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The quality of upstream processes and their products strongly depends on the 
control of all influencing parameters. However, several relevant parameters are not 
measured in standard bioreactor systems. Near-infrared spectroscopy (NIRS) is one 
promising technology capable of becoming the missing link in sensor technology. 
This review gives an overview of the technological principles and the technological 
progress. A broad range of possible applications is presented, forming in its entirety a 
valuable toolbox for process risk mitigation. Recent applications of NIRS in upstream 
bioprocesses are discussed. Moreover, the review includes regulatory aspects in 
implementation, calibration and validation of NIRS instrumentation and models.

The (bio)pharmaceutical industry is cur-
rently going through a phase of substantial 
changes. The reasons are complex. Major 
contributors are the decline in selling prices 
due to increasing market share of generica 
and biosimilars as well as expiring patents of 
former blockbusters. Additionally, regulatory 
aspects increase the costs and prolong the 
development of new pharmaceuticals. The 
resulting serious cost pressure requires highly 
efficient development and production pro-
cesses. Optimal processes include the control 
of every process parameter having an impact 
on the product or the process itself. Why is 
controlling biotechnological production pro-
cesses more challenging compared with other 
continuous production processes?

Biotechnological production processes are 
usually divided into two areas. The cultivation 
of cells starts with precultures from a cell bank. 
The series of cultivations until final harvest is 
defined as the upstream part. The downstream 
part includes all steps to process the resulting 
cell broth to meet purity and quality require-
ments regarding the final formulation of the 
product. Depending on the type of cell that 
is cultivated the upstream processes can be 
classified into microbial fermentations (bacte-
ria, fungi, yeasts and algae) or cell cultivation 
(mammalian cells and insect cells).

Any biotechnological cultivation rep-
resents a complex process, including bio-
logical (e.g.,  uptake, conversion and deg-
radation rates), physicochemical (e.g.,  pH, 
fractioning of inorganic carbon) and physi-
cal (e.g., concentrations, mass transfers and 
aggregation) variations. The complexity is 
further increased as cultivations are dynamic 
processes where all parameters are time 
dependent. The complete biology changes 
with proceeding process time, mainly due to 
cell age and the increase of biomass, result-
ing in an increased uptake, conversion and 
degradation of nutrients. Depending on 
process conditions, the same biological sys-
tems can follow different reaction pathways. 
Moreover, similar process settings at one 
stage do not necessarily result in similar pro-
cess quality as biological systems memorize 
former process conditions  [1]. For optimal 
process understanding real-time control of 
every parameter having an impact on prod-
uct or process quality is crucial. In order 
to control a parameter, it needs to be con-
stantly monitored. Thus, sensor technology 
is of particular importance when it comes to 
bioprocess development or bioprocess con-
trol. Spectroscopic techniques offer distinct 
advantages over other sensor technologies 
as they often provide noninvasive real-time 
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measurements without the need for sampling and 
sample preparation.

According to the Aspen Brooks survey  [2] almost 
every fourth bioprocess user expects spectroscopic 
tools to be industrial standard practice in bioprocesses 
within the next 5 years. However for most spectro-
scopic techniques the robustness of the instrumenta-
tion still hampers the implementation in production 
facilities. From instrumental point of view near-infra-
red spectroscopy (NIRS) is likely the most advanced 
technique with regard to robustness and reliability. 
NIRS does not require any laser excitation; instead a 
simple halogen lamp can be employed. In contrast to 
mid-infrared (MIR) spectroscopy, near-infrared (NIR) 
light can be guided via standard fused silica or polymer 
fibers instead of using sensitive halide fibers with high 
attenuation. This simplicity resulted in NIRS being 
the workhorse of spectroscopic techniques in process 
analytics for more than 20 years [3].

There are numerous terms describing the adaption 
of a measurement system or sensor to a process such 
as on-line, in-line, at-line, off-line, in situ and real-
time, among tohers. In this publication we follow the 
definition of the US FDA, claiming in-line measure-
ments when no sample is removed from the process, 
on-line when measuring in a bypass mode and at-line/
off-line, when a sample is removed from the process 
and measured in close proximity/in far distance of the 
process stream [4]. The following chapter will give an 
overview on the measurement principle of NIRS, its 
spectral information and instrumentation. Addition-
ally, opportunities and challenges of varying data anal-
ysis tools will be discussed. Finally, a progress overview 
of NIRS applications in biotechnological upstream 
processes is presented.

Theory
Near-infrared spectroscopy
Spectroscopy in general describes the analysis of the 
interaction of matter with electromagnetic radiation. 
NIRS belongs to the group of molecular spectrosco-
pies. Together with MIR and Raman spectroscopy, it 
is part of the subgroup of vibrational spectroscopies. 
Two major effects contribute to a vibrational spectrum 
with varying percentage, depending on the excita-
tion wavelength and the sample itself. First, scatter-
ing effects result in varying spectral backgrounds and 
reveal physical information of the sample. The amount 
of scattering and thus detected physical information 

decreases with increasing wavelength and therefore is 
the highest for dispersive Raman and the lowest for 
MIR spectroscopy. Second, vibrational spectra contain 
chemical information. Raman detects inelastic scatter-
ing of monochromatic radiation whereas MIR spec-
troscopy and NIRS detect the absorption of broad-
band light (NIR: 800–2500 nm ≙ 12,500–4000 cm-1, 
MIR: 2500–25,000 nm ≙ 4000–400 cm-1) [5].

Depending on the vibrational energy of molecular 
bonds in the sample, different discrete portions of energy 
of the provided broadband light can be absorbed. The 
absorbed energy of each molecular bond depends on the 
involved atoms, the type of bond (e.g., single or double) 
and its structural surrounding. Thus, the wavelength 
(≙ energy) of the absorbed light gives insight into the 
molecular structure of the molecules that contribute 
to a specific sample. As only molecular vibrations are 
detected, atomic ions species and metals do not absorb 
infrared light. Additionally, black samples completely 
absorb infrared light independent of wavelength or 
contained molecular bonds, thus no light reaches the 
detector and no spectrum is obtained.

Although the chemical information of MIR spec-
troscopy and NIRS is mostly equivalent, the origin 
differs. In MIR spectroscopy fundamental oscillations 
that result in narrow bands are detected and absorp-
tion bands do not necessarily overlap. This allows for 
simple quantification models via band height or area in 
some cases. On the other hand in NIRS detects over-
tones and combination bands. The number of over-
tone and combination vibrations exceeds the number 
of ground vibrations by several orders. This results in 
broader spectral bands originating from overlapping 
vibrations  [5,6]. Contrary to MIR spectroscopy quan-
tification models, extraction of the chemical informa-
tion from NIR cannot be done in a univariate way 
using band height or area. Instead multivariate tools 
like principal component analysis (PCA) and partial 
least squares (PLS) are employed to extract the desired 
chemical or physical information from the spectra [7].

Multivariate data analysis
Multivariate data analysis (MVDA) tool offers the 
distinct advantage of revealing hidden patterns in 
datasets as well as interactions between parameters. 
Spectra consist of hundreds, sometimes thousands of 
data points, called variables in MVDA. Evaluating 
one variable at a time (univariate analysis) results in 
hundreds and thousands of similar or even contradic-
tive outcomes. This is why data reduction is one of the 
key achievements of MVDA. All variables containing 
similar information are bundled and variables without 
relevant information (noise) are separated from the 
important ones [7]. The decision of which multivariate 

Key term

Classification: Multivariate data analysis methods 
beneficial for media classification, harvest point 
determination or raw material control.
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method has to be employed depends on the purpose 
of its application. This can be either classification or 
quantification. Application examples for classification 
in upstream are media classification and harvest point 
determination. Most methods include a PCA. The fol-
lowing chapter will give an excursus on data pretreat-
ments followed by an intuitive explanation of the most 
commonly used mathematical methods PCA and PLS 
on the example of a spectral dataset.

Data pretreatments
Spectral data are often pretreated to account for vary-
ing background and/or scatter effects. However, pre-
treatments should only be applied with reason and 
not arbitrarily. The reason should be either physical or 
chemical motivated, such as the correction of physical 
scattering or a specific instrument signal. First of all 
the optimal pretreatment depends on the nature of the 
parameter. Process parameters as pH or temperature 
require unit variance normalization to account for the 
different parameter scaling. It equalizes the impact of 
each parameter on the model. If applied to spectro-
scopic data, unit variance scaling will amplify the noise 
of regions with low variation and negate useful spectral 
information. Thus for spectroscopic data, only mean 
centering should be used, sometimes in combination 
with a scatter correction when appropriate.

Several pretreatments are used to correct for baseline 
shifts, slopes or curvatures. They reduce the impact of 
particle size, scattering and other influencing factors, 
for example, drifts from instrument instabilities  [7]. 
For example, varying particle sizes will cause a baseline 
shift in the spectra as the spectral pathlength is defined 
by the particle size [8]. Pretreatments should be applied 
in the same order as the physical effects occur in the 
measurement line (e.g.,  instrument, light pathway, 
sample).

Typical methods for baseline/scatter correction 
include first and second derivatives, multiple scatter cor-
rection, extended multiple scatter correction standard 
normal variate transformation and orthogonal scatter 
correction  [9]. Constant underlying backgrounds and 
other systematic effects can be reduced by derivatives. 
Variations in the optical pathlength due to particle size 
variation of solid samples, emulsions and dispersions 
require multiplicative scatter corrections. In principle all 
scatter corrections aim to separate chemical and physi-
cal information. The intuitive approach is to find a band 
that is affected by variations of optical pathlength but 
not influenced by changes of the sample composition. 
However, the overlapping bands in NIRS hamper this 
simple method. Several efficient approaches as multiple 
scatter correction and extended multiple scatter correc-
tion include spectra shifting and scaling to fit a target 

spectrum. The mean spectrum of the spectral dataset 
is used as target spectrum. This leads to three difficul-
ties. First, spectral outliers contribute to the mean spec-
trum. Second, for quantitative analysis, the calibration 
set is often based on different products and the spectral 
mean does not correlate with any single product but is 
an artificial generated spectrum. Third, the mean spec-
trum depends on the overall dataset and thus changes 
whenever a new spectrum is acquired. Standard normal 
variate transformation overcomes these issues; the cor-
rection is done separately for each single spectrum and is 
not based on an overall mean spectrum. Each spectrum 
is first centered to 0 (subtraction of spectral mean), fol-
lowed by normalization (dividing by the standard devia-
tion of the complete spectrum). The basis of orthogonal 
scatter correction is the assumption that spectral infor-
mation with predictive quality is orthogonal (noncorre-
lated) to noise or other influence factors. Both are sepa-
rated with the help of PLS algorithms (see section ‘Least 
squares algorithms’).

The decision whether a scatter correction is 
required, strongly depends on the nature of the analyte 
and the scattering characteristics of the sample. Most 
solid samples require scatter correction, whereas liquid 
homogeneous solutions do not justify any scatter cor-
rection pretreatments. Figure 1 gives an overview of 
when to apply each pretreatment or scatter correction.

Principal component analysis
PCA consists of three major steps. First, the data are 
transformed. Second, the data are reduced including 
a separation between useful information and noise. 
Third, the visualization of the data is adapted to 
human beings, accounting for our poor capability of 
recognizing patterns in huge data tables.

In a spectrum intensities are plotted over wavelengths 
(Figure 2A). It consists of N data points, one data point 
per recorded wavelength. Figure 2A displays a dataset 
of simplified spectra consisting of two wavelengths λ

1
 

and λ
2
. In a first step an N-dimensional coordinate 

system is created, one axis for each wavelength. Now 
the spectrum with originally N data points is trans-
formed into a single point in this N-dimensional coor-
dinate system. This is done for each spectrum of the 
dataset resulting in a data cloud in this N-dimensional 
coordinate system (two dimensions in the example in 
Figure 2B). Next a new axis is inserted covering the 
biggest variation of the dataset. This means the algo-
rithm looks for the largest weighted distance between 
the data points (≙ spectra) and creates a new axis in 
this direction. This new axis is called principal compo-
nent 1 (PC1); the number indicates that it covers the 
biggest variation in the dataset. The angle of the new 
axis will be in between the original wavelengths axes. 
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Figure 1. Application of scatter corrections with regard to sample characteristics and nature of analyte.
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Therefore, the original axes contribute more or less to 
the new PC1 and information of different axis is com-
bined in the new PC. Now a second axis (PC2) can be 
added being orthogonal to the PC1. It is set in a way 
that covers the second biggest variation in the dataset 
(Figure 2C). As the axis is orthogonal by definition, the 
information does not correlate at all with the informa-
tion of PC1. Following PCs are again orthogonal to all 
preceding PCs. As a result, most variations in a dataset 
of hundreds or thousands of variables (wavelengths) 
are combined in a few PCs.

Finally, the visualization is optimized in so-called 
score plots where two or three PCs (often the first two 
or three PCs) are plotted against each other. In this 
plot grouping or separation patterns become very obvi-
ous as the first PCs present most of the variance in the 
dataset in a condensed way. An example of a score plot 
of a cultivation process is given in Figure 3.

This procedure automatically separates useful infor-
mation and noise: Wavelengths that show the biggest 
variations in the dataset will dominate the direction of 
PC1. On the other hand wavelengths with no varia-
tions in the dataset will hardly influence the direc-
tion of the PC. This information is visualized in the 

loadings plot which shows the impact of each variable 
on the model. Here, it is implied that areas without 
variation in the dataset do not hold valuable informa-
tion. With other words, sample properties that cause 
no significant variation in the spectral response can-
not be modeled. The reason can be either that there 
are no molecular vibrations in the recorded spectral 
range (NIR inactive) or that the parameter variations 
of the sample set are too small to influence the spectral 
response significantly.

PCA reveals the biggest variations in the dataset, 
independent of its origin. No additional information 
but the spectra itself is used for classification. It is a 
powerful tool as long as arbitrary variations are not 
very high compared with the structured variations that 
shall be revealed.

When previous knowledge about class member-
ship or quantitative attributes is available, least squares 
algorithms offer distinct advantages as they take this 
extra information into account.

Least squares algorithms
Least squares algorithms include the most common 
algorithm for quantification purposes, PLS and clas-
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Figure 2. Principle of principal component analysis. (A) Dataset of simplified spectrum based on two wavelengths λ1 and λ2, (B) plot 
of complete dataset (λ1 against λ2), (C) new axis in direction of biggest variation in dataset (≙ PC1 and PC2).
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sification algorithms such as partial least squares dis-
criminant analysis (PLS-DA)  [10]. Besides the spectra, 
qualitative information of the measured samples is part 
of the dataset. Depending on the specific algorithm this 
can be classification information (PLS-DA) or quanti-
tative data from reference analyses (PLS). In contrary 
to the normal PCA algorithm, the biggest variations do 
not define the orientation of the generated PCs. Instead 
directions are chosen that correlate best with the trend 
of the reference values (PLS) or that give the biggest dis-
tance between the predefined classes (PLS-DA). Thus 
PC1 does not necessarily cover the biggest variation in 
the dataset anymore. It covers the biggest variation in the 
dataset that correlates with the known sample informa-
tion. These models when applied on real-time acquired 
spectra of unknown samples enable on-line prediction 
of analyte concentrations or class memberships.

Application examples of MVDA in upstream 
processes
MVDA can be applied manifold when analyzing NIR 
spectra in upstream processes. First qualitative models 
can be used for classification purposes and for process 
control with batch trajectories (see section ‘Batch tra-
jectories’). Sometimes quantitative models are used to 
support classification models, however the primary 
use is monitoring and/or control of critical process 
parameters or critical quality attributes.

Classification
In media preparation, NIRS can be used to classify 
the media. Here, the spectrum of the media or media 
powder is used as a fingerprint of ‘good’ media, which 
means media of batches that delivered satisfying prod-
uct quality and quantity. The classification of the pow-
der reveals variations in raw material quality. Classifi-

cation on the liquid media identifies handling errors, 
for example, whether all components were added in the 
right amount [11,12].

At the end of the upstream process a classifica-
tion can be made to define the optimal harvest time. 
Spectra are taken around harvest times and defined as 
good or bad harvest time points. After model building, 
optimal harvest points are predicted for new batches.

Batch trajectories
NIRS is a multiparameter technique and detects mul-
tiple variations that occur during upstream processes. 
Figure 3 displays a typical score plot of a complete cell 
cultivation run, visualizing process variations over 
time. In this example, the first PC can be linked to the 
cell count whereas PC2 indicates the cell metabolism. 
Now for each measurement the value on any PC (so-
called score values) can be plotted against process time. 
Usually, a PLS is applied with process maturity being 
the qualitative parameter instead of reference values. 
The resulting line is called batch or process trajectory 
and describes the process evolution of this specific 
batch. If this is done for a set of N batches that were 
considered as good, an average trajectory can be cal-
culated, often referred as ‘golden batch trajectory’. 
Adding upper and lower limits based on the standard 
deviation of the N batches at each time point results in 
a road of process evolution as shown in Figure 4, some-
times also named as batch evolution model (BEM) or 
batch control chart. This method allows operators to 
monitor deviations from desired process behavior in 

Key term

Process trajectory: Road of process evolution that displays 
whether an actual batch process runs similar to good 
historical batches.
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Figure 3. Example of a score plot from a cell cultivation. 
The axis score 1 and score 2 are the two principal 
components (new coordinates) that summarize the 
spectra variations over the cultivation. Each point 
represents one collected spectra. The cultivation 
evolves from point A to point B (increase in score 1) 
and time point C shows a point where the metabolism 
changes, for example, exhaustion of a nutrient or start 
of catabolism of intermediate metabolites.
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real time. Process deviations are indicated by the actual 
batch trajectory leaving the defined road of process 
evolution. Even if the precise reason for the deviation 
or the link to a control parameter might not be obvi-
ous, guided sampling and off-line analysis can be trig-
gered, thus reducing the time delay of counteractions 
significantly. This leads to a more event-based process 
control strategy [13].
In addition to BEMs, an extra step in data reduction 
can be taken. The so-called batch level models, rear-
range the data in a new PCA model. Complete runs 
are classified revealing patterns or clusters in the set 
of batches. This allows visualizing and analyzing simi-
larities between complete batches and the detection of 
general outliers, which is beneficial for the development 
of general process strategies.

Quantification
The quantitative evaluation of NIR spectra is likely 
the most common application of NIRS in upstream 
processes. Several parameters can be monitored simul-
taneously, including chemical parameters as nutrients, 
metabolites and product titer. Additionally, physical 
parameter as cell count, optical density and viability 

can be modeled, whereby special attention has to be 
paid to data pretreatment as the physical informa-
tion originates from scattering (see section ‘Data 
Pretreatments’).

Model validation
Model validation is part of every model building 
process. There are two commonly used methods for 
model validation, cross-validation and external test 
set validation [7]. The first divides the calibration test 
set into N blocks of spectra. Then a model is generated 
from N-1 spectral blocks and the last block is predicted. 
This procedure is repeated until every block was N-1 
times part of the calibration test set and one time of the 
validation test set. An average prediction error of the N 
models is calculated which is called standard error of 
cross-validation.

External test set validations form a more demanding 
and realistic validation. The sample set is divided into 
two parts. The first part is used for model building 
(calibration set). The model is then applied to predict 
the second part of the sample set (validation test set). 
It is important not to use repetitive measurements in 
calibration and validation test set. A sample including 
all repetitive measurements (or repacks) should either 
be in the calibration or the validation test set. The 
range of the analyte concentration as well as the pro-
cess variations for the validation set must be covered 
by the calibration set variables as statistical models are 
designed for interpolation but not for extrapolation.

Cross-validation is only to be used when the num-
ber of calibration samples do not allow for an exter-
nal test set validation. The reason is that all samples 
are in both, the calibration and the validation test set. 
Thus, the validation test set is not independent from 
the calibration set.

For bioprocesses, complete batches should be used 
as external test set for model validation. Only then, 
the validation set is truly independent. Selecting every 
fourth sample of each batch as a validation test set 
will give too optimistic results mainly due to the rea-
son that interpolation is one of the key features of this 
kind of model building. Thus, calibration and valida-
tion samples are very similar and just differ slightly by 
sampling time.

Methods
NIR instrumentation
NIR systems can be based on several measurement 
principles. One difference can be how the wavelength-
dependent information is gathered. The wavelength 
separation can be done either on the illumination or 
the detector side. In the first case, the sample is illu-
minated with monochromatic (or narrow band) light 

Key terms

Model validation: Methods to determine the prediction 
capabilities of a model.

Cross-validation: Model validation method only to be 
used in case of small datasets as all samples are used for 
model building, tendency of too-optimistic results.

External test set validation: Model validation method 
which uses samples for validation which are not used for 
model building, for upstream processes, complete batches 
should be used as test sets to challenge the model.
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Figure 4. Example of a batch control chart. The chart 
plots the values of score 1 against batch age and 
includes control limits (±3 standard deviation) around 
the ‘golden batch’. The score values summarize the 
spectra variations over the cultivation. Each line 
represents the evolution of one batch. On the example 
we can see one batch (blue line) leaving the control 
limits of the model. This indicates a different spectral 
variation which could be caused by, for example, early 
loss of cell viability or contamination of the cultivation.
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demanding for a sequential detection without the 
need of a diffractive element. In the latter case, the 
sample is illuminated with broadband (or so-called 
white) light. A diffractive element is employed on the 
detector side to gain wavelength depending informa-
tion. Following the most common instrument types 
are briefly discussed and a comparison is displayed in 
Table 1 [14,15].

Historically, the first NIR devices were modified 
UV–Vis spectrometers with a scanning grating and 
an NIR sensitive lead(II)sulfide (PbS) detector. The 
monochromator is used to select specific wavelengths 
for excitation. The interacted light is detected without 
any wavelength selection. More recent instruments 
employ a simple indium gallium arsenide photodiode 
instead of the PbS detector, however the overall prin-
ciple remains the same. The advantage is the very high 
sensitivity as on the detection side the light is not atten-
uated by any diffractive element. Additionally, sample 
heating is minimized as no broadband light source is 
used. On the other hand, the spectrum is acquired 
sequentially, one wavelength fraction at a time. After 
each measurement, the grating is repositioned and the 
next data point is acquired. Thus, this technique is 
not suited for process adaptation whenever the sam-
ple might vary over time. In worst case the resulting 
spectrum is a mix of spectral information, the lower 
wavelengths originating from another sample than the 
higher wavelengths. Another drawback is the perma-
nent requirement of a wavelength standard to correct 
for the inaccuracy and low repeatability of the posi-
tioning of the grating. The best applications for this 
kind of instruments are off-line measurements with-
out sample movement, whenever highest sensitivity is 
crucial.

The monochromator can be replaced with a wheel 
of interference filters. The detector side can remain 
untouched. The number and selection of filters in 
combination with the bandwidth of the filters deter-
mines the range and resolution. The biggest advantage 
compared with scanning grating instruments is the 
increased speed as the filters are changeable hundreds 
of times per second. No precise positioning is required, 
resulting in a higher robustness. Even though the spec-
tra are acquired sequentially, the overall measurement 
time for a complete spectrum is in the range of tens 
of ms, resulting in a quasi-simultaneous measure-
ment. However, the number of filters is limited and 
must be preselected. Thus, such an instrument has to 
be designed for a specific application. A new applica-
tion will require preliminary trials in which the set of 
wavelengths and therefore the set of filters are defined, 
followed by a change of filters. Additionally, any prod-
uct variation that was not included when defining the 

instrument’s filter set might require new application 
tests and a redefinition of the filter set. In summary, fil-
ter devices are well suited for process application when-
ever the process and/or the product do not change over 
a long period of time.

Fourier transform (FT) devices employ broadband 
light and a (Michelson) interferometer. First, a beam 
splitter divides the light into two fractions. One beam 
is guided via a moving mirror toward the sample and 
the other to a reference arm with a fixed mirror. Both 
reflected beams are unified afterward again and inter-
fere depending on the contained wavelengths and the 
mirror position on the sample side. The recorded inter-
ferograms are mathematically processed to an absorp-
tion spectrum via Fourier transformation. The scan-
ning data acquisition of the interferograms in the time 
domain leads after Fourier transformation to a com-
plete simultaneous spectrum in the frequency domain. 
However, several scans might be necessary to improve 
signal to noise ratio. The moving mirror and the posi-
tioning of the beam splitter make the FT systems with 
Michelson interferometer sensitive to vibrations and 
shocks. Thus, the optimal application for FT systems 
is laboratory use.

Diode array spectrometers also employ broadband 
excitation. After interaction with the sample, the light 
is guided to a grating mirror and the diffracted light is 
imaged on a linear plate of photodiodes (diode array). 
Advantageous for process application is the exceptional 
robustness due to the lack of moving parts. The spec-
tral resolution is limited by the number of photodi-
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odes. However, care has to be taken when employing 
a higher number of photodiodes with the same overall 
chip size as sensitivity is reduced. The optimal sensitiv-
ity is reached with lower resolution, though the broad 
nature of NIR bands does not demand high resolution. 
Spectra are acquired simultaneously, being advanta-
geous for process applications with fast product varia-
tions. Multichannel spectrometer allow for fiber and 
fiber free coupling. So-called free beam optics offer the 
distinct advantage of large sample spots. Thus, a higher 
amount of product is measured simultaneously, result-
ing in less fluctuation of the measured signal. Addition-
ally, light losses due to fiber coupling and fiber trans-
port are minimized. The lack of fragile fiber optical 
cables increases the robustness. Furthermore spectral 
distortions due to fiber bending or temperature effects 
are avoided. In summary, multichannel spectrometers 
are optimal for versatile process use.

Ultimately, the decision of which instrument to use 
is very application dependent. While for lab equip-
ment extra weight is given to spectra resolution and 
wavelength accuracy, for a production environment, 
measurement speed, compatibility with existing stan-
dard ports and robustness of the device have higher 
relevance.

Process validation
Regarding NIRS, process validation in its entity com-
prises the instrument itself, the software, the model 
and the interfaces. Major steps are: installation quali-
fication, operational qualification and performance 
qualification. The regulatory requirements for setting 
up a monitoring procedure using NIRS can be found 
in the US Pharmacopeia (USP), Chapter 1119 and EU 
Pharmacopoeia (EUP), Chapter 2.2.40. The docu-
ments encompass guidelines for the qualification of the 
spectroscopic hardware and for the validation of the 
chemometric methods  [16,17]. These documents focus 
on laboratory applications and lack detailed descrip-
tions for in-line process analytical technology (PAT) 
applications as recommended by the FDA in 2004 [4]. 
However, they are described in the following paragraph 
as they represent the base on which further industry 
guidelines were issued that are described afterward.

According to the pharmacopeias the hardware qual-
ification of an NIR device should be divided into three 
qualification steps: installation qualification, opera-
tional qualification and performance qualification. 
During installation qualification, it is tested whether 
the device is installed according to the manufacturer 
specifications. Therefore, the necessary steps differ 
between instrument types. Operational qualification 
demonstrates that the device operates within its speci-
fications. Recommended specifications can be found in 
the pharmacopeias and the industry standard guide-
lines. Properties to be tested are, for example, wave-
length uncertainty, photometric linearity and spectro-
photometric noise. For the performance qualification, 

Table 1. Comparison of near-infrared instrument types.

Comparison parameter Scanning grating Filter wheel Fourier transform Diode array 
spectrometer

Signal-to-noise ratio ++ + + +

Wavelength range ++ o + (no additional Vis 
range available)

+

Resolution Variable o to + - Variable + to ++ Variable o to +

Wavelength accuracy - (standard required) o ++ +

Measurement speed - ++ (only few 
wavelengths)

+ +

Simultaneous spectra 
acquisition

- + o ++

Sample heating ++ + o o

Robustness o + o ++

Process adaption - Free beam optic Fiber Fiber or free beam optic

Optimal application Quantitative off-line 
analysis

Fixed process without 
matrix variations

Laboratory use quality 
measurements

Versatile process use

+: Good; ++: Very good; o: Fair; -: Poor.

Key term

Process validation: Validation of the process in its entity, 
for near infrared this comprises the instrument itself, the 
software, the model and the interfaces. Major steps are 
installation qualification, operational qualification and 
performance qualification.
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above-mentioned measurements are repeated on a 
regular base to ensure long-term stability of the device.

In addition to the hardware qualification, the che-
mometric method needs to be validated in order to 
demonstrate the suitability for its respective purpose. 
Guidelines for the general validation of analytical 
methods can be found in the USP 1225 [18]. The vali-
dation of chemometric NIR models in particular is 
discussed in the USP 1119 and EUP 2.2.40 [16,17]. Key 
points are the investigation of:

•	 Model specificity: testing the correct identification 
of all samples, taking into account different suppli-
ers or production lots. Moreover, samples that are 
not included in the classification library must fail 
identification;

•	 Model linearity: testing if the NIR response is 
correlated throughout the defined range of the 
calibration model;

•	 Model range: testing if values outside the calibration 
range are correctly marked as outliers;

•	 Model accuracy: the standard error of predic-
tion (SEP) is determined and compared with the 
standard error of the reference method;

•	 Model precision: calculating the standard deviation 
of replicate measurements with and without chang-
ing the sample position and stacking. Intermediate 
precision is determined by calculating the standard 
deviation of replicates made from different analysts 
on different days;

•	 Model robustness: challenging the model with 
expectable process variations. These can encompass 
but are not limited to variations of environmental 
conditions (temperature and humidity, among oth-
ers), sample temperature, sample handling (posi-
tioning and material compression, among others) 
and instrument hardware.

As mentioned before the described Pharmacopoeias 
were designed for laboratory measurements and lack 
guidance for in-line processes. This gap was closed 
when the American Society for Testing and Materials 
(ASTM International, PA, USA) issued their general 
guide applicable on all PAT measurement procedures 
in 2011 [19].

In 2012, the EMA published a more specific guide-
line on the PAT application of NIRS  [20]. The guide-
line stresses the iterative nature of the development and 
implementation of NIRS procedures which is roughly 
organized in five stages. During the initial development 
stage a clear scope of the NIRS procedure has to be set 

up. Feasibility studies should be carried out to dem-
onstrate the suitability of the method for the defined 
scope. The second stage consists of data collection and 
interpretation. This includes proper sample preparation 
and presentation as well as reference analysis and spec-
tral library creation. During the third stage the calibra-
tion model is set up and validated in the fourth stage 
with similar key parameters as previously discussed for 
USP and EUP. During the fifth stage maintenance pro-
cedure of the NIR method is initiated. The guideline 
recommends updating the calibration models in case 
of spectral variations which are not included in the 
actual model (e.g., new production batches or change 
in raw material). The interval in which the procedure 
is updated is defined as lifecycle. It might be necessary 
to change the NIR procedure which may involve its 
redevelopment. The guideline defines which changes 
are to be considered out of scope resulting in the neces-
sity of redevelopment. For clarification purposes, an 
addendum to the EMA guideline has been issued giv-
ing examples of how different changes would have to be 
managed according to the guideline [21].

NIRS applications in bioprocesses
Lourenço  et  al.  [22] present an overview on different 
spectroscopic techniques for bioprocess monitoring. In 
their review, a summary of in-line NIRS applications 
is given. It is interesting to note that the majority of 
applications stick to small-scale reactors and microbial 
fermentations with just a few examples of industrial 
fermentations and cell cultivations. In our review we 
try to cover advancements made since that publication. 
In Tables 2 & 3, a summary of the reviewed applications 
is given with the main analytes modeled and validation 
errors for microbial applications and cell cultivations, 
respectively.

Microbial fermentations
Fermentations with microbial cells are characterized 
by high metabolic rates and rapid growth. They can be 
performed in small scale for research and process devel-
opment but production facilities range up to 100-m³ 
process volume. Often these processes require vigorous 
stirring and aeration and especially in large fermen-
ters the heat exchange becomes challenging. Process 
analyzers have to cope with these environments. This 
means they need to have a robust design which allows 
them to function even on vibrating reactors and under 
elevated temperatures. Table 2 gives an overview about 
NIRS applications in microbial fermentations.

At-line
Morita  et  al.  [34] used NIRS as a high-throughput 
screening technique of recombinant Saccharomyces 
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cerevisiae strains. Recombinant strains were cultivated 
in 100-ml bottles. Samples were collected from the 
fermentation, and their supernatants were analyzed 
with NIRS. The samples were analyzed in transmis-
sion mode with a dispersive device in a cuvette with 
1-mm pathlength. The spectra were collected in the 
1100–2498-nm range. Quantitative calibration mod-
els for glucose, xylose, ethanol, glycerol and xylitol 
were developed with PLS. Furthermore, different 
strains were classified. It is concluded that the NIR 
spectral data contain information about the genotypic 
and phenotypic differences between the strains. The 
quantification models had high prediction accuracy. 
Models made with samples from an individual strain 
performed worse when predicting samples for other 
strains. A global model incorporating samples of all 
strains had good performance but slightly worse than 
each individual model.

Guo et al. [35] used at-line NIRS to monitor the pro-
duction of nisin – a bacteriocin with 34 amino acids 
– in a Lactococcus lactis fermentation. The fermenta-
tions took place in 5-l reactors and the fermentation 
conditions were set up by applying design of experi-
ment (DoE). Initial pH, temperature and work volume 
were the variables changed in the experimental design. 
The spectra were acquired in the range of 800–1850 
nm. The analytes modeled were the nisin titer, the con-
centration of reducing sugars, cell concentration and 
pH. The calibration models were built with PLS and 
Monte Carlo simulations were used to optimize the 
calibration parameters (number of PCs, wavelength 
selection and outlier identification). However, differ-
ent pretreatments were applied without taking into 
account the nature of the signal. For example, back-
ground or scatter corrections should not be applied for 
physical parameters as cell count. Otherwise model 
validity must be questioned. Validation metrics were 
also estimated with Monte Carlo simulations, but no 
independent cultivation was used for final validation.

Liang  et  al.  [36] presented an application of at-line 
NIRS in the monitoring of the glutamate-producing 
Corynebacterium glucamicum. The bacteria were culti-
vated in 30-l fermenter and eight fed-batch runs were 
performed to build the calibration models. The spectra 
were acquired in the 833–2500-nm range with a FT-
NIR spectrometer. Calibration models were built with 
PLS for glutamate, glucose, lactate and alanine. The 
external validation set was a fermentation run in batch 
mode in contrast to the fed-batch runs used to build 
the model.

On-line
Goldfeld  et al.  [26] have recently evaluated the use of 
an NIR device for real-time monitoring and control 

of a Pichia pastoris bioprocess. Six fermentations took 
place in 1.6- and 3-l reactors. The spectroscopy sys-
tem used an Acousto Optic Tunable Filter (AOTF) 
spectrometer with an extended indium gallium arse-
nide detector. The system configuration involved the 
circulation of the cell culture broth continuously from 
the reactor through a sample module in the monitor 
system and back to the reactor. Spectra were collected 
in transmission mode with a pathlength of 1 mm in 
the range of 2000–2500 nm. The spectroscopic system 
provided factory calibrations from the manufacturer 
for glycerol, methanol and relative cell density. The 
employed chemometric methods are not disclosed. A 
first calibration trial was performed to adjust the offset 
between preinstalled calibrations and actual process. 
The robustness of the models is shown over a period 
of 274 days after calibration. A feedback control was 
developed to keep methanol concentrations constant.

In-line
Streefland  et  al.  [25] investigated the design space of 
bacterial vaccine cultivation process using several PAT 
tools, including NIRS. A DoE was used to investigate 
the impact of different process parameters on prod-
uct quality. The cultivations were performed in a 7-l 
bench-top reactor. Spectra were collected in the range 
of 833–2500 nm using a FT-NIR device with a trans-
mission probe. PLS calibration models were built for 
optical density (OD)

590
, lactate and glutamate. Given 

the high degree of correlation between the modeled 
analytes, semisynthetic samples were prepared and 
measured in an NIR cuvette bench. The compositions 
of the prepared samples did not follow the usual cor-
relations between analytes. Additionally, comprehen-
sive BEMs were generated based on the merged data 
from NIR scores and process variables. The NIR data 
provide a ‘fingerprint’ of the process evolution without 
the need of building a calibration model with refer-
ence samples. By integrating all the data sources, a 
model able to monitor the process evolution on-line 
and able to predict the expected final product quality 
was obtained.

Petersen et al. [24] monitored the fermentation of the 
filamentous bacterium Streptomyces coelicolor with in-
line NIRS. The cultivations took place in 3-l reactors 
and additional parallel runs were carried out to generate 
in-line semisynthetic samples. Spectra were collected 
both, in-line with a FT-NIR device equipped with a 
transflectance probe as well as off-line in a cuvette con-
figuration. The covered spectral range was from 633 to 
2500 nm. They built models for glucose and ammo-
nium using in-line and off-line samples separately. 
Validation was done with an independent batch run. 
The model for in-line ammonium prediction was not 
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considered satisfactory. They also reported problems 
with the optical fibers that connect the probe to the 
NIR instrument: differences in bending and connec-
tion of the optical cables resulted in significant changes 
between the spectra.

Lopes et al. [23] implemented a kinetic model for the 
plasmid production in Escherichia coli and used off-line 
FT-IR as a high-throughput technique to characterize 
the plasmid expression profile under different media 
compositions and conditions. Finally, in-line NIRS 
was used for real-time monitoring of the cultures. The 
spectra were captured by a FT-NIR spectrometer with 
a fiber optic probe in the range of 800–1852 nm. PLS 
models were built for biomass (OD

600
 and dry cell 

weight) and glycerol.
Alves-Rausch  et  al.  [37] used NIRS to monitor 

sporulating Bacillus fermentations in an industrial 
environment. An NIR sensor with a fiber free design 
was attached directly to 50 m3 reactors. Spectra were 
collected in-line in the range of 1050–1650 nm and 
quantitative models were built for total sugars, total 
analytes, acetoin, OD

600
 and dry mass. Validation was 

made with an independent batch run. Additionally, 
media classification was made with spectra collected 
in the reactor before the inoculation and the possibil-
ity of identifying media formulation errors based on 
the spectra was shown. Furthermore, qualitative BEMs 
showed the use of NIRS to compare the evolution of 
batches.

Cell cultivations
Most biotechnologically produced proteins that are 
intended for human therapy are produced in mam-
malian cell cultures as they are able to perform the 
necessary posttranslational modifications which lower 
eukaryotes and microbial organisms are not capable of. 
On the downside mammalian cells have a much more 
complex metabolism and with their low proliferation 
rates they are more susceptible to contaminations than 
bacteria or yeasts. Thus, methods to monitor cell cul-
tivations noninvasively are highly desirable. However, 
the low nutrients and metabolite concentrations that 
occur in cell cultivations can be challenging for spec-
troscopic techniques. Table 3 summarizes the literature 
on NIRS in cell cultivations.

At-line
Supernatant samples from Chinese hamster ovary 
(CHO) cultivations were subject to at-line NIRS mea-
surements performed by Hakemeyer  et  al.  [33]. The 
samples were analyzed with regard to their product 
concentration (monoclonal antibodies), nutrient and 
metabolite concentration (glucose, lactate, glutamate, 
glutamine) as well as cell viability. The experiments 

were carried out at different scales ranging from 2.5- 
to 1000-l production scale. The spectra were acquired 
using a FT-NIR system in transmission mode in the 
wavelength range from 909 to 2000 nm. For the devel-
opment of quantitative models the spectra were pre-
processed using second derivatives with a second order 
Savitzky–Golay filter and mean centering. PLS algo-
rithms were used for modeling and variable selection. 
Moreover, qualitative models were developed to calcu-
late process trajectories that were used for qualitative 
process monitoring. Hakemeyer et al. conclude that at-
line NIRS is a suitable technique to replace reference 
methods for monitoring of critical process parameters 
and that it has further potential for the implementa-
tion of guided sampling and process control strategies.

On-line
NIRS was used by Qiu et al. [32] for monitoring of glu-
cose and lactate concentrations as well as cell density 
in insect cell cultivations. The cultivations were car-
ried out in 1.6-l bioreactors. The FT-NIR device was 
operated in bypass mode employing a transmission 
flow cell (pathlength 1.5 mm). Spectra were acquired 
in the range from 2000 to 2500 nm. The use of a 
bypass required cleaning steps with sterile water and 
air between measurements. For the generation of cali-
bration models no preprocessing of the data was per-
formed. Off-line data from glucose and lactate spikings 
were included to break the metabolism-induced cor-
relations between glucose and lactate concentrations. 
The spectral ranges used for the calibration models 
were optimized for each analyte. The calibration mod-
els resulted in a SEP of 0.15 g/l for glucose and a SEP of 
0.14 g/l for lactate. The high number (7, respectively, 
8 factors) might be an indicator for overfitting. For the 
estimation of the cell density a univariate model was 
created on the base of the mean absorbance of the cell 
broth in the spectral range from 2105 to 2210 nm. The 
calibration test set was limited to samples from the lag 
and exponential phase and a SEP of 0.8 × 106 cell per 
ml was achieved.

In-line
Mattes et al.  [29] used NIRS to monitor the osmolal-
ity and pH in cell cultures. An adherent cell line was 
grown in a 3-l bioreactor with microcarriers. The NIR 
probe, attached to the reactor before autoclaving, was 
connected with a 3-m microbundle of optical fibers 
to the spectrophotometer. The spectra were collected 
in the 800–2200 nm range in transflection mode. A 
spectral scan was taken every 15 min over the dura-
tion of the 12-day cell culture. PLS models were built 
for osmolality and pH value. They discuss the fact 
that ionic analytes should not have a signature in the 



168 Pharm. Bioprocess. (2015) 3(2) future science group

Review    Hoehse, Alves-Rausch, Prediger, Roch & Grimm

NIR; but that the perturbation of the water absorbance 
bands by the change in ionic concentrations makes it 
possible to track these analytes. No details are given 
about the number of batches used or how the valida-
tion set was selected. For the authors of this review, 
both pH and osmolality are not undoubtedly detect-
able with NIR. Therefore, the presented models are 
very likely based on indirect correlations. Furthermore, 
employing NIRS for pH measurements seems inap-
propriate as reliable and cost effective pH probes are 
available for bioprocesses.

Henriques  et  al.  [28] present an industrial pilot-
plant mammalian cell cultivation to illustrate the use 
of NIRS for bioprocess monitoring. Five 10-l scale 
fermentations were monitored with an NIR trans-
flectance probe, with an optical pathlength of 1 mm 
connected to a 10-m fiber optic cable. Quantitative 
PLS models were developed to predict concentrations 
of glucose, ammonia, lactate and total cell density. 
They carefully explain the different steps of model 
development, including outlier detection, analysis, 
spectral preprocessing and variable selection. In addi-
tion qualitative process trajectories based on the NIR 
spectra are shown. They claim two main advantages 
of the qualitative approach. First, differences between 
historical and actual batches can be analyzed. Second, 
new batches are monitored to stay inside the multivari-
ate design space. A process monitoring experiment was 
made in which one of the batches was contaminated 
in an early process stage. The use of the multivariate 
batch trajectories allowed for the early detection of the 
contamination.

The monitoring of glucose and lactate concentra-
tions in cultivations of adherent Vero cells on micro-
carriers is presented by Petiot  et  al.  [30]. An FT-NIR 
device, measuring in the spectral range from 1110 to 
2500 nm, was used with a transflection probe (1-mm 
pathlength) on 2 l lab-scale bioreactors. The presence 
of microcarriers contributed to the complexity of the 
measurement matrix. Different agitation rates, fed 
strategies and bead concentrations introduce a vari-
ability that needs to be included into the calibration 
models. Therefore in situ calibrations on samples from 
the bioreactor were carried out. Additionally, spiking 
of glucose and lactate with feed media was performed 
to break the correlation between the analytes. Quanti-
tative calibration models for glucose and lactate were 
achieved with SEPs of 0.36 and 0.29 g/l, respectively.

Sandor et al. [31] carried out several CHO fermenta-
tions in 7.5-l scale to evaluate the potential of NIRS 
and MIR spectroscopy for bioprocess monitoring. 
To introduce process variability different cultivation 
strategies were used and additional spiking with sub-
strates (glucose, glutamine) was performed. The NIR 

spectra were acquired using a free beam diode array 
spectrometer. The transflection probe (pathlength 
5 mm) was connected to the bioreactor via a 25-mm 
standard side port (Sartorius Stedim Biotech GmbH, 
Germany). The spectra were acquired in the range 
from 950 to 1650 nm. Monitored key parameters were 
cell density, viability and glucose concentration and 
SEPs of 0.48 × 106 cell per ml, 4.18% and 0.48 g/l, 
respectively, were achieved. The authors conclude that 
MIR spectroscopy offers higher accuracy for glucose 
and lactate monitoring due to higher absorption coef-
ficients and narrower absorption bands in the MIR 
region. However, they point out that NIRS is better 
suited for bioprocess monitoring as additional scatter-
ing information is available in the NIR region. This 
allows prediction of cell density and viability which 
is not possible with MIR spectroscopy. Moreover, the 
robustness of the NIR device is seen as an advantage 
for process monitoring whereas MIR technology has to 
rely on attenuated total reflection fiber optics which are 
still a fragile component.

Another example of monitoring CHO cell cultiva-
tions with NIRS is presented by Clavaud et al. [27]. A 
FT-NIR device fiber optic transflection probe (1 mm 
pathlength) was connected to the bioreactor. A total 
of 10 batches with a scale of 12,500 l were monitored. 
It was observed that, due to the strong absorption 
of water, the absorption values were saturated in the 
region around 1950 nm and consequently only the 
wavelength region between 1000 and 1785 nm was 
used for analysis. It was shown that NIRS is useful for 
monitoring of process evolution via trajectories. This 
approach allows identification of abnormal process 
behavior without further reference analysis. More-
over, calibration models for several parameters were 
generated and root mean square error of prediction 
(RMSEPs) of 1.52 × 106 cell per ml for viable cell den-
sity, 2.2 g/l for glucose and 0.2 g/l for protein were 
achieved.

Challenges
One of the best known challenges of NIR in biopro-
cesses is the water band issue. Water is a strong absorber 
of NIR radiation, leading to saturation effects of the 
detector. However, this impact can be minimized by 
two different approaches. First, the pathlength can be 
set constant all over the trial. Even though some areas 
of the spectra might be in saturation, the nonsaturated 
spectral parts are valid and contain useful information. 
Second, the pathlength can be reduced to minimize 
saturation effects. A pathlength of 1 mm showed good 
results, even in microbial fermentations [37].

Even though modern NIR sensors have increased 
robustness with designs able to withstand the harsh 
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conditions of industrial production environments, it is 
still necessary to pay attention on the robustness of the 
models. Changes in temperature, pH, use of a differ-
ent cell line, changes in raw material providers, use of 
a different reactor geometry/scale or even differences 
in the optics of different sensors can have an impact in 
the collected spectra. There has been research cover-
ing how these process variations affect the models and 
describing strategies to overcome these limitations. 
Roychoudhury  et  al.  [38] identified that optical dif-
ferences between probes influence the quality of the 
NIR signal. Hageman  et  al.  [39] give an overview of 
methods to deal with temperature influences on NIR 
spectra. When referring to PLS they mention that it is 
only required to have samples measured across the tem-
perature range of interest and the algorithm will just 
require more PLS factors to give accurate predictions.

Another point of care should be on choosing a vali-
dation set for the method. In bioprocesses there will 
always be differences between batches that may come 
from the inoculum, the raw materials or process condi-
tions; these differences cannot be totally reduced. A 
proper chemometric model will need to incorporate 
samples with different sources of variation and the 
model performance must be validated with a truly 
independent set. It is not enough to randomly separate 
samples into calibration and validation sets. A separate 
batch, not used in the development of the model must 
be used as the external validation set. Additionally, the 
model must be maintained throughout the lifecycle of 
the process to ensure it can cope with future changes.

Model robustness and accuracy sometimes have 
to be weighed against each other. On the one hand 
high model accuracy is desired. Optimal conditions 
for high model accuracy would be a process without 
any variations but the change of target parameter. This 
high accuracy model would lack of robustness as no 
process variation is known to the model. On the other 
hand a global model has to cope for different process 
scales, organism strains, NIR instruments and process 
controls, among others. This model would be of the 
highest robustness however model accuracy would suf-
fer. Thus, a balance between model robustness and 
accuracy has to be found for optimal results.

The same principle is valid for process trajectories. 
If too many variations are included in the golden batch 
trajectory, the road of evolution is broad and even lower 
performing batches might never leave the accepted lim-
its. If only the best of the best batches are used for gen-
erating the golden batch trajectory, any small deviation 
will lead to an alarm. Thus, batch trajectories are valu-
able tools to control well established processes. For pro-
cess development, the benefit of batch trajectories might 
be lower as the data basis does not consist of a sufficient 

number of similar good batches. Additionally too many 
variations, necessary to find optimal process settings, 
will decrease model accuracy. Here, statistical test plan-
ning (DoE) will help to find optimal settings with a 
low number of experiments. The acquired NIR data 
of these DoE trials are very valuable for quantitative 
model building as correlations might be broken.

Furthermore, PLS methods rely on finding direc-
tions of most covariation between spectra variables and 
reference values. Given the overlapping nature of NIR 
bands, there is always the risk of calibrating on signals 
of other analytes that change always in a correlated way 
with the modeled analyte. By nature all upstream pro-
cesses are highly correlated processes: nutrients are con-
verted to metabolites, cell growth depends on nutrients 
and metabolites, titer on cell count and so on. Thus, 
correlations in bioprocesses are often causal and given 
by the process itself. However, some strategies are useful 
to break these correlations and make sure that the NIR 
calibration method is based on the NIR signal of the cor-
responding analyte. Spiking experiments and interpre-
tation of regression coefficients are the most straightfor-
ward approaches. Spiking refers to spike a sample with 
known amounts of the analyte being modeled in order 
to break the correlation with the concentration of other 
analytes. This can either be made off-line, by spiking a 
sample removed from the reactor, or in-line, by spiking 
the reaction vessel. In-line spiking is hard to implement 
in industrial environments. Alternatively spiking can be 
performed on a smaller scale, but then the models may 
lack robustness on the production scale. The interpreta-
tion of regression coefficients requires good knowledge 
of the pure spectra of the components being analyzed. 
This is often complicated by the interference of other 
parameters, like temperature and pH shifts. Addition-
ally, some parameters like viscosity or cell density do 
not have a defined spectrum. However, in bioprocesses 
the concentrations of substrates and products will be 
inexorably correlated through the natural reaction stoi-
chiometry. It is therefore essential to look at the NIR 
data from a broader angle. The focus must not neces-
sarily be on the accuracy of the quantitative models. 
Additionally, attention should be paid on the overall 
process fingerprint that NIRS can provide. This is in 
alignment with a more holistic approach that should be 
implemented all across the process stream.

Conclusion & future perspective
From the use of NIRS to perform high throughput 
screening in small 100-ml bottles, to the industrial 
monitoring of 50 m³ Bacillus fermentation, the adop-
tion of NIRS for upstream process monitoring seems 
to be gaining traction in the industry. In all the appli-
cations NIRS is used to monitor multiple analyte con-
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centrations simultaneously and some authors report 
the use of the NIRS signal as a fingerprint to make 
classification (organisms, media or harvest point) and 
build process trajectories. The quantitative models 
provide real-time concentrations of analytes and can 
be used to develop advanced control strategies. The 
qualitative approach allows for process state estima-
tion, which may be used for event-based control or 
guided sampling.

Even though NIRS instrumentation has become 
capable of working under harsh industrial process con-
ditions, it is equally important to generate and vali-
date reliable and robust calibration models. Due to the 
natural correlations between the concentrations of sub-
strates, metabolites and products this can be challeng-
ing. Moreover objective assessment of model quality is 
difficult as there is no standardized way of building 
and validating chemometric models.

Future trends in NIR include microelectromechani-
cal systems technology, which are already available for 
NIR region. The production of these miniaturized 
spectrometers makes multiplexing redundant as sensor 
price allows for a separate sensor for each measurement 
point. Besides the miniaturization, this technique offers 
the possibility to concentrate on a selection of wave-
lengths and to customize each sensor for a specific tar-

get analyte. In theory, these devices should have a very 
high sensitivity as optics are kept to a minimum and 
throughput is maximized (no entrance slit, photodi-
odes with large sensitive area). However, first tests with 
prototypes in our lab still showed a reduced sensitivity 
compared with a diode array spectrometer. Thus some 
development work still has to be done to match the high 
requirements on spectrometer performance in upstream 
bioprocesses. Besides the NIR region, this technique 
will be of particular importance in the MIR region as 
the length of sensitive halide fibers can be minimized to 
a few centimeters. The short distance between fiber and 
spectrometer (few cm) will allow a complete housing of 
the fiber and will increase process MIR robustness.

The broad capabilities of NIRS include more than 
simple quantitative prediction of analyte concentrations 
like glucose, lactate, cell count and cell viability. An even 
bigger impact originates from the NIRS fingerprint of 
the bioprocess state and its visualization in process tra-
jectories. However, NIRS is not the only useful analytic 
technique in bioprocesses. It is one valuable tool of the 
toolbox. Why not expanding the multivariate approach 
to other analytics or even to any data source? Why not 
evaluating all data sources together? In Upstream pro-
cesses, this includes reactor parameters, sensors and 
other spectroscopic techniques. In the next years, we 

Executive summary

Near-infrared instrumentation
•	 Instrument selection depends on its application!
•	 For process applications, the performance of an instrument comes second. The system’s robustness and its 

acceptance in production environment are the major criteria.
•	 Spectral resolution is not of highest importance, but noise and sensitivity are crucial for detection limits.
Multivariate data analysis
•	 Low validation errors do not always result in a successful model – model robustness is the key!
•	 Avoid correlations for model building if causal relationship is obligatory (e.g., glucose level for feed control).
•	 Correlation models are only valid as long as the all process parameters stay in the defined limits. This is 

indicated also by the process trajectory not leaving the road of process evolution.
•	 Achievable limits of detection are a result of the physical characteristics of NIR; any working model with 

analyte concentrations far beyond 1 g/l is likely based on correlations.
•	 A valid calibration requires samples in a much broader range than the accuracy of the reference method 

(range >ten times the reference accuracy).
•	 Test set validation with independent batches is obligatory! The validation result must be independent of the 

validation batch selection as long as the validation batch is covered by the model space.
Application examples of multivariate data analysis in upstream processes
•	 Employing near-infrared spectroscopy (NIRS) only for quantitative analysis is a waste of its capabilities!
•	 Quantitative: NIRS is a multiparameter analyzer for chemical (e.g., nutrients and metabolites) and physical 

parameters (e.g., cell count, viability and contaminations). Predictions can be employed for parameter 
controls, for example, feed controls.

•	 Qualitative: NIRS gives a fingerprint of each process state. The resulting process trajectories allow for 
event-based control and guided sampling. Classification algorithms can be used for optimal harvest point 
determination, media classification and metabolic state monitoring.

Future perspective
•	 A holistic approach is not limited to near-infrared!
•	 A combined data evaluation of all sensor and bioreactor data will result in a comprehensive picture of your 

bioprocess and allow for optimal risk mitigation.
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expect spectroscopy in general to gain importance in 
bioprocess applications. In medium term spectroscopy 
will not only be employed in R&D environment or pro-
cess development but will find its way into production 
processes. Besides infrared (NIR, MIR) and Raman 
spectroscopy, UV–Vis and fluorescence spectroscopy 
are expected to have the biggest potential for process 
use. Combined data evaluation of all data sources will 
improve real-time process monitoring and allow for the 
early detection of potential process deviations.

Financial & competing interests disclosure
M Hoehse, J Alves-Rausch, A Prediger, P Roch, C Grimm are 

employees of Sartorius Stedim Biotech GmbH, a distributor of 

NIR spectrometers. The authors have no other relevant affilia-

tions or financial involvement with any organization or entity 

with a financial interest in or financial conflict with the subject 

matter or materials discussed in the manuscript apart from 

those disclosed.

No writing assistance was utilized in the production of this 

manuscript.

References
Papers of special note have been highlighted as:  
• of interest; •• of considerable interest

1	 Europa AF, Gambhir A, Fu PC, Hu WS. Multiple steady 
states with distinct cellular metabolism in continuous 
culture of mammalian cells. Biotechnol. Bioeng. 67(1), 
25–34 (2000).

2	 Consulting AB. 3rd Annual Survey of the Upstream 
Bioprocessing Market. Aspen Books, UT, USA, 1–18 (2014).

3	 Pasquini C. Near infrared spectroscopy: fundamentals, 
practical aspects and analytical applications. J. Braz. Chem. 
Soc. 14, 198–219 (2003).

•	 Excellent review on fundamentals of near infrared (NIR) 
and instrumentation.

4	 FDA USD of H and HS. Guidance for industry PAT – a 
framework for innovative pharmaceutical development, 
manufacturing, and quality assurance. MD, USA.  
www.fda.gov/downloads/drugs/guidance

•	 Fundamental document for the application of process 
analytical technology across the industries.

5	 Siesler HW. Basic principles of near-infrared spectroscopy. 
In: Handbook of Near-Infrared Analysis. Burns DA, Ciurczak 
EW (Eds). Taylor & Francis Group, FL, USA, 7–21 (2008).

6	 Landgrebe D, Haake C, Höpfner T et al. On-line infrared 
spectroscopy for bioprocess monitoring. Appl. Microbiol. 
Biotechnol. 88(1), 11–22 (2010).

7	 Naes T, Isaksson T, Fearn T, Davies T. A User Friendly 
Guide To Multivariate Calibration and Classification. IM 
Publcations, West Sussex, UK (2002).

8	 Pasikatan MC, Steele JL, Spillman CK, Haque E. Near 
infrared reflectance spectroscopy for online particle size 
analysis of powders and ground materials. J. Near Infrared 
Spectrosc. 9, 153–164 (2001).

9	 Rinnan Å, Van Den Berg F, Engelsen SB. Review of the most 
common pre-processing techniques for near-infrared spectra. 
Trends Anal. Chem. 28(10), 1201–1222 (2009).

10	 Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond 
A, Jent N. A review of near infrared spectroscopy and 
chemometrics in pharmaceutical technologies. J. Pharm. 
Biomed. Anal. 44(3), 683–700 (2007).

11	 Cardoso-Menezes J, Hakemeyer C, Jose GE, Strauss U. WO 
Pat. 2012/059520 A1 (2012).

12	 Lopes JA, Costa PF, Alves TP, Menezes JC. Chemometrics in 
bioprocess engineering: process analytical technology (PAT) 

applications. Chemom. Intell. Lab. Syst. 74(2), 269–275 
(2004).

13	 Bogomolov A. Multivariate process trajectories: capture, 
resolution and analysis. Chemom. Intell. Lab. Syst. 108(1), 
49–63 (2011).

14	 Siesler H, Ozaki Y, Kawata S, Heise H. Near-infrared 
spectroscopy: principles, instruments, applications.  
www.medphys.ucl.ac.uk/research/borl/pdf

15	 Thomas Beuermann Michael Wohlfahrt RW. Fourier 
Transform - (FT) versus Diodenzeile. GIT Labor-
Fachzeitschrift 8, 746–748 (2004).

16	 Pharmacopoeia US. General Chapter (1119) Near-Infrared 
Spectrophotometry.  
www.edqm.eu/en/edqm-homepage-628.html

17	 Pharmacopoeia E. 2.2.40 Near-Infrared Spectrophotometry 
(2005).  
www.edqm.eu/en/edqm-homepage-628.html

18	 Pharmacopoeia US. General Chapters (1225) Validation of 
Compendial Methods (2008).  
www.usp.org

19	 International A. E2629 – Standard Guide for Verification of 
Process Analytical Technology (PAT) Enabled Control Systems.  
www.astm.org/Standards/E2629.htm

20	 Agency EM. Guideline on the use of Near Infrared 
Spectroscopy (NIRS) by the pharmaceutical industry and the 
data requirements for new submissions and variations.  
www.ema.europa.eu/docs/en_GB/document_library

21	 Agency EM. Addendum to EMA/CHMP/CVMP/
QWP/17760/2009 Rev 2: Defining the Scope of an NIRS 
Procedure.  
www.ema.europa.eu/docs/en_GB/document_library

22	 Lourenço ND, Lopes JA, Almeida CF, Sarraguça MC, 
Pinheiro HM. Bioreactor monitoring with spectroscopy 
and chemometrics: a review. Anal. Bioanal. Chem. 404(4), 
1211–1237 (2012).

23	 Lopes MB, Scholtz T, Silva D et al. Modelling, monitoring 
and control of plasmid bioproduction in Escherichia coli 
cultures. Presented at: 2012 IEEE 2nd Portuguese Meeting 
in Bioengineering (ENBENG). Coimbra, Portugal, 23–25 
February 2012.

24	 Petersen N, Odman P, Padrell AEC, Stocks S, Lantz 
AE, Gernaey K V. In situ near infrared spectroscopy for 
analyte-specific monitoring of glucose and ammonium in 
Streptomyces coelicolor fermentations. Biotechnol. Prog. 26(1), 
263–271 (2010).

www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070305.pdf
www.medphys.ucl.ac.uk/research/borl/pdf/1999OwenReece.pdf\nhttp://books.google.com/books?hl=en&lr=&id=U7vqrf2YqmcC&oi=fnd&pg=PP2&dq=Near+infrared+spectroscopy+principles,+instruments,+applications&ots=R_p10ORcwC&sig=8L35BGEd4acFIiOXsB6Bw1EEsA4
www.edqm.eu/en/edqm-homepage-628.html
www.edqm.eu/en/edqm-homepage-628.html
www.usp.org
www.astm.org/Standards/E2629.htm
www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/02/WC500122769.pdf
www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/06/WC500167968.pdf


172 Pharm. Bioprocess. (2015) 3(2) future science group

Review    Hoehse, Alves-Rausch, Prediger, Roch & Grimm

25	 Streefland M, Van Herpen PFG, Van de Waterbeemd B 
et al. A practical approach for exploration and modeling of 
the design space of a bacterial vaccine cultivation process. 
Biotechnol. Bioeng. 104(3), 492–504 (2009).

26	 Goldfeld M, Christensen J, Pollard D et al. Advanced 
near-infrared monitor for stable real-time measurement 
and control of Pichia pastoris bioprocesses. Biotechnol. 
Prog. 30(3), 749–759 (2014).

27	 Clavaud M, Roggo Y, Daeniken R Von, Liebler A, Schwabe 
J. Talanta Chemometrics and in-line near infrared 
spectroscopic monitoring of a biopharmaceutical Chinese 
hamster ovary cell culture: prediction of multiple cultivation 
variables. Talanta 111, 28–38 (2013).

28	 Henriques J, Buziol S, Stocker E, Voogd A, Menezes JC. 
Monitoring mammalian cell cultivations for monoclonal 
antibody production using near-infrared spectroscopy. 
In: Optical Sensor Systems in Biotechnology. Rao G (Ed.). 
Springer, Berlin, Heidelberg, Germany, 73–97 (2010).

•	 Extensive guide through the steps of NIR model building 
and its possibilities.

29	 Mattes R, Root D, Sugui MA, Chen F. Real-time bioreactor 
monitoring of osmolality and pH using near-infrared 
spectroscopy. Bioprocess Int.  
www.bioprocessintl.com

30	 Petiot E, Bernard-Moulin P, Magadoux T, Gény C, Pinton 
H, Marc A. In situ quantification of microcarrier animal 
cell cultures using near-infrared spectroscopy. Process 
Biochem. 45(11), 1832–1836 (2010).

31	 Sandor M, Rüdinger F, Bienert R, Grimm C, Solle D, 
Scheper T. Comparative study of non-invasive monitoring 
via infrared spectroscopy for mammalian cell cultivations. 
J. Biotechnol. 168(4), 636–645 (2013).

•	 Extensive comparison of NIR and mid-IR for cell 
cultivation monitoring.

32	 Qiu J, Arnold M a, Murhammer DW. On-line near infrared 
bioreactor monitoring of cell density and concentrations 

of glucose and lactate during insect cell cultivation. 
J. Biotechnol. 173, 106–111 (2014).

33	 Hakemeyer C, Strauss U, Werz S, Jose GE, Folque 
F, Menezes JC. At-line NIR spectroscopy as effective 
PAT monitoring technique in Mab cultivations during 
process development and manufacturing. Talanta 90, 12–21 
(2012).

34	 Morita H, Hasunuma T, Vassileva M, Tsenkova R, 
Kondo A. Near infrared spectroscopy as high-throughput 
technology for screening of xylose-fermenting recombinant 
Saccharomyces cerevisiae strains. Anal. Chem. 83(11), 
4023–4029 (2011).

35	 Guo W-L, Du Y-P, Zhou Y-C et al. At-line monitoring 
of key parameters of nisin fermentation by near infrared 
spectroscopy, chemometric modeling and model 
improvement. World J. Microbiol. Biotechnol. 28(3), 
993–1002 (2012).

36	 Liang J, Zhang D, Guo X et al. At-line near-infrared 
spectroscopy for monitoring concentrations in temperature-
triggered glutamate fermentation. Bioprocess Biosyst. 
Eng. 36(12), 1879–1887 (2013).

37	 Alves-Rausch J, Bienert R, Grimm C, Bergmaier D. Real 
time in-line monitoring of large scale Bacillus fermentations 
with near-infrared spectroscopy. J. Biotechnol. 189, 120–128 
(2014).

••	 Excellent example of NIR in rough industrial environment 
with a solid data base and good modeling practice with 
external test set validation.

38	 Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM. 
Multiplexing fibre optic near infrared (NIR) spectroscopy as 
an emerging technology to monitor industrial bioprocesses. 
Anal. Chim. Acta 590(1), 110–117 (2007).

39	 Hageman J. Temperature robust multivariate calibration: an 
overview of methods for dealing with temperature influences 
on near infrared spectra. J. Near Infrared Spectrosc. 62, 53–62 
(2005).

www.bioprocessintl.com/analytical/upstream-development/real-time-bioreactor-monitoring-of-osmolality-and-ph-using-near-infrared-spectroscopy-183756/

