Very good; o: Fair; -: Poor.
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above-mentioned measurements are repeated on a
regular base to ensure long-term stability of the device.

In addition to the hardware qualification, the che-
mometric method needs to be validated in order to
demonstrate the suitability for its respective purpose.
Guidelines for the general validation of analytical
methods can be found in the USP 1225 [1s]. The vali-
dation of chemometric NIR models in particular is
discussed in the USP 1119 and EUP 2.2.40 16,17]. Key
points are the investigation of:

*  Model specificity: testing the correct identification
of all samples, taking into account different suppli-
ers or production lots. Moreover, samples that are
not included in the classification library must fail
identification;

*  Model linearity: testing if the NIR response is
correlated throughout the defined range of the
calibration model;

*  Model range: testing if values outside the calibration
range are correctly marked as outliers;

* Model accuracy: the standard error of predic-
tion (SEP) is determined and compared with the
standard error of the reference method;

*  Model precision: calculating the standard deviation
of replicate measurements with and without chang-
ing the sample position and stacking. Intermediate
precision is determined by calculating the standard
deviation of replicates made from different analysts
on different days;

* Model robustness: challenging the model with
expectable process variations. These can encompass
but are not limited to variations of environmental
conditions (temperature and humidity, among oth-
ers), sample temperature, sample handling (posi-
tioning and material compression, among others)
and instrument hardware.

As mentioned before the described Pharmacopoeias
were designed for laboratory measurements and lack
guidance for in-line processes. This gap was closed
when the American Society for Testing and Materials
(ASTM International, PA, USA) issued their general
guide applicable on all PAT measurement procedures
in 2011 [19].

In 2012, the EMA published a more specific guide-
line on the PAT application of NIRS [20]. The guide-
line stresses the iterative nature of the development and
implementation of NIRS procedures which is roughly
organized in five stages. During the initial development
stage a clear scope of the NIRS procedure has to be set

Near-infrared spectroscopy in upstream bioprocesses

up. Feasibility studies should be carried out to dem-
onstrate the suitability of the method for the defined
scope. The second stage consists of data collection and
interpretation. This includes proper sample preparation
and presentation as well as reference analysis and spec-
tral library creation. During the third stage the calibra-
tion model is set up and validated in the fourth stage
with similar key parameters as previously discussed for
USP and EUP. During the fifth stage maintenance pro-
cedure of the NIR method is initiated. The guideline
recommends updating the calibration models in case
of spectral variations which are not included in the
actual model (e.g., new production batches or change
in raw material). The interval in which the procedure
is updated is defined as lifecycle. It might be necessary
to change the NIR procedure which may involve its
redevelopment. The guideline defines which changes
are to be considered out of scope resulting in the neces-
sity of redevelopment. For clarification purposes, an
addendum to the EMA guideline has been issued giv-
ing examples of how different changes would have to be
managed according to the guideline [21].

NIRS applications in bioprocesses

Lourengo et al. [22] present an overview on different
spectroscopic techniques for bioprocess monitoring. In
their review, a summary of in-line NIRS applications
is given. It is interesting to note that the majority of
applications stick to small-scale reactors and microbial
fermentations with just a few examples of industrial
fermentations and cell cultivations. In our review we
try to cover advancements made since that publication.
In Tables 2 & 3, a summary of the reviewed applications
is given with the main analytes modeled and validation
errors for microbial applications and cell cultivations,
respectively.

Microbial fermentations

Fermentations with microbial cells are characterized
by high metabolic rates and rapid growth. They can be
performed in small scale for research and process devel-
opment but production facilities range up to 100-m3
process volume. Often these processes require vigorous
stirring and aeration and especially in large fermen-
ters the heat exchange becomes challenging. Process
analyzers have to cope with these environments. This
means they need to have a robust design which allows
them to function even on vibrating reactors and under
elevated temperatures. Table 2 gives an overview about
NIRS applications in microbial fermentations.

At-line
Morita et al. 34 used NIRS as a high-throughput
screening technique of recombinant Saccharomyces

Review

fsg

future science group

www.future-science.com

161



Hoehse, Alves-Rausch, Prediger, Roch & Grimm

Review

(INNSIeBNS) siebns |je Jo (INNSIA|rUY) s}j0geIaW ||e 4O Jataweled WNS (|ANS ‘D1elIeA [ewlou plepuels (ANS ‘Bulyjoows Aejon—A¥ziAes (DS
!saienbs 1sea| [eiuied :STd ‘Aususp [eondQ :@O (UOIID8140d 1911edSs SAIeDI|dIN|A DS (BULISIUSD UBSIN (DA {WJO4SURI] JISLINOH 1Se4 1] 44 ‘UOI1Da.410d [eubis [euoboylio 10811 :DSOQ ‘uswnuadxa Jo ubissg :30Q
- - 9-52'S 1LST0 - Hd
UOI1eJIUIDUOD
- - 1/bo-z-zo  |w/b9s/L0 - IE»)
UOI11eJIUIDUOD
- - I/681-€  |w/b LeV67L - Jebns bupnpay uoneIUBWISY
SUOIB|NWIS O[4eD) dIUOIN jw/n| SAI}BALIDP JUOIDS s130e/ sN2305035e7
Yyum uoneiqi|ed paziwndo [euls1x3 000°8L-000€ |W/NI TT0ZEE 4018114 'DS ‘144 1931} UISIN yaieq ‘(] ) @|edas ge1
paluswsa|dwl [oueylaw ssewolq
40 |0J3U0d ¥ degpaay - 1/6 52-0 11680 - [oueyian
uollepI|eA J0) saydleq
9Al} !suoneiqied UoI1eAI}ND
NINIP Kioyoey anoisdwi (Aiersudoud) srio3sed eiydid ysreq-pay
[o7] Ul papeo|aid awod S|9POIAN 0} pasnh ydleq auQ 1/6 05-0 /61 v paso|3sip 10N |0422A|1D (1 € pue g ‘}) a|eds ge
S|9pOW UOIIN|OAS Ydleq pue
JoQq Buinjoaul uoizebiasanul
a>eds ubisap ||n} e jo
1Jed sem paJteijul JeaN sissnpiad
[opow uoldipaid (91eweln|b ejja19pJog ‘UoLIUBWIDS
(54 104 pasn d133YIuAsiwas uol1epIeA-SSOID - - Burieluad ereq ‘s1e18)) *°qo yoieq (] £) o|eds ge
uoldnpoud
- - NW [Ll-6€E INW L] ®>_Hm>_\_w_0 u.m\__u_. ~>Zm wniuowwy U_HO_Q_HCN F\_UHGQ
uolleiqi|ed 4oy pasn 110]021903 saxAwo01da.1s
(¥7] 21am sajdwes d119YruAsiwas uol1epl|eA-ssouD) 1/6 2€-0 /611 SAI1BALIBP PUOIDS 9s0dn|H (1 ¥ pue €) ajeds geq
uoneuwi|d
- - 116 9-0 I/6 €0 395440 JueIsuo) [042041D
|012A|6 uolneulwi|d (aybram
- 10} UOI1ePI|eA-SSOID 1/6 81-0 /60 195440 1UBISUOD Aip) ssewolg uononpoud piwse|d
pue ssewolq 10} uoieuswWId) VGHA
[e7] — 10} uolnepljeA 13s 153 - v'0 auoN (*®qO) ssewoig 1j0d elyd1IaYds3 ydieg
10419
Ab6ajenrs uonepijep abuey uonepijepA  juswieanaud ejeq ipainseaw
"Joy s)ieway s|apow uoneiqijed sem 1eymn uonedjddy

's95s920.4d |eiqoJdiw uj suopedjjdde Adodsosydads pasesjul-iesau Jo Alewwns ‘g a|qeL

future science group

Pharm. Bioprocess. (2015) 3(2)

162



Review

Near-infrared spectroscopy in upstream bioprocesses

sal101>3(esy

ssa>oud pue uolediisse|d
BIpaW :S|9poW dAIle|END
s|apow

aAI3e}IIUEBND JO) Pasn §Td
0} uojsuaixa Aieranudoud

suieas
JO uolesiisse|d ;sjppow
aAneyend

SUleJls || YHm
}|Ing [9pow [eJauab yiim
uleJ3s auo 4o uoipipaid
10} s3nsaJ uonepljep

JEN syeway

“(INNSIBBNS) s1ebNS [[e 10 (NNSIAJRUY) SaMjogeIaW ||e 4O Ja1aweled WNG (ANS ‘S1BIIBA [eWIOU PIepURLS (ANS ‘Buiyioows AejoD—Az1nes :Dg
‘saienbs 3sea)| [e1nied :S1d ‘Ausuap [ea13dQ 1O UO01ID110D 1931edS dARedNdIHNIAl I DSIA (BULIBIUSD UBSIA 1DIAl ‘WIOjSURI] J1IN0S 1Seq ] 44 ‘UOI1D3.10D [eubis [euoBoyIO 10311g

|eutaixy

|euJaiu|

[eulaix]

[eulaix]

ABajens uonepijep

1/6 11-0 1/6 ¥6°0

%L 170 %600

05-9°€ ao 88z

1/6 G€-0 /6 €71

I/6 £7-5°0 1/6 180

1/6 5-0 116 20

1/6 5-0 /6 ¥€0

1/6 S0 1/6 Ly°L

1/6 0%-0 116 611

1/6 §9-0 1/6 80°L
1/6

0S°S5-99°0 I/6 vZ°0

I/6 €6'1-t71°0 1/6 29000

1/6 st-0 1/6 621

1/6 G91-G1 1/6 952

10119

abuey uonepijea

s|apow uoneiqijed

pNelel

N

ANS ‘SN3RALISP 15114

uolesgns
aul| ybresys
‘aAI}BALIDP 1SU14

ANS
OSIN

juswieanaid eyeq

U103y
ssew AiQg

oomDO

INNSJebng

INNS31Aleuy
[JERINS)
[omIAx
joueyis

950|Ax

9s0dn|H
aulue|y
91e1deT

9s0dNn|H

9jewein|n

ipainseaw
Sem jeypn

2503 ‘uswnadxa jo ubisag :3oQ

uoI1RIUBWLIDY
snjj1peg buire|niods
(W 0S) 9|eds |elIsNpu|

SUOI}eIUDWIDY
ydieq oaeisinaiad
saxAwoleyddes ‘buiuaalids
1ndybnoiyi-ybiy 104

(Jw 00L) 31ed3s gen

uoleluUB W) palabbiliy
ainyesadwal wnojweinib
wntia33eqaufio) ydieq
-p34 (1 0€) ojeds qe

uonedddy

*(*3u0d) sassad04d [eiqodjw ul suoiedijdde Adodsou3dads palesjul-ieau 4o Alewwns "z a|qel

163

www.future-science.com

future science group



Review

Hoehse, Alves-Rausch, Prediger, Roch & Grimm

cerevisiae strains. Recombinant strains were cultivated
in 100-ml bottles. Samples were collected from the
fermentation, and their supernatants were analyzed
with NIRS. The samples were analyzed in transmis-
sion mode with a dispersive device in a cuvette with
I-mm pathlength. The spectra were collected in the
1100-2498-nm range. Quantitative calibration mod-
els for glucose, xylose, ethanol, glycerol and xylitol
were developed with PLS. Furthermore, different
strains were classified. It is concluded that the NIR
spectral data contain information about the genotypic
and phenotypic differences between the strains. The
quantification models had high prediction accuracy.
Models made with samples from an individual strain
performed worse when predicting samples for other
strains. A global model incorporating samples of all
strains had good performance but slightly worse than
each individual model.

Guo et al. 35] used at-line NIRS to monitor the pro-
duction of nisin — a bacteriocin with 34 amino acids
— in a Lactococcus lactis fermentation. The fermenta-
tions took place in 5-1 reactors and the fermentation
conditions were set up by applying design of experi-
ment (DoE). Initial pH, temperature and work volume
were the variables changed in the experimental design.
The spectra were acquired in the range of 800-1850
nm. The analytes modeled were the nisin titer, the con-
centration of reducing sugars, cell concentration and
pH. The calibration models were built with PLS and
Monte Carlo simulations were used to optimize the
calibration parameters (number of PCs, wavelength
selection and outlier identification). However, differ-
ent pretreatments were applied without taking into
account the nature of the signal. For example, back-
ground or scatter corrections should not be applied for
physical parameters as cell count. Otherwise model
validity must be questioned. Validation metrics were
also estimated with Monte Carlo simulations, but no
independent cultivation was used for final validation.

Liang et al. [36] presented an application of at-line
NIRS in the monitoring of the glutamate-producing
Corynebacterium glucamicum. The bacteria were culti-
vated in 30-1 fermenter and eight fed-batch runs were
performed to build the calibration models. The spectra
were acquired in the 833-2500-nm range with a FT-
NIR spectrometer. Calibration models were built with
PLS for glutamate, glucose, lactate and alanine. The
external validation set was a fermentation run in batch
mode in contrast to the fed-batch runs used to build
the model.

On-line
Goldfeld ez al. 26] have recently evaluated the use of
an NIR device for real-time monitoring and control

of a Pichia pastoris bioprocess. Six fermentations took
place in 1.6- and 3-l reactors. The spectroscopy sys-
tem used an Acousto Optic Tunable Filter (AOTF)
spectrometer with an extended indium gallium arse-
nide detector. The system configuration involved the
circulation of the cell culture broth continuously from
the reactor through a sample module in the monitor
system and back to the reactor. Spectra were collected
in transmission mode with a pathlength of 1 mm in
the range of 2000-2500 nm. The spectroscopic system
provided factory calibrations from the manufacturer
for glycerol, methanol and relative cell density. The
employed chemometric methods are not disclosed. A
first calibration trial was performed to adjust the offset
between preinstalled calibrations and actual process.
The robustness of the models is shown over a period
of 274 days after calibration. A feedback control was
developed to keep methanol concentrations constant.

In-line

Streefland ez al. [25) investigated the design space of
bacterial vaccine cultivation process using several PAT
tools, including NIRS. A DoE was used to investigate
the impact of different process parameters on prod-
uct quality. The cultivations were performed in a 7-1
bench-top reactor. Spectra were collected in the range
of 833-2500 nm using a FT-NIR device with a trans-
mission probe. PLS calibration models were built for
optical density (OD),,,
the high degree of correlation between the modeled

lactate and glutamate. Given

analytes, semisynthetic samples were prepared and
measured in an NIR cuvette bench. The compositions
of the prepared samples did not follow the usual cor-
relations between analytes. Additionally, comprehen-
sive BEMs were generated based on the merged data
from NIR scores and process variables. The NIR data
provide a ‘fingerprint’ of the process evolution without
the need of building a calibration model with refer-
ence samples. By integrating all the data sources, a
model able to monitor the process evolution on-line
and able to predict the expected final product quality
was obtained.

Petersen et al. [24] monitored the fermentation of the
filamentous bacterium Streptomyces coelicolor with in-
line NIRS. The cultivations took place in 3-1 reactors
and additional parallel runs were carried out to generate
in-line semisynthetic samples. Spectra were collected
both, in-line with a FT-NIR device equipped with a
transflectance probe as well as off-line in a cuvette con-
figuration. The covered spectral range was from 633 to
2500 nm. They built models for glucose and ammo-
nium using in-line and off-line samples separately.
Validation was done with an independent batch run.
The model for in-line ammonium prediction was not
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considered satisfactory. They also reported problems
with the optical fibers that connect the probe to the
NIR instrument: differences in bending and connec-
tion of the optical cables resulted in significant changes
between the spectra.

Lopes et al. 23] implemented a kinetic model for the
plasmid production in Escherichia coli and used off-line
FT-IR as a high-throughput technique to characterize
the plasmid expression profile under different media
compositions and conditions. Finally, in-line NIRS
was used for real-time monitoring of the cultures. The
spectra were captured by a FT-NIR spectrometer with
a fiber optic probe in the range of 800-1852 nm. PLS
models were built for biomass (OD_ and dry cell
weight) and glycerol.

Alves-Rausch et al. [37] used NIRS to monitor
sporulating Bacillus fermentations in an industrial

0

environment. An NIR sensor with a fiber free design
was attached directly to 50 m? reactors. Spectra were
collected in-line in the range of 1050-1650 nm and
quantitative models were built for total sugars, total
analytes, acetoin, OD_ and dry mass. Validation was
made with an independent batch run. Additionally,
media classification was made with spectra collected
in the reactor before the inoculation and the possibil-
ity of identifying media formulation errors based on
the spectra was shown. Furthermore, qualitative BEMs
showed the use of NIRS to compare the evolution of
batches.

Cell cultivations

Most biotechnologically produced proteins that are
intended for human therapy are produced in mam-
malian cell cultures as they are able to perform the
necessary posttranslational modifications which lower
eukaryotes and microbial organisms are not capable of.
On the downside mammalian cells have a much more
complex metabolism and with their low proliferation
rates they are more susceptible to contaminations than
bacteria or yeasts. Thus, methods to monitor cell cul-
tivations noninvasively are highly desirable. However,
the low nutrients and metabolite concentrations that
occur in cell cultivations can be challenging for spec-
troscopic techniques. Table 3 summarizes the literature
on NIRS in cell cultivations.

At-line

Supernatant samples from Chinese hamster ovary
(CHO) cultivations were subject to at-line NIRS mea-
surements performed by Hakemeyer ez al. [33]. The
samples were analyzed with regard to their product
concentration (monoclonal antibodies), nutrient and
metabolite concentration (glucose, lactate, glutamate,
glutamine) as well as cell viability. The experiments

Near-infrared spectroscopy in upstream bioprocesses

were carried out at different scales ranging from 2.5-
to 1000-1 production scale. The spectra were acquired
using a FT-NIR system in transmission mode in the
wavelength range from 909 to 2000 nm. For the devel-
opment of quantitative models the spectra were pre-
processed using second derivatives with a second order
Savitzky—Golay filter and mean centering. PLS algo-
rithms were used for modeling and variable selection.
Moreover, qualitative models were developed to calcu-
late process trajectories that were used for qualitative
process monitoring. Hakemeyer e a/. conclude that at-
line NIRS is a suitable technique to replace reference
methods for monitoring of critical process parameters
and that it has further potential for the implementa-
tion of guided sampling and process control strategies.

On-line

NIRS was used by Qiu ez 4/. [32] for monitoring of glu-
cose and lactate concentrations as well as cell density
in insect cell cultivations. The cultivations were car-
ried out in 1.6-1 bioreactors. The FT-NIR device was
operated in bypass mode employing a transmission
flow cell (pathlength 1.5 mm). Spectra were acquired
in the range from 2000 to 2500 nm. The use of a
bypass required cleaning steps with sterile water and
air between measurements. For the generation of cali-
bration models no preprocessing of the data was per-
formed. Off-line data from glucose and lactate spikings
were included to break the metabolism-induced cor-
relations between glucose and lactate concentrations.
The spectral ranges used for the calibration models
were optimized for each analyte. The calibration mod-
els resulted in a SEP of 0.15 g/I for glucose and a SEP of
0.14 g/l for lactate. The high number (7, respectively,
8 factors) might be an indicator for overfitting. For the
estimation of the cell density a univariate model was
created on the base of the mean absorbance of the cell
broth in the spectral range from 2105 to 2210 nm. The
calibration test set was limited to samples from the lag
and exponential phase and a SEP of 0.8 x 10° cell per

ml was achieved.

In-line

Mattes et al. [29] used NIRS to monitor the osmolal-
ity and pH in cell cultures. An adherent cell line was
grown in a 3-1 bioreactor with microcarriers. The NIR
probe, attached to the reactor before autoclaving, was
connected with a 3-m microbundle of optical fibers
to the spectrophotometer. The spectra were collected
in the 800-2200 nm range in transflection mode. A
spectral scan was taken every 15 min over the dura-
tion of the 12-day cell culture. PLS models were built
for osmolality and pH value. They discuss the fact
that ionic analytes should not have a signature in the
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NIR; but that the perturbation of the water absorbance
bands by the change in ionic concentrations makes it
possible to track these analytes. No details are given
about the number of batches used or how the valida-
tion set was selected. For the authors of this review,
both pH and osmolality are not undoubtedly detect-
able with NIR. Therefore, the presented models are
very likely based on indirect correlations. Furthermore,
employing NIRS for pH measurements seems inap-
propriate as reliable and cost effective pH probes are
available for bioprocesses.

Henriques ez al. (28] present an industrial pilot-
plant mammalian cell cultivation to illustrate the use
of NIRS for bioprocess monitoring. Five 10-1 scale
fermentations were monitored with an NIR trans-
flectance probe, with an optical pathlength of 1 mm
connected to a 10-m fiber optic cable. Quantitative
PLS models were developed to predict concentrations
of glucose, ammonia, lactate and total cell density.
They carefully explain the different steps of model
development, including outlier detection, analysis,
spectral preprocessing and variable selection. In addi-
tion qualitative process trajectories based on the NIR
spectra are shown. They claim two main advantages
of the qualitative approach. First, differences between
historical and actual batches can be analyzed. Second,
new batches are monitored to stay inside the multivari-
ate design space. A process monitoring experiment was
made in which one of the batches was contaminated
in an early process stage. The use of the multivariate
batch trajectories allowed for the early detection of the
contamination.

The monitoring of glucose and lactate concentra-
tions in cultivations of adherent Vero cells on micro-
carriers is presented by Petiot ez al. [30]. An FT-NIR
device, measuring in the spectral range from 1110 to
2500 nm, was used with a transflection probe (1-mm
pathlength) on 2 1 lab-scale bioreactors. The presence
of microcarriers contributed to the complexity of the
measurement matrix. Different agitation rates, fed
strategies and bead concentrations introduce a vari-
ability that needs to be included into the calibration
models. Therefore 77 situ calibrations on samples from
the bioreactor were carried out. Additionally, spiking
of glucose and lactate with feed media was performed
to break the correlation between the analytes. Quanti-
tative calibration models for glucose and lactate were
achieved with SEPs of 0.36 and 0.29 g/l, respectively.

Sandor ez al. [31] carried out several CHO fermenta-
tions in 7.5-1 scale to evaluate the potential of NIRS
and MIR spectroscopy for bioprocess monitoring.
To introduce process variability different cultivation
strategies were used and additional spiking with sub-
strates (glucose, glutamine) was performed. The NIR

spectra were acquired using a free beam diode array
spectrometer. The transflection probe (pathlength
5 mm) was connected to the bioreactor via a 25-mm
standard side port (Sartorius Stedim Biotech GmbH,
Germany). The spectra were acquired in the range
from 950 to 1650 nm. Monitored key parameters were
cell density, viability and glucose concentration and
SEPs of 0.48 x 10° cell per ml, 4.18% and 0.48 g/,
respectively, were achieved. The authors conclude that
MIR spectroscopy offers higher accuracy for glucose
and lactate monitoring due to higher absorption coef-
ficients and narrower absorption bands in the MIR
region. However, they point out that NIRS is better
suited for bioprocess monitoring as additional scatter-
ing information is available in the NIR region. This
allows prediction of cell density and viability which
is not possible with MIR spectroscopy. Moreover, the
robustness of the NIR device is seen as an advantage
for process monitoring whereas MIR technology has to
rely on attenuated total reflection fiber optics which are
still a fragile component.

Another example of monitoring CHO cell cultiva-
tions with NIRS is presented by Clavaud et al. 27]. A
FT-NIR device fiber optic transflection probe (1 mm
pathlength) was connected to the bioreactor. A total
of 10 batches with a scale of 12,500 | were monitored.
It was observed that, due to the strong absorption
of water, the absorption values were saturated in the
region around 1950 nm and consequently only the
wavelength region between 1000 and 1785 nm was
used for analysis. It was shown that NIRS is useful for
monitoring of process evolution via trajectories. This
approach allows identification of abnormal process
behavior without further reference analysis. More-
over, calibration models for several parameters were
generated and root mean square error of prediction
(RMSEDPs) of 1.52 x 10° cell per ml for viable cell den-
sity, 2.2 g/l for glucose and 0.2 g/l for protein were
achieved.

Challenges
One of the best known challenges of NIR in biopro-
cesses is the water band issue. Water is a strong absorber
of NIR radiation, leading to saturation effects of the
detector. However, this impact can be minimized by
two different approaches. First, the pathlength can be
set constant all over the trial. Even though some areas
of the spectra might be in saturation, the nonsaturated
spectral parts are valid and contain useful information.
Second, the pathlength can be reduced to minimize
saturation effects. A pathlength of 1 mm showed good
results, even in microbial fermentations [37].

Even though modern NIR sensors have increased
robustness with designs able to withstand the harsh
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conditions of industrial production environments, it is
still necessary to pay attention on the robustness of the
models. Changes in temperature, pH, use of a differ-
ent cell line, changes in raw material providers, use of
a different reactor geometry/scale or even differences
in the optics of different sensors can have an impact in
the collected spectra. There has been research cover-
ing how these process variations affect the models and
describing strategies to overcome these limitations.
Roychoudhury et al. (38 identified that optical dif-
ferences between probes influence the quality of the
NIR signal. Hageman et al. [39] give an overview of
methods to deal with temperature influences on NIR
spectra. When referring to PLS they mention that it is
only required to have samples measured across the tem-
perature range of interest and the algorithm will just
require more PLS factors to give accurate predictions.

Another point of care should be on choosing a vali-
dation set for the method. In bioprocesses there will
always be differences between batches that may come
from the inoculum, the raw materials or process condi-
tions; these differences cannot be totally reduced. A
proper chemometric model will need to incorporate
samples with different sources of variation and the
model performance must be validated with a truly
independent set. It is not enough to randomly separate
samples into calibration and validation sets. A separate
batch, not used in the development of the model must
be used as the external validation set. Additionally, the
model must be maintained throughout the lifecycle of
the process to ensure it can cope with future changes.

Model robustness and accuracy sometimes have
to be weighed against each other. On the one hand
high model accuracy is desired. Optimal conditions
for high model accuracy would be a process without
any variations but the change of target parameter. This
high accuracy model would lack of robustness as no
process variation is known to the model. On the other
hand a global model has to cope for different process
scales, organism strains, NIR instruments and process
controls, among others. This model would be of the
highest robustness however model accuracy would suf-
fer. Thus, a balance between model robustness and
accuracy has to be found for optimal results.

The same principle is valid for process trajectories.
If too many variations are included in the golden batch
trajectory, the road of evolution is broad and even lower
performing batches might never leave the accepted lim-
its. If only the best of the best batches are used for gen-
erating the golden batch trajectory, any small deviation
will lead to an alarm. Thus, batch trajectories are valu-
able tools to control well established processes. For pro-
cess development, the benefit of batch trajectories might
be lower as the data basis does not consist of a sufficient

Near-infrared spectroscopy in upstream bioprocesses

number of similar good batches. Additionally too many
variations, necessary to find optimal process settings,
will decrease model accuracy. Here, statistical test plan-
ning (DoE) will help to find optimal settings with a
low number of experiments. The acquired NIR data
of these DoE trials are very valuable for quantitative
model building as correlations might be broken.
Furthermore, PLS methods rely on finding direc-
tions of most covariation between spectra variables and
reference values. Given the overlapping nature of NIR
bands, there is always the risk of calibrating on signals
of other analytes that change always in a correlated way
with the modeled analyte. By nature all upstream pro-
cesses are highly correlated processes: nutrients are con-
verted to metabolites, cell growth depends on nutrients
and metabolites, titer on cell count and so on. Thus,
correlations in bioprocesses are often causal and given
by the process itself. However, some strategies are useful
to break these correlations and make sure that the NIR
calibration method is based on the NIR signal of the cor-
responding analyte. Spiking experiments and interpre-
tation of regression coefficients are the most straightfor-
ward approaches. Spiking refers to spike a sample with
known amounts of the analyte being modeled in order
to break the correlation with the concentration of other
analytes. This can either be made off-line, by spiking a
sample removed from the reactor, or in-line, by spiking
the reaction vessel. In-line spiking is hard to implement
in industrial environments. Alternatively spiking can be
performed on a smaller scale, but then the models may
lack robustness on the production scale. The interpreta-
tion of regression coefficients requires good knowledge
of the pure spectra of the components being analyzed.
This is often complicated by the interference of other
parameters, like temperature and pH shifts. Addition-
ally, some parameters like viscosity or cell density do
not have a defined spectrum. However, in bioprocesses
the concentrations of substrates and products will be
inexorably correlated through the natural reaction stoi-
chiometry. It is therefore essential to look at the NIR
data from a broader angle. The focus must not neces-
sarily be on the accuracy of the quantitative models.
Additionally, attention should be paid on the overall
process fingerprint that NIRS can provide. This is in
alignment with a more holistic approach that should be
implemented all across the process stream.

Conclusion & future perspective

From the use of NIRS to perform high throughput
screening in small 100-ml bottles, to the industrial
monitoring of 50 m3 Bacillus fermentation, the adop-
tion of NIRS for upstream process monitoring seems
to be gaining traction in the industry. In all the appli-
cations NIRS is used to monitor multiple analyte con-
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centrations simultaneously and some authors report
the use of the NIRS signal as a fingerprint to make
classification (organisms, media or harvest point) and
build process trajectories. The quantitative models
provide real-time concentrations of analytes and can
be used to develop advanced control strategies. The
qualitative approach allows for process state estima-
tion, which may be used for event-based control or
guided sampling.

Even though NIRS instrumentation has become
capable of working under harsh industrial process con-
ditions, it is equally important to generate and vali-
date reliable and robust calibration models. Due to the
natural correlations between the concentrations of sub-
strates, metabolites and products this can be challeng-
ing. Moreover objective assessment of model quality is
difficult as there is no standardized way of building
and validating chemometric models.

Future trends in NIR include microelectromechani-
cal systems technology, which are already available for
NIR region. The production of these miniaturized
spectrometers makes multiplexing redundant as sensor
price allows for a separate sensor for each measurement
point. Besides the miniaturization, this technique offers
the possibility to concentrate on a selection of wave-
lengths and to customize each sensor for a specific tar-

get analyte. In theory, these devices should have a very
high sensitivity as optics are kept to a minimum and
throughput is maximized (no entrance slit, photodi-
odes with large sensitive area). However, first tests with
prototypes in our lab still showed a reduced sensitivity
compared with a diode array spectrometer. Thus some
development work still has to be done to match the high
requirements on spectrometer performance in upstream
bioprocesses. Besides the NIR region, this technique
will be of particular importance in the MIR region as
the length of sensitive halide fibers can be minimized to
a few centimeters. The short distance between fiber and
spectrometer (few cm) will allow a complete housing of
the fiber and will increase process MIR robustness.
The broad capabilities of NIRS include more than
simple quantitative prediction of analyte concentrations
like glucose, lactate, cell countand cell viability. An even
bigger impact originates from the NIRS fingerprint of
the bioprocess state and its visualization in process tra-
jectories. However, NIRS is not the only useful analytic
technique in bioprocesses. It is one valuable tool of the
toolbox. Why not expanding the multivariate approach
to other analytics or even to any data source? Why not
evaluating all data sources together? In Upstream pro-
cesses, this includes reactor parameters, sensors and
other spectroscopic techniques. In the next years, we

Executive summary

Near-infrared instrumentation
e Instrument selection depends on its application!

Multivariate data analysis

(range >ten times the reference accuracy).

controls, for example, feed controls.

Future perspective
e A holistic approach is not limited to near-infrared!

bioprocess and allow for optimal risk mitigation.

e For process applications, the performance of an instrument comes second. The system'’s robustness and its
acceptance in production environment are the major criteria.
e Spectral resolution is not of highest importance, but noise and sensitivity are crucial for detection limits.

e Low validation errors do not always result in a successful model — model robustness is the key!

¢ Avoid correlations for model building if causal relationship is obligatory (e.g., glucose level for feed control).

e Correlation models are only valid as long as the all process parameters stay in the defined limits. This is
indicated also by the process trajectory not leaving the road of process evolution.

e Achievable limits of detection are a result of the physical characteristics of NIR; any working model with
analyte concentrations far beyond 1 g/l is likely based on correlations.

e Avalid calibration requires samples in a much broader range than the accuracy of the reference method

e Test set validation with independent batches is obligatory! The validation result must be independent of the
validation batch selection as long as the validation batch is covered by the model space.

Application examples of multivariate data analysis in upstream processes

e Employing near-infrared spectroscopy (NIRS) only for quantitative analysis is a waste of its capabilities!

e Quantitative: NIRS is a multiparameter analyzer for chemical (e.g., nutrients and metabolites) and physical
parameters (e.g., cell count, viability and contaminations). Predictions can be employed for parameter

e Qualitative: NIRS gives a fingerprint of each process state. The resulting process trajectories allow for

event-based control and guided sampling. Classification algorithms can be used for optimal harvest point
determination, media classification and metabolic state monitoring.

e A combined data evaluation of all sensor and bioreactor data will result in a comprehensive picture of your
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expect spectroscopy in general to gain importance in
bioprocess applications. In medium term spectroscopy
will not only be employed in R&D environment or pro-
cess development but will find its way into production
processes. Besides infrared (NIR, MIR) and Raman
spectroscopy, UV-Vis and fluorescence spectroscopy
are expected to have the biggest potential for process
use. Combined data evaluation of all data sources will
improve real-time process monitoring and allow for the
early detection of potential process deviations.
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