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Abstract

Objective: To validate the feasibility of AI Deep Learning Reconstruction for Coronary 
Artery Calcification Scoring in order to decrease radiation exposure on a 4 cm detector 
CT scanner. This is the first such validation on devices that are most commonly utilized 
for this procedure. 

Methods: Data from 105 consecutive patients referred for Coronary Artery 
Calcification Scoring (CACS) in 4 centers was reconstructed with Filtered Back 
Projection (FBP), Iterative Reconstruction (Hybrid-IR), and AI Deep Learning 
Reconstruction (AI DLR), and analyzed both quantitatively and qualitatively to 
determine if AI DLR can be routinely used for this purpose. Additional phantom 
testing was performed to determine if further dose reduction can be accomplished with 
AI DLR while maintaining or improving image quality compared to current Hybrid-
IR reconstruction.

Results: Quantitively, there was excellent agreement between the three reconstructions 
(FBP, Hybrid IR and AI DLR) with an interclass coefficient of 0.99. The mean CACS 
for filtered back projection reconstructions was 111.05. The mean CACS for Hybrid-
IR was 91.30. The mean CACS for AI Deep Learning Reconstructions was 93.50. 
Qualitatively, image quality was consistently better with AI DLR than with Hybrid-
IR at both soft tissue and lung windowing. Based on our phantom experiments, AI 
DLR allows for dose reduction of at least a 37% without any image quality penalty 
compared to Hybrid-IR.

Conclusion: The use of AI DLR for use in CACS on 4 cm coverage CT scanner 
has been quantitatively and qualitatively validated for use for the first time. AI DLR 
produces qualitatively and quantitively better image quality than Hybrid-IR at the 
same dose level, and produces good agreement in categorization of Agatston scores. In 
vivo and in vitro evaluations show that AI DLR will allow for an at least a 37% further 
dose reduction on a 4 cm coverage CT scanner. 

Keywords: Coronary artery disease . Risk assessment . Deep learning reconstruction 
. Iterative reconstruction . Coronary artery calcium scoring . Radiation dose reduction

Introduction

Coronary Artery Calcium Scoring (CACS) is a widely available, low cost, non-
invasive imaging test which measures the amount of calcified plaque in the coronary 
arteries. This score is utilized to assess the risk of coronary artery disease, guide lifestyle 
modification and therapeutic treatment, and monitor disease progression and response 
to treatment [1-3]. A patient’s level of CACS may be described by the agaston score 
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based on a low-dose CT scan of the heart. The agaston score 
quantifies the amount of calcified plaque in the coronary arteries. 
Each calcified plaque is given a score calculated by multiplying 
the area of the calcified plaque by a scale factor determined by 
maximum density of the plaque [4,5]. The patient score is a sum 
of all individual plaque scores.

A score of 0 indicates no identifiable calcified plaque and indicates a 
very low (less than 5%) risk of significant obstructive CAD. A score 
of 1-10 indicates minimal calcified plaque and indicates a low (less 
than 10%) risk of significant obstructive CAD. A score of 11-100 
indicates mild calcified plaque and indicates a low to moderate risk 
of significant obstructive CAD with mild stenosis likely present. A 
score of 101-400 indicates moderate calcified plaque and indicates 
a moderate to high risk of significant obstructive CAD with non-
obstructive and obstructive disease likely present. A score of over 
400 indicates severe diffuse calcified plaque and indicates a high 
risk of CAD with at least one significant obstruction (greater 
than 90%) likely present [6]. CACS may be associated with a 
significant radiation dose, ranging from 0.8 to 10.5mSv [7]. Such 
radiation doses have been associated with the risks of subsequent 
tumors [8-11] and therefore minimization of dose is of paramount 
importance. 

The CACS CT test may be reconstructed with a variety of 
methods. Hybrid-IR has been proven to provide lower doses [12-
17] and higher image quality [18,19] than earlier FBP methods. A 
previous study with a phantom and human subjects scanned with 
a wide area detector scanner (16 cm) found that DLR significantly 
reduced image noise but produced no significant differences 
in measured calcium volumes. In this study quantification of 
coronary artery calcium was equivalent between FBP, Hybrid-IR 
and AI-DLR, with AI-DLR having the lowest bias in measured 
calcium volumes [20].  This study attempts to determine if DLR 
can supplant Hybrid-IR to then allow for further dose reduction 
and improved safety, as suggested in prior studies [21], on non-
wide area detector CT scanner.

Materials and Methods

105 consecutive patients referred for CACS in 4 outpatient centers 
between March 3, 2024, and June 18, 2024, were studied as part 
of our institution’s routine quality improvement process. There 
were 57 males and 48 females. CACS studies were performed 
on CT scanners with 80 row, 4 cm detectors (Prime SP, Canon 
Medical Systems [93 patients] and Serve SP, Canon Medical 
Systems [12 patients]). Studies were cardiac gated with a step and 
shoot technique at a rotation time of 0.35s. Tube voltage was 120 
kV for all studies. Data was acquired at 0.5mm slice thickness and 
reconstruction at a 3mm slice thickness.

Automated exposure control was set to a standard deviation of the 
noise target of 45 (SD=45) based on the Hybrid-IR model at a 

3mm reconstructed slice thickness. This standard deviation level 
was selected from our prior clinical testing as the level at which 
non-obese (BMI under 30 kg/m2) patients would be exposed to a 
dose under 1 mSv for their CACS exam. 

Scanning was performed from 1.5 cm above the coronary arteries 
to 1.5 cm below the left ventricle. Determination of the scan range 
was assisted by an optical patient positioning system and a low 
dose 3D localizing scan.  Data was reconstructed utilizing three 
methods: Filtered Back Projection, Hybrid-IR (AIDR, Standard 
Level), and AI Deep Learning Reconstruction (AiCE, Standard 
Level). Dose was calculated as the product of Dose Length Product 
multiplied by the Chest k factor of 0.014 as specified by American 
Association of Physicists in Medicine report of January 2008 
[22]. Quantitative and qualitative CACS was performed by two 
experienced cardiac imagers with a combined total of 41 years of 
cardiac imaging experience. A Vitrea workstation (Vitrea Advanced 
Visualization, Canon Medical Systems) was used to generate the 
agaston scores.

A qualitative image quality assessment of reconstruction algorithms 
was done using a soft tissue (L40, W350) and lung (L-650, 
W1600) window settings. The relative change in image quality 
was done using a ± 3 scale, with 0 being no clinical diagnostic 
difference, ± 1 being mild clinical diagnostic difference, ± 2 being 
moderate clinical diagnostic difference, and ± 3 being significant 
clinical diagnostic difference with the Hybrid-IR image quality set 
as the reference level of zero.

Phantom scans to evaluate the effects of the reconstruction 
algorithm on radiation dose and image noise were performed 
using a Ccatphan 500 phantom (Phantom Laboratory, Salem, NY, 
USA). To evaluate the dose reduction that could be achieved by 
changing the reconstruction method for a fixed noise target, scans 
were performed with noise targets ranging from SD=10 to SD=60. 
The phantom was scanned and scan doses recorded with Hybrid-
IR set as the reconstruction method and repeated with AI DLR set 
as the reconstruction method. 

To quantitively evaluate the noise levels produced by each 
reconstruction method, images from all scans were reconstructed 
with FBP, Hybrid-IR and AI DLR. Image noise was measured at 
the central three slices of the uniformity section of the phantom, 
using a circular ROI approximately 100 cm2 in size at the center of 
the image. These measurements provide a quantitative assessment of 
noise of each reconstruction method at a fixed scan dose, as well as 
indicators of potential dose reductions at fixed levels of image noise. 

Since the data did not follow a normal gaussian distribution the 
interclass coefficient measure was used to evaluate the agreement 
between the three different reconstructions. The Fleiss Kappa statistic 
(κ) was calculated to evaluate the agreement of AI-DLR and FBP with 
the standard of care reconstruction (Hybrid-IR) [23].
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Results

Quantitative

Patient ages ranged from 27 to 77 with a mean age of 55.7 years. 
Body Mass Indices (BMI) ranged from 16.7 to 39.5 with a mean 
of 27.5 kg/m2.

The mean CACS for filtered back projection reconstructions was 
111.05. The mean CACS for Hybrid-IR was 91.30. The mean 
CACS for AI deep learning reconstructions was 93.50 (Figure 1). 

All reconstructions FBP, Hybrid-IR and AI-DLR were tested 
for normality and had D values of 0.3573, 0.3681 and 0.3610 
and P<0.0001 which rejects normality of this data. Therefore, an 
interclass correlation coefficient, which describes the degrees of 
consistency among measurements, was calculated and found to 
be 0.99 for the average measures for all 3 reconstructions. This 
indicates excellent agreement between measurements obtained 
using the 3 reconstruction methods. 

Figure 2 shows the distribution of CACS in each of the risk 
categories. No coronary calcification (score 0) was seen for 51 patients 
with FBP, 61 patients with Hybrid-IR, and 58 patients with AI DLR 
(Figure 2). The kappa statistic (κ) between those patients who were 
in the CACS category of 0 for AI DLR and Hybrid-IR was 0.94 ± 
0.03 while the κ between Hybrid IR and FBP was 0.81 ± 0.05. The 
two reconstructions (AI DLR and FBP) show strong agreement with 
Hybrid for those patients with zero calcium. 

Minimal coronary calcification (score 1-10) was seen for 14 
patients with FBP, 9 patients with Hybrid-IR, and 9 patients with 
AI DLR. The kappa statistic (κ) for AI DL and Hybrid IR was 
0.64 ± 0.14 while, the κ between Hybrid IR and FBP was only 
0.27 ± 0.14. 

Mild coronary calcification (score 11-100) was seen for 16 patients 

with FBP, 13 patients with Hybrid-IR, and 16 patients with AI 
DLR. The kappa statistic (κ) for those patients in the mild coronary 
calcification category between AI DLR and Hybrid-IR was 0.80 ± 
0.09, which is a strong agreement while κ between Hybrid IR and 
FBP was 0.72 ± 0.1. 

Moderate coronary calcification (score 101-400) was seen for 18 
patients with FBP, 17 patients with Hybrid-IR, and 17 patients 
with AI DLR. The kappa statistic (κ) for those patients in the 
moderate coronary calcification category between AI DLR and 
Hybrid-IR was 0.92 ± 0.05, which is still strong agreement while 
κ between Hybrid IR and FBP was 0.90 ± 0.06. 

Severe coronary calcification (score over 400) was seen for 6 
patients with FBP, 5 patients with Hybrid-IR, and 5 patients with 
AI DLR. The kappa statistic (κ between AI DLR and Hybrid-IR 
was 1.0 ± 0.0, which is strong agreement while the κ between 
Hybrid IR and FBP was 0.9 ± 0.09.

Patient dose was exponentially related to BMI by linear regression 
analysis and is demonstrated graphically in Figure 3 with a Pearson 
correlation coefficient of 0.7282 indicating a moderately strong 
correlation. The dose range was from 0.225 mSv to 3.10 mSv with 
a mean dose of 0.795 mSv. 

Phantom measurements showed a reduction in CTDI of 
approximately 30% when the target reconstruction method was 
changed from Hybrid-IR to AI DLR, but with a fixed noise target 
(SD). These results are depicted in Figure 4 and Table 1. Table 
1 tabulates the CTDI for scans of the Catphan phantom as the 
noise target was increased when the scan protocol was setup with 
Hybrid-IR and repeated with AI DLR as the reconstruction. From 
this table the dose for a noise target of 45 (SD=45) which is our 
clinical protocol, will reduce the dose by 32% simply by switching 
the reconstruction being utilized to AI DLR.

Figure 1: Comparison of Mean CACS across reconstruction types.
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Figure 2: Relative occurrence of CACS values as a function of reconstruction type.

Figure 3: Distribution of patient dose as a function of patient size as represented by patient BMI.

Figure 4: Impact of reconstruction target on dose. For a fixed SD level, switching reconstruction algorithms from Hybrid-IR to AI DLR results in approximately 30% 

reduction in radiation dose.
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Figure 5: Impact of reconstruction algorithm on image noise. An equivalent 

noise level may be realized with AI DLR, but with greater than 36% lower dose 

compared to Hybrid-IR.

Qualitative

Qualitative image quality differences were consistent across all 
patients (Figure 6). The AI DLR image quality was mildly improved 
(+1 total difference) at soft tissue contrast and moderately improved 
(+2 total difference) at lung contrast compared with the Hybrid-
IR. The Hybrid-IR image quality was moderately improved (+2 
total difference) at soft tissue contrast and moderately (+2 total 
difference) at lung contrast compared with the FBP. The AI DLR 
was significantly improved (+3 total difference) at soft tissue 
contrast and even more significantly improved (+4 total difference) 
at lung contrast compared with the FBP.

Figure 6: Relative image quality scores from qualitative image quality assessment.

Discussion

The results of this study quantitatively and qualitatively validated 
the use of AI Deep Learning Reconstruction for Coronary 
Artery Calcification Scoring and established that CACS can be 

Table 1: Dose reduction achieved between Hybrid-IR and AI 
DLR reconstructions.

Noise Target (SD) CTDI Hybrid-IR 
(mGy)

CTDI AI DLR 
(mGy)

Reduction in 
Dose

15 7.68 5.61 27%

20 4.41 3.26 26%

25 2.97 2.06 31%

28 2.39 1.69 29%

29 2.27 1.54 32%

30 2.06 1.48 28%

35 1.51 1.11 26%

40 1.18 0.82 31%

45 0.97 0.66 32%

50 0.8 0.52 35%

55 0.66 0.49 26%

60 0.49 0.33 33%

Noise measurements in phantom images were also used to 
determine the level of dose reduction possible with AI DLR to 
maintain similar noise levels as Hybrid-IR. Figure 5 shows the 
effect of the image of reconstruction algorithm on image noise 
and indicates a dose reduction of at least a 37% would lead no 
degradation in AI DLR image noise compared to Hybrid IR AI 
DLR yield lower noise levels compared to FBP or Hybrid-IR. 
To maintain the noise level attained with Hybrid-IR at a noise 
target level of 45 (SD=45), a higher noise target (SD=70) may be 
used, and this would lead to a dose reduction of approximately 
44%. Dashed arrows in Figure 5 illustrates the opportunity for 
dose reduction. In our phantom experiments, with noise target 
set at SD=28, a CTDI of 2.4 mGy is administered and noise with 
Hybrid-IR measures 15.9. To maintain approximately the same 
noise level with AI DLR, noise target would need to be set to 
SD=35 and a CDTI of 1.5 mGy would be administered. At this 
dose level, the noise in the AI-DLR image was measured to be 
16.1. Similarly, with noise target set at SD=35, a CTDI of 1.5 
mGy is administered and noise with Hybrid-IR measures 18.0. 
To maintain approximately the same noise level with AI DLR, 
noise target would need to be set to SD=55 and a CDTI of 0.66 
mGy would be administered. At this dose level, the noise in the 
AI-DLR image was measured to be 18.1. These results indicate a 
dose reduction of between 37% and 56% could be implemented 
without any noise penalty in the AI DLR images.
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In general, there is substantial or near perfect agreement between 
all the AI DLR reconstructions and the Hybrid-IR reconstructions 
which is the current standard of care. Patients with minimal 
calcium classification, did show substantial agreement with κ=0.64 
± 0.14. Lower measurements of calcium are more susceptible to 
noise in the measurements. It should be noted that interscan 
variability exists in CACS measurements. A number of factors 
including the choice of scanner can affect interscan variability, 
and the level of agreement in our study is less than variability that 
could be expected in general [24].

As reported in the results, patient dose was exponentially related 
to BMI Figure 3. This is consistent with previously studies 
investigating automated exposure control behavior [25]. 

AI DLR allows further dose reduction beyond the 1 mSv threshold 
set in this study for non-obese patients. Utilizing automated 
exposure control noise targets based on an AI DLR model rather 
than on Hybrid-IR model will allow for dose reductions of 
approximately 36% with improved image quality [26]. Further 
dose reduction can then be accomplished by utilizing a higher 
standard deviation of the noise (above 45) as the AI DLR image 
quality was improved compared with the Hybrid-IR image quality. 

In conclusion, further dose reduction can be accomplished while 
maintaining image quality at or better than at current Hybrid-IR 
levels. We will target a dose reduction of at least a 37% for all 
patients. Accepting a linear, no threshold model of radiation risk 
[27,28] this we expect a similar reduction of radiation risk for all 
patients.

Conclusion 

AI DLR has been quantitatively and qualitatively validated for 
use in CACS on 4 cm coverage CT scanner. AI DLR produces 
qualitatively better image quality than HYBRID-IR at the same 
dose level, while producing good agreement in categorization with 
agatston scores. AI DLR will allow for at least a 37% further dose 
reduction on a 4 cm coverage CT scanner.
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