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Metabolites are low-weight molecules that are present in multiple biochemical 
processes either as intermediates or as end products of the metabolism. Consequently, 
the types and quantities of metabolites in a cell, tissue or organ can be informative of 
an underlying pathological event. Metabolomics, the global analysis of the complete 
metabolite profile, is a fast-developing biomedical research area. In the present article, 
we introduce the main methodological aspects of metabolomics and we review the 
most recent contributions of this approach in the study of the following rheumatic 
diseases: rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, 
psoriatic arthritis, osteoarthritis and gouty arthritis.
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The metabolome is the most 
dynamic level of the organism
At the molecular level, the human body is 
an extremely dynamic system, with thou-
sands of molecular reactions taking place at 
each instant, inside millions of cells. These 
biochemical reactions are responsible for 
maintaining the cell activity, preserving cell 
structure and maintaining cell-to-cell com-
munication. For example, glucose break-
down to generate the main energy transfer 
molecule, ATP, is performed through a series 
of multiple metabolic intermediates. Each 
metabolite, in turn, has singular physical and 
chemical properties that can be used to mea-
sure its concentration at a specific time point 
in a certain tissue or cell type. From a bio-
medical perspective, the characterization of 
the metabolomic profile of a sample obtained 
from a patient can be a powerful approach to 
identify the physiological processes that are 
altered in disease. This knowledge can be key 
in the development of new and more effective 
therapeutic approaches. In addition, disease-
associated metabolites can be useful biomark-
ers with clinically relevant applications like 
early diagnosis or treatment personalization.

Inflammation is a complex biological pro-
cess, in which vascular, immune and other 
tissue-specific cell types are activated to elimi-
nate an offending agent, either an infecting 
microorganism or a tissue injury. Conse-
quently, the tissue concentrations of multiple 
metabolites are modified from their normal 
homeostatic levels. An important subset of 
the most severe types of rheumatic diseases 
is characterized by the presence of chronic 
inflammation, leading to tissue destruc-
tion, pain, disability and the reduction of 
life expectancy. Identifying the metabolomic 
profile associated with each clinical entity 
would therefore be of major importance for 
the development of more individualized ther-
apeutic approaches. The recent technological 
and methodological advances are now allow-
ing the fast and accurate assessment of the 
metabolome in many different normal and 
pathological conditions. In the present article 
we will describe these technological advances 
and we will review the most significant 
results in the metabolomics study of rheu-
matic diseases. Supplementary Table 1 (see 
online at http://www.futuremedicine.com/
doi/full/10.2217/IJR.14.25) summarizes the 

Metabolomics in rheumatic diseases

Antonio Julià1, Arnald 
Alonso1 & Sara Marsal*,1

1Rheumatology Research Group, 

Vall d’Hebron Research Institute, 

Parc Científic de Barcelona, Torre I, 

5a Planta, c/ Baldiri i Reixac, No 4, 

Barcelona, 08028, Spain 

*Author for correspondence:  

Tel.: +34 934 029 082; 

sara.marsal@vhir.org



354 Int. J. Clin. Rheumatol. (2014) 9(4)

Clinical samples and study design

Healthy individuals

NMR LC/MS GC/MS

Affected individuals

Not treated Treated

R
es

po
nd

er
s

N
on

re
sp

on
de

rsLow disease
activity

High disease
activity

Potential
confounders

Peak alignment Peak detection

Metabolite identification

Biological
interpretation

Significative
associations

Clinical
biomarkers

S
p

ec
tr

al
 p

ro
ce

ss
in

g
S

ep
ar

at
io

n
 a

n
d

 d
et

ec
ti

o
n

S
tu

d
y 

d
es

ig
n

S
p

ec
tr

al
 d

at
a

Statistical analysis Feature matrix

Samples

Urine, plasma,
serum, synovial
fluid and tissue
extracts

ppm: The chemical shift is the
resonant frequency of a nucleus
relative to a standard. The spectral
peak patterns are diagnostic of the
structure of a molecule.

Retention time: 
The characteristic time it
takes for a particular analyte
to pass through the
chromatographic column

M/Z: 
Relationship between the
mass of a given ion and the
number of elementary
charges that it carries

Objective: Obtain a feature matrix
ready for statistical analysis

Noise filtering

Sex, BMI, diet, medication,
fast and extraction time

Baseline correction

Peak detection and alignment

Peak quantification

Fe
at

u
re

s

A

B

C

D

E

future science group

Review    Julià, Alonso & Marsal



www.futuremedicine.com 355

Figure 1. Metabolomics study workflow (see facing page). This figure shows the different steps associated with a 
metabolomics study. (A) According to the objectives of the study, the adequate cohorts and the type of biological 
samples that will be screened must be selected. (B) Shows the analytical instruments that are mostly used to 
acquire the spectral data from the biological samples. (C) Depending on the technological platform, the resulting 
spectral data are referred either in chemical shift (ppm) or in m/z and retention time. (D) Once the spectral data 
have been acquired, different processing pipelines must be applied in order to remove noise and bias and to 
accurately quantify each spectral peak. (E) This results in a feature matrix containing the quantification measures 
for each peak and each sample. This matrix is finally used to perform both the statistical analysis to identify 
significant associations and metabolite identification that will link each feature (i.e., peak) with the corresponding 
metabolite that will allow the biological interpretation of the identified associations. 
GC/MS: Gas chromotography mass spectometry; LC/MS: Liquid chromotography mass spectometry; NMR: Nuclear 
magnetic resonance; ppm: Parts per million.
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studies included in this review as well as the list of key 
metabolites identified in each disease.

Study design in metabolomic studies
There are two major study design approaches in 
metabolomics: targeted and untargeted studies [1,2]. 
In targeted studies, the researcher has a specific 
hypothesis to test that is based on previous knowl-
edge of a particular biological pathway or metabo-
lite family. In this type of studies, only a reduced set 
of metabolites is detected and quantified. Targeted 
studies are characterized for being very demanding 
in terms of sample preparation and analytical setup 
but, in exchange, metabolite measurements are sensi-
tive and highly accurate. Consequently, these types of 
metabolomic studies tend to require smaller sample 
sizes and less bioinformatic processing steps than 
untargeted studies.

In untargeted studies, the goal is the measurement 
of the largest possible number of metabolites per sam-
ple in order to obtain a global metabolomic profile. 
These types of metabolomic studies are normally part 
of a top–down strategy, where the results obtained 
at the global level are used to generate new hypoth-
eses that are subsequently validated using a targeted 
approach. In untargeted metabolomic studies, the 
large amount and complexity of the data generated 
require the development of highly efficient bioin-
formatic methods that are able to extract the most 
relevant biomedical information.

In metabolomics, like in many other biomedical 
research areas, different study designs can be con-
sidered: cross-sectional, cohort or case–control stud-
ies. Given its simplicity, one of the most commonly 
used study approaches in metabolomics has been the 
case–control design. In this design, samples from 
affected individuals and nonaffected individuals are 
drawn at random from the population at risk. With 
this approach, different clinically relevant compari-
sons can be performed to identify useful biomarkers 
like disease diagnostic biomarkers, disease activ-
ity biomarkers or biomarkers of drug response 
(Figure 1A). When using this approach in untargeted 

metabolomic studies of human samples, large sample 
sizes are generally required in order to efficiently con-
trol for potentially confounding variables like clinical 
and epidemiological variables (i.e., age, gender, diet 
or smoking status) as well as technological artifacts.

In metabolomics, the variability introduced by the 
observer (i.e., the biomedical researcher), can have a 
dramatic impact on the quality of the results. Sample 
manipulation, for example, is a critical step since vari-
ation at the collection, processing or sample storage 
steps can introduce significant biases in the resulting 
data. This high variability is largely due to the speed 
of degradation or modification of multiple metabo-
lites in the sample. In order to minimize the nega-
tive impact of sample manipulation, the collection of 
human biological samples must be carefully planned 
and the technical variables recorded. For example, 
when collecting biofluids like plasma or urine the 
researcher must attempt to standardize influential 
aspects like the diet, hour of the day at which the 
sample is collected or the fasting time. Previous stud-
ies have shown that variation in these aspects can 
introduce significant biases in downstream statisti-
cal analyses [3–5]. Even seemingly irrelevant aspects 
like the type of containers where the samples are col-
lected or the addition of preservatives during sample 
collection, can significantly alter the quality of the 
metabolomic data that can be obtained [4,6–8]. Conse-
quently, the introduction of quality control measures 
like the standardization of all processes, the use of 
internal controls as well as the adequate calibration 
of the equipment are of paramount importance in 
metabolomic analysis.

Recent technological improvements are 
boosting metabolomic studies
In the last years, the advances in metabolomic analysis 
technologies as well as on bioinformatic data analy-
sis methods have boosted the presence of metabolo-
mics in biomedical research [2,9]. To date, the two 
most widely used metabolomic analysis technologies 
are nuclear magnetic resonance (NMR) and mass 
spectrometry (MS) (Figure 1B).
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Figure 2. Analytical techniques: nuclear magnetic resonance. The NMR spectral acquisition is based on the 
behavior of the molecule spin under magnetic field variations. First, a constant magnetic field is applied to the 
sample, aligning the spins of all their molecules (i.e., step 1). The next step consists of applying a RF pulse to 
generate an interfering magnetic field which temporary misalign the molecules’ spins (i.e., step 2). Once the 
interfering magnetic field disappears (i.e., step 3), the molecules’ spins relax back to their original alignment. This 
spin relaxation results in a signal, FID, which can be measured and, after applying on the FT, is transformed on a 
peak spectrum where each peak is characterized by its amplitude (vertical axis) and its chemical shift (horizontal 
axis). The latter is usually measured in ppm and refers to the difference between the resonance frequency and 
that of a reference substance divided by the frequency of the spectrometer.
FID: Free induction decay; NMR: Nuclear magnetic resonance; ppm: Parts per million; RF: Radio frequency; 
FT: Fourier transform.
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NMR is a spectroscopic analysis technique [10,11] 
based on the physical properties of energy absorption 
and re-emission of the atom nuclei due to variations 
in the applied magnetic field (Figure 2). Measuring 
the energy emitted by the atom nuclei that build up a 
specific molecule (i.e., free induction decay) not only 
allows the quantification of the concentration of the 
molecule itself. NMR is a fast and highly reproducible 
metabolomic analysis technique and has the advan-

tage with respect to MS that it does not destroy the 
biological sample at study. Given its relatively low cost 
per sample analysis, NMR is generally the technol-
ogy of choice when performing large-scale explorative 
studies of the metabolome.

To date, NMR-based studies have been used to 
identify and quantify metabolites in different types of 
human samples such as urine [12], serum [13] or cerebro-
spinal fluid [14]. Among the different NMR analytical 
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Figure 3. Analytical techniques: mass spectrometry coupled to chromatography. This figure schematizes the mass 
spectometry-based spectral acquisition workflow. (A) The sample is injected into the chromatographic column 
using a solvent as mobile phase. (B) As the sample flows through the column, the different metabolites (M1, M2 
and M3) are separated due to their differential retention on the stationary phase inside the column. (C) Once the 
sample has traversed the entire column, it is introduced in the mass spectrometer, which obtains the m/z of the 
molecules comprising the sample.
m/z: Mass-to-charge ratio.
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approaches available, 1D proton NMR (1H-NMR) is 
the most commonly used technique. The main reasons 
for using 1H-NMR are the natural high abundance of 
hydrogen nuclei in metabolites, the increased sensitiv-
ity of 1H-NMR compared with other NMR approaches 
(i.e., 13C-NMR), as well as the time-efficient acquisi-
tion of spectra (see an example spectrum on Figure 1C). 
Together, these advantages make this technique suit-
able for untargeted metabolomic studies searching for 
biomarkers of diagnosis or prognosis, involving large 
sample sizes of patients and controls.

Very recently, technological advances like cryogeni-
cally cooled probes, micro-probes and increased mag-
netic field strength [11] are allowing a significant gain 
in sensitivity of NMR-based analyses. Nonetheless, 
NMR is unable to detect and quantify many low con-
centration metabolites. In order to detect and quantify 
this type of metabolites, MS-based technologies must 
be used instead.

MS is an analytical technique that generates spectral 
data in form of a mass-to-charge ratio (m/z) versus the 
relative intensity of the compounds that are generated 
after the ionization of the biological sample (Figure 3). 
The resulting ionized compounds are then measured 
by the MS spectrometer, generating peak signals at 
specific positions of the spectrum which, altogether, 
define the fingerprint of the original molecule. Nowa-
days, MS spectrometry can be performed on a broad 
range of instruments and techniques which use dif-
ferent ionization and mass selection methods [15,16]. 
When analyzing the metabolome, MS analysis is gen-
erally preceded by a chromatographic separation step. 
This step is required to reduce the high complexity of 
the biological sample which would otherwise be intrac-
table. Liquid and gas chromatography columns (LC 
and GC, respectively) are the most commonly used 
chromatographic separation techniques. In both cases, 
metabolite separation is based on the different amount 
of time required by each metabolite to pass through 
the chromatographic column. This time, called reten-
tion time, depends on the metabolite interaction with 
the adsorbent material inside the column.

Compared to NMR, MS-based metabolomic analy-
ses have a much higher sensitivity, and therefore they 
allow the detection and quantification metabolites 
that are in low concentrations in the biological sam-
ples. Compared with NMR, however, MS analyses 
require additional sample preparation steps [17] as well 
as a chromatography separation phase. For this reason, 
researchers performing large-scale and cost-effective 
exploratory studies might opt to initially use NMR 
techniques.

Among MS techniques, LC-MS is frequently used 
due to its high reproducibility and wide range of 

covered metabolites [18,19]. Metabolite sensitivity of 
LC-MS highly depends on the ionization method 
used (i.e., electrospray ionization is the most com-
monly used [20]) and also on the subsequently selected 
ionization mode (i.e., either positive or negative [21]). 
Other MS-based techniques such as GC-MS can be 
more reliable depending on the chemical nature of 
the studied metabolites (i.e., nonionizable compounds 
such as retinol). This technique requires the metabo-
lites to be volatile or suited for chemical derivatization 
and subsequent volatilization [22,23]. Finally, the recent 
technological advances in LC-MS, like the use of ultra-
performance liquid chromatography [20], are clearly 
boosting the capabilities of MS metabolomic analysis 
by significantly increasing specificity, sensitivity and 
acquisition time.

The need for bioinformatics in 
high-throughput metabolomic studies
The recent technological advances in metabolomic 
analysis have increased the quantity but also the com-
plexity of metabolomic data that can be extracted 
from one single biological sample. At the same time, 
the development of highly specialized sample collec-
tions for ‘omics’ studies like biobanks are allowing the 
analysis of large volumes of samples. Consequently, 
there is a clear need for bioinformatic methods that 
can process this large amount of complex data and 
extract meaningful information in a fast and reliable 
way (Figure 1D).

The raw spectral data generated by NMR (Figure 1C) 
are known to be subject to multiple experimental and 
technical biases. Macro-molecule signals and other 
inter-sample variant factors such as used solvent, pH, 
ion strength and sample dilution, can produce varia-
tions on spectral peak positions and areas as well as 
baseline spectral artifacts [24] requiring the application 
of bioinformatic methods that can correct these arti-
facts. The two main correction methods in NMR data 
processing are baseline correction and peak alignment 
methods [25]. After these corrections are applied, two 
alternative bioinformatic methods can be applied to 
the NMR data before performing the desired statisti-
cal analysis: spectral binning and peak-based analysis. 
The first method is based on the automatic partition-
ing of the spectra in equally spaced bins. The areas 
calculated from each of these bins are subsequently 
used in the statistical analysis, in order to identify the 
spectral regions that are associated with the trait of 
interest. Limitations of this approach are that it does 
not account for peak positions and also that it does 
not exploit the presence of correlation patterns at the 
peak level that can be useful to identify the metabo-
lite. In order to overcome these limitations, peak-based 
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methods have been developed. Making use of the cor-
relation patterns between peaks and the information 
stored in the metabolite spectral databases [26], these 
methods can accurately identify and quantify many 
different metabolites present in the biological sample. 
In the recent years, several open-source bioinformatic 
methods have been developed that can partially [27,28] 
or completely [29] overcome all the challenges of NMR 
data processing.

With regards to MS-based spectral data analysis, 
the processing pipeline is very similar to NMR-based 
workflow [30]. In MS analysis, several accurate and 
robust bioinformatics tools have been also developed to 
perform MS spectra processing [31] as well as end point 
metabolite identification [32,33]. These tools are often 
dependent on the type of chromatographic column 
used for separation and suited for  two-dimensional (i.e., 
retention time and m/z)  spectral analysis (Figure 1C).

In addition to spectral processing and metabolite 
identification, high throughput metabolomic stud-
ies also require the application of complex statisti-
cal methods in order to extract relevant information 
(i.e., sample group clustering, biomarker identifica-
tion). These multivariate analysis methods [34], also 
known as chemometrics methods, allow to perform 
tasks such as data overview, (i.e., principal component 
analysis), model building (i.e., partial least squares and 
orthogonal principal component analysis) and bio-
marker identification. Given the complexity associated 
with the metabolomics data processing and analysis, 
any metabolomics study will require the participation 
of highly trained specialists.

Metabolomic studies in rheumatoid arthritis
Since 1990, a relatively large number of studies have 
investigated the metabolomic changes that occur in 
rheumatoid arthritis (RA) pathology. Metabolomic 
studies in RA have evolved from using small sample 
sizes to investigate gross metabolic changes in changes 
on synovial fluid (SF) to using large sample sizes used 
to screen less invasive biofluids such as serum or urine, 
in order to disentangle the metabolome dynamics 
associated with disease activity and treatment response.

SF metabolome in RA
SF is a low abundance biological fluid produced from 
the synovial membrane filtrate of plasma and which 
contains high levels of hyaluronic acid. Its main pur-
pose is the lubrication of the joint and the nutrition 
of the neighboring cartilage tissue. In RA, the SF is 
enriched with inflammatory cells, proteins and metab-
olites from the inflamed tissue. Therefore, the SF is a 
direct surrogate for the main biological processes that 
are taking place in the inflamed joint in RA.

The first metabolomic studies in RA were per-
formed on SF and plasma samples from RA patients 
using simple NMR approaches [35–38]. The studies by 
Naughton et al. [37,38] confirmed the hypoxic nature of 
the inflamed synovial joint in RA, with the produc-
tion of high levels of lactate compared with SF from 
controls. Inflammation in RA also was shown to lead 
to a significant consumption of lipids (i.e., reduction 
in low-density lipoproteins, very-low-density lipopro-
teins and chylomicrons), which consequently increase 
the concentration of ketone bodies (i.e., acetone, 
3-D-hydroxybutyrate).

The anaerobic properties of RA SF were soon 
exploited in the search for useful disease biomark-
ers. Meshitsuka et al. [36] proposed the lactate/ala-
nine ratio as a biomarker of RA early diagnosis since 
it showed increased levels compared with osteoar-
thritis (OA), the most common non-autoimmune 
arthritis. More recently, Fuchs et al. [39] analyzed SF 
and matched plasma samples of patients undergoing 
anti-TNF therapy. Using matrix-assisted laser desorp-
tion and ionization time-of-flight MS technology, 
they measured the phospholipid profile before and 
during anti-TNF treatment, in order to evaluate the 
use of plasmatic metabolites as useful markers of dis-
ease activity in the joint. They found that the ratio 
between phosphatidylcholine and its derivate and 
powerful immune chemoattractant lysophosphati-
dylcholine (i.e., PC/LPC ratio) that was detected in 
SF samples from RA patients was still detectable in 
their corresponding plasma samples. This aspect is 
of importance since it demonstrates that metabolic 
variations in the target tissue (i.e., SF in RA), can also 
be detected in plasma, which is a much less invasive 
type of sample. As expected, PC/LPC ratio increased 
with anti-TNF treatment due to the reduction of joint 
inflammation and the subsequent reduced production 
of  lysophosphatidylcholine.

More recently, Giera et al. [40] used a more advanced 
technological approach to further characterize the lipid 
profile of RA SF. Using an untargeted LC-MS/MS 
system, they characterized 70 different lipid and lipid-
derived metabolites. Among these metabolites they 
identified high levels of 5S,12S-diHETE, an isomer 
of LTB

4
 leukotriene. 5S,12S-diHETE is produced by 

activated neutrophils and platelets, two cell types that 
have been closely related to RA pathophysiology [41,42]. 
The same group, using high resolution MS techniques, 
performed also a lipid profile analysis of RA and OA 
synovial samples [43]. While the unsupervised analysis 
of the lipid data was not able to distinguish between 
disease diagnostic, they were able to identify a new 
clustering pattern of the SF samples. A thorough 
analysis of this lipid profile showed that the observed 
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sample clustering was caused by the differential abun-
dance of esterified oxylipids. Additional studies are 
needed to identify the biological origin of this family 
of lipids and its association with rheumatic diseases.

Serum & plasma metabolomes
In the clinical setting, blood is a convenient and use-
ful tissue for the study of rheumatologic diseases since 
the collection of samples is clearly much less inva-
sive than the sampling of the affected target tissue. 
In metabolomics studies of blood, the non-cellular 
component is separated and analyzed. When extract-
ing the fluid component of blood, researchers can opt 
to use anticoagulant agents – in which case a plasma 
sample is obtained – or let blood clot and obtain a 
serum sample. The clotting of blood strongly influ-
ences the level of certain compounds like eicosanoids 
[13] or oxylipins. Consequently, researchers must aware 
of the potential impact of this non-physiologic clot-
ting process in the results of their metabolomic studies 
in blood.

One of the first metabolomic approaches to the 
characterization of the RA serum metabolome was per-
formed by Weljie et al. [44], using the K/BxN arthritic 
mouse model. The K/BxN model is a well-described 
model of inflammatory arthritis that shares many sim-
ilarities with human RA. Using 1H-NMR, serum sam-
ples from arthritic and control mice were compared, 
to identify a characteristic metabolite pattern. Uracil 
and TMAO were significantly increased in the serum 
of arthritic mice while xanthine, glycine, glycerol, 
hypoxanthine were significantly reduced compared to 
nonarthritic mice. Consequently, this study identified, 
for the first time, metabolites from the nucleic acid and 
oxidative stress pathways as potential biomarkers for 
RA pathology.

Using a cohort of patients and controls Lauridsen 
et al. [45] confirmed that the inflammatory state of RA 
is reflected in the 1H-NMR spectra of human plasma 
samples. Similar to the discoveries in RA synovial 
fluid, lactate concentrations were found to be higher 
in patients compared with controls, probably as a con-
sequence of the increase of the anaerobic metabolism 
occurring in the inflamed joints. Another likely con-
sequence of the inflammatory activity of the synovial 
membrane were the high levels of acetylated glyco-
proteins detected in RA plasma. Finally, and in con-
sistence with previous studies [46,47], elevated concen-
trations of cholesterol and low levels of high-density 
lipoprotein were also found to be associated with RA. 
High-density lipoproteins are mainly responsible for 
cholesterol removal from the bloodstream; together, 
this lipid bioprofile could explain the increased risk for 
coronary artery disease observed in RA patients.

Searching for a diagnostic metabolomic profile, 
Madsen et al. [48] analyzed the plasma from RA patients 
and compared it to controls and patients with psoriatic 
arthritis (PsA). In this case, a specific set of metabo-
lites were evaluated with GC-MS and LC-MS. They 
observed a significant decrease of histidine levels in RA 
patients compared with controls and PsA patients. Low 
levels of this amino acid have been one of the earliest 
characteristic plasmatic features observed in RA [49], 
although its origin is still not clear. Threonic acid, a 
metabolite of vitamin C, was also highly expressed 
in RA plasma compared with controls and could be 
a consequence of the high oxidative stress present in 
the disease. Contrary to the previous study in human 
plasma, however, they found significantly lower levels 
of cholesterol in RA patients. Other studies also sup-
port the lower concentrations of cholesterol in RA 
compared with controls [50], so there is a clear need for 
additional studies to identify the potential influence of 
confounding variables and define the precise associa-
tion of this metabolite with RA. Finally, similar to the 
K/BxN model screening analysis, they also found high 
levels of metabolites implicating the nucleotide biosyn-
thesis (i.e., pseudouridine and guanosine) with RA. 
Discrepancies like the increase in hypoxanthine levels 
compared with the reduction in the RA mouse model 
remind us, however, the limitations of using animal 
models in the characterization of human diseases.

Very recently, Jiang et al. [51] used GC-MS and 
LC-MS to perform a metabolic analysis of the serum 
profile of the most prevalent forms of arthritis including 
RA, OA, ankylosing spondilytis (AS) and gouty arthri-
tis (GA). Using multivariable analysis techniques on the 
set of measured metabolites they succeeded in discrimi-
nating all arthritis patients from healthy controls. The 
common arthritis profile included an increase of lactate, 
dihydroxyfumaric acid, glyceraldehyde, aspartic acid 
and homoserine, as well as a reduction in 4,8 dimethyl-
nonanoyl carnitine. Together, the levels of these metab-
olites in plasma could distinguish an arthritis patient 
from a control individual with an 81% sensitivity and 
88% specificity. In this study the differences between 
RA and OA (i.e., female patients) and between AS and 
GA (i.e., male patients) were also explored. The former 
comparison was based on a panel of the 13 top-ranked 
differential metabolites (e.g,. tryptophan, sarcosine, 
alanine) and yielded a classification model with an 86% 
sensitivity and 85% specificity. Similarly, a panel of the 
16 top-ranked differential metabolites between AS and 
GA (e.g., creatine, cysteine, uric acid and valine) were 
selected to build a prediction model that reached a 79% 
sensitivity and 85% specificity.

The early diagnosis of RA can be crucial to the 
improved management of the disease and the increase 
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in the rates of clinical remission. For this reason, the 
identification of biomarkers that are informative at ear-
lier stages of the disease can be of major importance. 
Using 1H-NMR technology Young et al. [52] performed 
a screen in the serum metabolome of RA patients at 
their most initial stages and compared it to patients 
with more advanced disease as well as controls. Similar 
to Lauridsen et al. [45], they found low levels of lipopro-
teins in RA patients compared with controls. Also, the 
presence of 3-hydroxybutyrate, a ketone body, is in line 
to the previous findings of an intense anaerobic metab-
olism in the inflamed RA joint [37]. In the early RA 
group, a strong correlation of the serum metabolite pro-
file and the degree of inflammation, represented by the 
levels of C-reactive protein, was found. It is therefore 
possible that these metabolites represent a more objec-
tive and reliable measure of the extent of the disease, 
including periods of apparent clinical inactivity.

Another highly relevant objective of metabolomic 
analysis is the identification of metabolites that are asso-
ciated to disease activity and treatment response. These 
biomarkers could provide more objective measurements 
of disease activity and, therefore, allow better disease 
management. In their 1H-NMR longitudinal analysis 
of human plasma, Lauridsen et al. [45] found that the 
metabolite profile of RA patients with active disease 
approached the profile of patients in remission after 
starting therapy. Importantly, both the active RA and 
the remission RA profiles were significantly different 
from the normal controls’ profiles along the longitudi-
nal study. In another longitudinal study, Madsen et al. 
[53] used GC-MS and LC-MS to identify serum metab-
olites correlated with the RA activity in patients start-
ing anti-TNF therapy. In this study, the correlation of 
serum metabolite levels with the DAS28 disease activ-
ity score was analyzed using two independent patient 
cohorts. Interestingly, while highly significant linear 
models associated with disease activity were built in 
each study cohort (p-values: 6.4 × 10-6 and 9.2 × 10-3), 
the predictor metabolites were quite different between 
both studies. A detailed analysis of the metabolite pro-
files of all patients suggested the existence of different 
underlying disease mechanisms. The existence of dif-
ferent RA subclasses at the molecular level has been pre-
viously suggested by whole blood transcriptomic analy-
ses [54]. The presence of heterogeneity in RA is a clear 
complicating factor in the metabolomic study of the 
disease and consequently imposes the use of large and 
well-characterized patient cohorts in order to  identify 
clinically useful biomarkers.

Urine RA metabolome
From a biomarker perspective, urine is an even more 
interesting biofluid than blood since it is easy to obtain 

and clearly non-invasive. Inflammatory diseases have 
shown to influence the metabolomic profile in urine 
[55]. Kapoor et al. [56] used NMR to evaluate the associ-
ation of urine metabolites and the clinical outcomes of 
RA and PsA treated with anti-TNF therapies. For this 
objective, urine samples were obtained and analyzed 
at baseline and at 12 weeks of treatment. Multivariate 
analysis of the NMR spectra showed that urine metab-
olites could segregate RA patients with a good response 
from patients with a bad response to anti-TNF therapy. 
Among the predictor metabolites, histamine showed 
the highest correlation with anti-TNF response. 
Patients showing higher levels of this powerful cyto-
kine were more likely to respond to anti-TNF therapy. 
The existence of subgroups patients showing differing 
levels of this metabolite could therefore explain results 
on its precursor histidine, which has been found to 
 display opposing levels in different studies [48,57].

Metabolomic studies in systemic lupus 
erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune 
disease characterized by a variety of clinical manifesta-
tions and a wide production of auto-antibodies [58]. 
This marked heterogeneity makes it a challenge for 
clinical specialists to diagnose SLE, particularly at the 
first stages of the disease. Consequently, the identifica-
tion of metabolomic biomarkers that can help diagnose 
SLE or any of its clinical subphenotypes, would be of 
major importance in the management of this yet incur-
able disease. Studies characterizing SLE metabolomic 
profile are very recent and have focused on the analysis 
of the serum and the urine metabolome.

Serum SLE metabolome
In order to identify a metabolomic profile characteristic 
of SLE, 2011 Ouyang et al. [59] performed a 1H-NMR 
metabolomic analysis on serum samples from SLE 
patients and compared it to the serum profiles of con-
trols and patients with RA. Multivariate analysis of the 
1H-NMR spectra showed a higher discrimination power 
between both rheumatic diseases and controls than 
between RA and SLE. This result is in accordance with 
previous studies demonstrating the existence a common 
core of metabolites in chronic inflammatory diseases. 
Histidine was found to have a low concentration in the 
serum of both RA and SLE compared with controls. 
Low levels of this amino acid had been also detected 
in the analysis of RA plasma [48]. Previous evidence in 
chronic kidney disease patients suggests that low histi-
dine levels are inversely correlated with the presence of 
inflammation and thus could exert anti-inflammatory 
and antioxidant effects [60]. Other additional amino 
acids (alanine, tyrosine, isoleucine, valine, phenylala-
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nine, lysine, histidine and glutamine) were also found 
to be expressed in lower levels in RA and SLE compared 
with controls, possibly linked to the protein turnover 
associated to the high inflammatory activity occur-
ring in both diseases. Similarly, Krebs cycle metabolites 
citrate and pyruvate were also in low concentrations in 
the serum of SLE and RA patients, suggesting an asso-
ciation with the increase in the energy requirements in 
both inflammatory diseases. As found previously in RA 
plasma [45], SLE serum also shows reduced levels of low-
density lipoproteins. The globally altered lipid profile 
observed in SLE patients might be an important factor 
in the pathogenesis of atherosclerosis in this disease [61]. 
Elevated levels of lactate were also found to be a pow-
erful discriminative biomarker between in RA patients 
and SLE patients or controls.

In a more recent study, Xinghong et al. [62] used 
LC-MS to analyze a subset of metabolites in sera of 
SLE patients and controls. Multivariate analysis of the 
metabolite profile confirmed the clear classification 
of both groups. Looking for those metabolites with a 
stronger ability to separate SLE patients from controls, 
they identified an increase of proline amino acid and 
several lysophosphatidyl cholines as well as a decrease 
of phenylalanine, tryptophyan and bilirubin. Low lev-
els of phenylalanine had been also detected in the pre-
vious study [59], suggesting a potential use as diagnostic 
biomarker in the early phases of SLE.

Using also MS technologies, Wu et al. [63] performed 
a case–control study to find additional serum metabo-
lites associated with SLE. Importantly, in this study 
they included an additional group of cases and controls 
to validate the metabolites associated with SLE in the 
initial (discovery) cohort. In this study they identified 
a marked increase in lipid peroxidation products like 
9-HODE and 13-HODE. Importantly, the level of 
these metabolites correlated with the increase of disease 
activity in patients, indicating a potential applicability 
as biomarkers. In concordance with this rise in oxidative 
stress, the levels of glutathione were also reduced in SLE 
patients. Vitamin B6, which is necessary for the produc-
tion of glutathione, was found to be significantly reduced 
in SLE patients’ sera, which might explain the reduc-
tion of this powerful antioxidant. This finding indicates 
vitamin supplementation could be a potential adjunctive 
therapy to reduce oxidative damage in SLE. While most 
differential metabolites were found to be reduced in SLE 
patients, two metabolites associated with the leukotriene 
production pathway, leukotriene B4 and 5-HETE, were 
found to be significantly overexpressed in serum.

Urine SLE metabolome
Renal involvement is the strongest predictor of mor-
bidity and mortality in SLE and, consequently, there 

is major need to identify useful biomarkers associated 
to this severe outcome. However, while lupus nephritis 
has been largely studied from a proteomics perspective 
[64–67], metabolomic studies on lupus nephritis are still 
infrequent. Recently, Romick et al. [68] used 1H-NMR 
to perform a metabolomic screen of urine to identify 
metabolites that can help discriminate proliferative, pure 
membranous and focal segmental glomerulosclerosis in 
SLE. They found that taurine and citrate, which have 
been previously associated to tubular renal function 
[69], were strong biomarkers distinguishing proliferative 
(classes III/IV) from pure membranous classes (class V). 
While class III/IV patients had low taurine levels and 
normal citrate levels in urine, class V patients had low 
citrate levels and high taurine levels. These differences 
lead to an almost perfect discrimination between the 
two lupus nephritis subtypes. The plasmatic levels of the 
two metabolites are known to be regulated by the kid-
ney. Pathological differences between both SLE neph-
ritis subclasses might explain the differential amount of 
metabolite finally excreted to urine.

Brain SLE metabolome
Compared to other rheumatic diseases, the nervous 
system is frequently affected in SLE patients leading 
to neuropsychiatric syndromes [70]. An altered glu-
cose metabolism in the brain has been associated to 
the development of these psychiatric symptoms in SLE 
patients [71]. Using a well known SLE mouse model, 
Alexander et al. [71] used 13C NMR and 1H-NMR to 
evaluate the incorporation of glucose in brain extracts 
compared with control mice. The results clearly con-
firmed the altered brain metabolism in SLE. Choline 
was found to be highly increased in the brains of the 
diseased mice. Choline is a precursor for the synthe-
sis of phospholipids and it is known to participate 
in inflammation by contributing to the production 
of arachidonic acid [72] which, in turn, leads to the 
increase of prostaglandins which exert multiple roles 
in the inflammatory response [73]. Glutamate and glu-
tamine were also significantly increased and, together, 
suggest a predominant role for the glial cells (astro-
cytes and microglia) rather than neurons in the patho-
logical events in the SLE brain. Also, lactate levels were 
found to be increased; lactate might be a product of 
infiltrating macrophages in the inflamed brain and 
it could also contribute to the alteration of the brain 
 functionality in SLE.

Metabolomic studies in AS
AS is a chronic inflammatory disease characterized by 
axial skeleton ankylosis, enthesitis inflammation and, 
occasionally, peripheral arthritis. AS has an overall 
incidence between 0.5 and 14 per 100,000 people per 
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year and is more common in men [74]. Metabolomic 
studies in AS are very recent and have been all per-
formed in blood samples with the final objective of 
detecting diagnostic biomarkers [51,75,76].

AS blood metabolome
Gao et al. [76] performed a case–control study using 
GC-MS an LC-MS to identify AS biomarkers in 
plasma samples. Supervised partial least squares dis-
criminant analysis was able to accurately discriminate 
both samples groups demonstrating the potential of 
metabolomics as a reliable diagnostic tool in AS. In 
this study, proline, glucose, phosphate, phenylalanine, 
urea, glycerol and homocysteine were detected at higher 
concentrations in AS patients than in healthy controls. 
Instead, propanoic acid, tryptophan and several phos-
phatidylcholines were present at lower concentrations 
in AS patients compared with controls. Tryptophan 
reduction might respond to the indoleamine 2,3-diox-
ygenase enzyme activation by the high levels of inter-
feron gamma produced by the disease. AS patients 
responding to anti-inflammatory treatments have 
shown to increase this amino acid and, consequently, 
it could become a useful biomarker of disease activity. 
Cartilage breakdown by the chronic inflammation in 
AS could explain the observed high levels of proline. 
Consequently, the high levels of urea would therefore 
caused by the rise in this and  additional amino acids 
detected in AS patients.

Using LC-MS, Fischer et al. [75] also performed a 
case–control study with serum samples of AS patients 
and healthy controls. Like Gao et al. [76], multivari-
ate analysis on the measured metabolomic profile was 
able to distinguish patients from controls. Importantly, 
the metabolomic data could also separate AS patients 
according to the Bath Ankylosing Spondylitis Disease 
Activity Index (i.e., BASDAI). Although most of the 
associated molecular features detected by LC-MS were 
not linked to known metabolites, they were able to 
identify 25-hydroxyvitamin D3 26,23-peroxylactone 
as a metabolite clearly downregulated in AS. The lower 
levels of this metabolite might reflect an alteration in 
the vitamin D3 metabolism, which has been shown to 
have profound effects in bone remodeling and immune 
cell activation [77]. Consequently, targeting this biolog-
ical pathway could have protective effects in the bone 
destruction process associated to AS.

Finally, the arthritis screening study performed 
by Jiang et al. [51] provided additional support to the 
utility of serum as a useful surrogate of AS pathology. 
Using GC-MS and LC-MS on male subjects, they 
were able to identify several metabolites that could effi-
ciently distinguish AS from GA patients. Creatinine, 
uric acid, arabitol, succinic acid, valine and 5-oxopro-

line were among the metabolites found to be signifi-
cantly underexpressed in AS serum compared with GA 
serum.

Metabolomic studies in PsA
PsA is an inflammatory arthritis that is associated 
with psoriasis. PsA has specific clinical features such as 
arthritis of the distal interphalangeal joints to spondy-
litis and sacroiliitis. PsA occurs in approximately 12% 
of psoriasis patients [78] and it is associated with higher 
morbidity and mortality and also requires a mark-
edly different therapeutic approach. Therefore, the 
identification of metabolites that can characterize PsA 
from purely cutaneous psoriasis could become a useful 
clinical tool. To date, however, no studies have directly 
compared PsA and psoriasis metabolomics profiles.

PsA blood metabolome
In their MS screen of RA, Madsen et al. [48] included 
a PsA cohort as an additional control group to evalu-
ate the specificity of the metabolomic markers. Inter-
estingly, the metabolomic profiles from RA patients 
were found to be more different between RA and PsA 
patients than RA and control patients. In this study, 
however, no direct contrast between PsA and controls 
was performed. Consequently, the identification of 
metabolites specifically associated with PsA can only 
be extrapolated from the differences between RA and 
controls and RA and PsA patients. Several amino acids 
including aspartic acid, glutamic acid, glutamate and 
serine were increased in PsA patients compared with 
RA and were not different between RA and controls. 
Therefore, it is likely that PsA is characterized by a 
major protein turnover and a higher increase of free 
amino acids in serum. However, specific case–control 
design studies must still be carried out to confirm the 
specificity of this metabolomic profile in PsA.

PsA urine metabolome
In their NMR longitudinal study of the urine metabo-
lite profile associated to the response to anti-TNF treat-
ment, Kapoor et al. [56] also included a cohort of PsA 
patients. Like for RA patients, the urine metabolome 
in PsA correlated with the changes in disease activity 
induced by the biologic treatment. The metabolite lev-
els influenced by anti-TNF treatment were found to 
be similar between both diseases. In particular, high 
levels of glutamine, phenylacetic acid and histamine in 
the baseline urine samples were found to be predictors 
of the good response to anti-TNF treatment.

Metabolomic studies in OA
OA is the most common type of arthritis and is a major 
cause of pain and disability in the elderly [79]. The clin-
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ical and radiologic findings that form the basis of the 
diagnosis of OA are poorly sensitive for monitoring the 
progression of the disease. Consequently, the identifi-
cation of metabolites that can better reflect quantita-
tive and dynamic changes of the joint tissue turnover 
would be of major utility in daily clinical practice.

OA urine metabolome
A first approach to the characterization of metabolites 
associated to OA pathology was performed by Lam-
ers et al. analyzing the urine profiles of animal mod-
els with 1H-NMR [80]. The Hartley outbred strain of 
guinea pigs has shown to develop progressive knee OA 
and, consequently, are a useful animal model to screen 
for potential biomarkers in OA. Principal component 
analysis, a multivariate approach commonly used in 
genomic studies, showed a clear separation between the 
urine profile of the OA model and the urine profile of 
the control strain. The major changes associated with 
OA were found in lactate, malate, hypoxanthine and 
alanine levels, which support the hypothesis that in OA 
there is an increase in energy utilization and an altered 
metabolism of purines. Having proven the existence 
of a urine metabolite pattern correlated with the pres-
ence of the disease, the same group performed a study 
using a cohort of OA patients and matched controls. 
Using the same multivariate analysis approach as in 
the animal model they were also able to discriminate 
between patients and controls. The prediction model 
built from the metabolite concentrations showed a 
strong correlation with the Kellgren–Lawrence radio-
graphic scores for the evaluation of OA severity. Addi-
tionally, the metabolite profile that characterized the 
human OA patients shared many features with the 
profile obtained in the guinea pig model, confirming 
the usefulness of this model to pursue clinically rel-
evant biomarkers. Like in the animal model, several 
of the differential NMR signals could not be identi-
fied. This aspect is characteristic of the exploratory 
nature of 1H-NMR; in these cases, additional studies 
using more sensitive technologies like correlation spec-
troscopy NMR, LC-MS or GS-MS are required to 
characterize the associated metabolites. The increased 
metabolites in OA that could be identified with cer-
tainty were hydroxybutyrate, pyruvate, creatine/creati-
nine and glycerol. These results suggest the increased 
use of fat as an energy source in OA. Histidine and 
methylhistidine were found to be in significant lower 
concentration in the urine OA patients compared with 
controls. Low levels of histidine in OA could be associ-
ated to an over expression of histidine decarboxylase in 
OA chondrocytes and the subsequent increase in the 
production of histamine observed in the OA joint [81]. 
There is evidence supporting that histamine promotes 

the formation of the chondrocyte clusters characteristic 
of the osteoarthritic cartilage [82].

OA blood metabolome
Using 1H-NMR Zhai et al. [83] analyzed the metabolo-
mics profile in the serum of OA patients and controls. 
Importantly, in this study an independent replication 
cohort of patients and controls was also recruited to 
validate the metabolite associations identified in the 
discovery phase. Also, in this study they also used the 
ratios between metabolites since it has been shown 
to provide an improved quantification of some of 
the metabolic reactions present in the tissue of inter-
est. After correcting for the number of statistical tests 
performed, they found the valine/histidine and the 
xleucine(isoleucine and leucine)/histidine ratios to be 
significantly associated with the presence of knee OA. 
These ratios showed also to be predictive of the OA 
severity, showing a correlation with the Kellgren–Law-
rence OA grade. Interestingly, valine, isoleucine and 
leucine belong to the branched-chain family of amino 
acids (BCAA). BCAA are characterized for being 
essential amino acids (i.e., they cannot be synthesized 
by the body), having a similar molecular structure and 
being important constituents of the skeletal muscle. 
Elevated levels of BCAA have been also found both 
associated to obesity [84] and aging [85]. Importantly, 
BMI and age were discarded as confounders from the 
observed association between the two ratios and knee 
OA. Another potential explanation for the increased 
levels of these amino acids could be the collagen break-
down that is associated with this disease. A recent 
study comparing the metabolomic profile of media 
conditioned by cultured synovial fibroblasts from OA 
patients and controls also found additional evidence 
implicating the BCAA metabolism with OA etiology 
[86]. Consequently, the BCAA/histidine ratio could 
become a valuable biomarker in the management of 
OA.

Metabolomic studies in GA
Approximately 1% of the adult men in western coun-
tries have gout. GA is characterized by recurrent attacks 
of acute monoarticular or oligoarticular inflammation 
caused by the formation of urate crystals in the joint 
[87]. Misdiagnosis in the early stages of the disease can 
influence the outcome of the disease. Consequently, 
there is a need to identify biomarkers that can help to 
reliably diagnose the disease.

GA metabolome
Liu et al. [88] used high performance liquid chromatog-
raphy to analyze both the serum and urine profiles of 
GA patients and matched controls. The multivariate 
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Executive summary

The metabolome is the most dynamic level of the organism
•	 The characterization of the metabolomic profile of patients can be a powerful approach to identify the 

physiological processes that are altered in disease.
•	 The recent technological and methodological advances are now allowing the fast and accurate assessment of 

the metabolome.
Study design in metabolomic studies
•	 There are two major study design approaches in metabolomics: targeted and untargeted studies.
•	 Given its simplicity, one of the most commonly used study approaches in metabolomics has been the 

case–control design.
•	 In metabolomics, the technical and biological variabilites can have a dramatic impact on the quality of the 

results and must be controlled.
Recent technological improvements are boosting metabolomic studies
•	 The two most widely used metabolomic analysis technologies are nuclear magnetic resonance (NMR) and mass 

spectrometry (MS).
•	 NMR is a fast and highly reproducible metabolomic analysis.
•	 MS has a higher sensitivity than NMR, but is more demanding in terms of sample preparation and technical 

requirements.
The need for bioinformatics in high-throughput metabolomic studies
•	 There is a clear need for bioinformatic methods that can process these large amounts of complex data in 

metabolomic studies and extract meaningful information.
•	 In the recent years, several open-source bioinformatic methods have been developed that can overcome 

several challenges of NMR and MS data processing.
Metabolomic studies in rheumatoid arthritis
•	 Metabolomic studies confirm the hypoxic nature of the inflamed synovial joint in rheumatoid arthritis (RA).
•	 Metabolite profiles in RA plasma are associated to disease activity and treatment response.
•	 Metabolites from the nucleic acid and oxidative stress pathways are potential biomarkers for RA pathology.
Metabolomic studies in systemic lupus erythematosus
•	 Low histidine levels have been identified in the serum of systemic lupus erythematosus (SLE) and RA.
•	 The commonly altered lipid profile in SLE and RA could explain the increased incidence of cardiovascular 

disease observed for both rheumatic diseases.
•	 Taurine and citrate levels in the SLE urine metabolome have potential utility as biomarkers for SLE nephritis 

subtype discrimination.
Metabolomic studies in ankylosing spondylitis
•	 Metabolomic studies of patients and controls identified reduced levels of tryptophan in ankylosing 

spondylitis, probably due to IFN-γ expression in the disease.
•	 Metabolite levels in serum reflect an alteration in the vitamin D3 metabolism in ankylosing spondylitis.
Metabolomic studies in psoriatic arthritis
•	 To date, no studies have directly compared psoriatic arthritis and psoriasis metabolomics profiles.
•	 The urine metabolome in psoriatic arthritis is correlated with the changes in disease activity induced by 

 anti-TNF treatment.
Metabolomic studies in osteoarthritis
•	 The prediction model built from the urine metabolite concentrations correlates significantly with the 

Kellgren–Lawrence radiographic scores of osteoarthritis severity.
•	 The valine/histidine and the xleucine(isoleucine and leucine)/histidine ratios are potential biomarkers of the 

development of knee osteoarthritis.
Metabolomic studies in gouty arthritis
•	 Uric acid is not a sufficiently informative biomarker of gouty arthritis and additional markers must be 

identified.
•	 Gouty arthritis also expresses the common core of serum metabolites found in other prevalent arthritis. This 

common set of metabolites could be useful for the development of improved diagnostic systems.

analysis of the obtained profiles was able to discrimi-
nate between the case and controls groups. Patients 
with GA showed increased serum levels of uric acid, 
creatinine and tryptophan. Uric acid is the end product 
of purine degradation and, in high concentrations, it 

leads to the formation of monosodium urate crystals in 
the joint. Although this is a well established pathologi-
cal process of GA, this study shows that while it uric 
acid could be an informative biomarker at the earlier 
stages of the disease, it is not sufficiently informative 
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to be used as a single diagnostic marker. Creatinine, 
a widely used biomarker of the renal function, could 
be associated to the renal affection by the deposition 
of urate crystals. Compared to RA, AS or SLE, where 
tryptophan serum levels are significantly reduced, it 
appears to be significantly increased in GA. The origin 
of this variation is not clear and, while it could be asso-
ciated to GA pathology, it could also be a metabolism 
product resulting from the treatment received by the 
patients. Therapies can therefore be a major confounder 
in metabolomic studies if inadequately controlled.

Interestingly, uric acid and creatinine levels in urine 
showed an opposite variation compared with serum of 
GA patients. This inverse relation could be explained 
by the defects of tubular secretion associated with this 
disease. Hippuric acid, a conjugate of benzoic acid and 
glycine normally generated by microfloral metabolism, 
was also found to be reduced in GA urine. The authors, 
however, suggest that the increased energy consump-
tion associated with GA associated inflammation could 
be responsible for this observed metabolite reduction.

In their recent screen of the serum metabolomic pro-
files of four different types of arthritis, Jiang [51], con-
firmed the high diagnostic utility of uric acid and cre-
atine for GA. Also, additional metabolites like cystine, 
arabitol and alloxanoic acid were found to be in high 
concentrations in patients with GA. Used together in 
a multivariate model, they could clearly distinguish 
GA patients from AS patients or controls. The results 
of this study are a strong basis for the development of 
diagnostic systems based on the screening of multiple 
informative biomarkers.

Future perspective
Recent technological advances have boosted the capacity 
to mine the metabolite composition of biological sam-
ples associated with different diseases. This new layer of 
information strongly complements the previously estab-
lished genomic, transcriptomic and proteomic technolo-

gies. In the near future, studies integrating these differ-
ent layers of biological information will provide essential 
knowledge for the identification of the biological mecha-
nisms that operate in each disease and will provide an 
accurate molecular profile of each patient. This indi-
vidual profile will have a high translational potential in 
rheumatic disease since it could help to advance the time 
of diagnosis as well as help medical specialists to perform 
more guided therapeutic decisions.

There are still, however, several challenges that need 
to be overcome. The annotation of many metabolites 
must clearly evolve, a task that is actually being car-
ried out by different databases [26,89,90]. Metabolome 
analysis technologies must improve in sensitivity and 
be less time consuming and costly and the associated 
analysis algorithms must improve their accuracy. Also, 
if large cohort analyses are to be performed, there is 
a clear need for improvement in the throughput of 
most metabolomics platforms. Additionally, sample 
and clinical collection procedures must be standard-
ized to ensure the quality of the results and the mini-
mization of technical and biological confounders. 
Although metabolomics is an emergent discipline, it 
is rapidly evolving and, in the next years, new findings 
will clearly increase our knowledge of the molecular 
basis of rheumatic diseases and contribute to improve 
the prognosis of these patients.
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