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Rheumatoid arthritis (RA) is an inflammatory and destructive joint disease. Present treatment 
modalities although beneficial in approximately 40% of RA patients, are insufficient to prevent 
severe disability in a high number of nonresponders. Thus, new treatment approaches for RA 
are required. Apoptosis is programmed cell death. Insufficient apoptosis in the inflamed RA 
synovia leads to intra-articular accumulation of highly differentiated B and T lymphocytes and 
invasive growth of macrophages and fibroblasts. It might also prevent response to 
antirheumatic treatment. The intracellular events supporting long-term cell survival in RA 
include low sensitivity to the ligation of professional death receptors (Fas and tumor necrosis 
factor receptor) and the increase in caspase and mitochondrial activity inhibitors. The authors 
summarize the attempts to increase apoptosis in RA by stimulation through death receptors, 
targeting proteins of the inhibitor of apoptosis protein family and by using the inhibitors of 
transcriptional pathways and of the cell cycle. Increasing susceptibility of RA synovia to 
apoptosis may be an attractive therapy in addition to the existing treatment modalities.

Rheumatoid arthritis (RA) is the most common
inflammatory joint disease with a prevalence
approximately 1% in the general population. RA
is an important social issue affecting middle-
aged, professionally-active women and leading
to severe disability within 5 years in nearly half
of all patients. Despite using an optimal
cytokine-targeting treatment regimen, only a
small proportion of RA patients achieve remis-
sion and 28–56% of patients do not show any
signs of clinical response [1]. Morphologically,
RA is characterized by the influx of inflamma-
tory leukocytes into the synovial tissues, the
uncontrolled proliferation and hyperplasia of
synovial tissue resulting in formation of pannus
on the surface of joint cartilage and the invasive
growth of hyperplastic synovial tissue into the
cartilage leading to cartilage and bone destruc-
tion. Three main cell types have been shown to
be important for the pathogenesis of RA, T and
B lymphocytes, macrophage-like synoviocytes
and fibroblast-like synoviocytes [2]. The analyses
of synovial fibroblasts from patients with RA
reveal features of transformed, long-living cells,
such as the presence of somatic mutations,
expression of oncogenes and resistance to apop-
tosis [3–5]. Resistance to apoptosis is suggested as
the main characteristic contributing to synovial
hyperplasia and joint destruction [6,7]. Mecha-
nisms protecting RA synovial tissue from apop-
tosis possibly lead to a poor response to
immunomodulating drugs. Thus, increasing
susceptibility of RA synovia to apoptosis may be
a valuable addition to the existing treatment

modalities. In this review, the authors analyze
the information regarding apoptosis dysfunction
in RA synovium and suggest possible methods of
apoptosis regulation in the clinical setting.

Apoptosis pathways
Apoptosis is a tightly regulated process of elimi-
nation of aging cells without disrupting cellular
integrity [8,9]. Two major mechanisms are known
to initiate apoptosis: extracellular, by the activa-
tion of receptors and structures on the cell mem-
brane; and intracellular, by the release of
mitochondrial content into cytoplasm. Both
pathways induce expression of apoptosis genes
and activation of the caspase cascade, resulting in
DNA fragmentation.

The extracellular/receptor-driven apoptosis
pathway is activated by the ligation of death
receptors (DR3, DR4 and DR5), belonging
structurally to the tumor necrosis factor (TNF)
receptor family, or by the activation of Fas
(CD95) by its interaction with the Fas ligand
(FasL). The FasL–Fas interaction forms the
basis for T-cell-mediated cytotoxicity, while
TNF-receptor-mediated apoptosis occurs in
macrophages, fibroblasts and dendritic cells.
Besides TNF, DRs 4 and 5 are activated by
TNF-related apoptosis-inducing ligands
(TRAILs). Following linking and oligomeriza-
tion of Fas or DRs, the cytoplasmatic part of the
receptor recruits adaptor molecules (Fas associ-
ated death domain [FADD] or TNF-receptor-
associated death domain [TRADD]) activating
caspase 8 and the remaining downstream
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caspases. Besides the activation of effector cas-
pases, caspase 8 cleaves a proapoptotic protein,
Bid, triggering a mitochondria-related pathway.

The initiation of intracellular/mitochondrial
mechanism triggered apoptosis occurs following
the release of cytochrome C and/or second
mitochondria-derived activators of caspase
(Smac/DIABLO) from mitochondria into cyto-
plasm. In the cytosole, cytochrome C binds to
apoptotic peptidase-activating factor (Apaf )-1
and triggers its complex formation with
caspase 9. Smac/DIABLO acts as a proapoptotic
protein by directly binding the proteins of the
inhibitor of apoptosis proteins (IAPs) family,
preventing them from interaction with caspases.
The activation of effector caspase 3, by
Apaf-1/caspase 9 or caspase 8, initiates a serial
cleavage and the activation of downstream cas-
pases, resulting in cleavage of protein kinases,
cytoskeletal proteins, DNA repair proteins,
inhibitor subunits of endonuclease and destruc-
tion of housekeeping cellular functions. The
described changes lead ultimately to morpho-
logical manifestations of apoptosis, such as
DNA condensation and fragmentation and
membrane blebbing.

Mechanisms regulating apoptosis
FasL–Fas signaling is inhibited by Fas-associ-
ated phosphatase (FAP)-1, FADD-like inter-
leukin (IL)-1β-converting enzyme inhibitory
protein (FLIP) and soluble decoy receptors.
These decoy receptors antagonize stimulation
of Fas by competing with the FasL. Cyto-
chrome C release is regulated by the group of
proteins named the Bcl-2 family. The Bcl-2
family includes proapoptotic members, such as
Bax, Bak, Bad, Bcl-Xs, Bid, Bik, Bim and Hrk,
and anti-apoptotic members such as Bcl-2,
Bcl-XL, Bcl-W, Bfl-1 and Mcl-1, blocking the
release of cytochrome C. The balance between
Bcl-2 and Bax determines the fate of the cell.
Bcl-2 is named for its role in B-cell lymphoma,
as it was the first proto-oncogene identified
that promotes neoplastic expansion not by
driving cell division, but rather by preventing
cell death [10]. The caspases downstream of cas-
pase 3 are controlled by the family of IAPs. The
IAP family consists of XIAP, cIAP-1 and -2,
NIAP, Bruce, survivin and livin. The IAPs stop
apoptosis by binding directly to and degrading
active caspases.

Recent studies indicate that molecules control-
ling cell-cycle check points such as p53 are tightly
connected with the regulation of apoptosis. p53

is a primary component of cell-cycle regulation,
controlling the G1 and G2 check points [11]. The
p53 protein functions as a transcription factor
regulating downstream genes important in cell-
cycle arrest, DNA repair and apoptosis. After
DNA damage, p53 holds the cell at a G1 check-
point preventing the progression of the cell cycle
until DNA damage can be repaired. If the dam-
age is irreversible, apoptosis will ensue. p53
mediates apoptosis through the induction of
proapoptotic proteins Bax, noxa and Perp, and
simultaneously inactivating the gene of anti-
apoptotic survivin [12]. The loss or malfunction-
ing of p53 leads to inhibition of apoptosis and
accumulation of individual mutations typical for
a long-living cell.

Nuclear factor (NF) κB is a nuclear tran-
scription factor that regulates expression of a
large number of genes involved in inflamma-
tion and apoptosis. NFκB has been shown to
have both anti- and proapoptotic functions that
are determined by the nature of the death stim-
uli. Under physiological conditions, the activa-
tion of NFκB induces resistance to apoptosis
through the activation of TNF-receptor-associ-
ated factor, IAP and XIAP. However, in certain
circumstances, activation of NFκB leads to the
activation of proapoptotic proteins, such as
interferon-regulated factor 1, c-myc, p53, and
caspase 1. PI3 kinase is a multifunctional kinase
playing a central role in the cell survival,
proliferation, motility and tissue neovasculari-
zation. PI3-kinase activates the kinase Akt and
exerts dual effects on apoptosis: both phospho-
rylating IκB and liberating active NFκB,
combined with activating Mdm2, which blocks
p53, phosphorylates antiapoptotic Bad and
inactivates caspase 9. Akt kinase is regulated by
the phosphate and tensin homolog (PTEN)
tumor suppressor which functions as a
phosphatase, possessing both lipid and protein
phosphatase activity in vitro. PTEN is the
second most frequently mutated human
tumor-suppressor gene after p53 [13].

Intracellular degradation of proteins is
achieved by the proteasome complex. The
binding of ubiquitin molecules to lysine resi-
dues in proteins is one way to destine the pro-
tein for degradation by the S26 proteasome, the
multicatalytic protease. By contrast, the bind-
ing of sentrin to a protein will protect the pro-
tein from degradation. The ubiquitination
determines the activity and concentration of
the apoptosis regulating Fas- and TNF-receptor
adaptive proteins, proteins of the Bcl family
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and IAPs, as well as the fate of transcription fac-
tors p53, stress kinases and inhibitory proteins
of the IκB family.

Pro- & anti-apoptosis activities in RA
Multiple disturbances in the apoptotic machinery
have been observed in synovia of RA patients.
Inflammation with accumulation of cytokines
and other products from activated macrophages
and lymphocytes results in the upregulation of
NFκB and PI3 kinase activity. Activation of
NFκB and PI3 kinase signaling makes RA syno-
vial cells insensitive to TNF-mediated apoptosis.
By contrast, TNF induces synovial lymphocytes
to proliferate. Neither inhibition of NFκB nor
PI3 kinase alone induces apoptosis in RA syno-
vial fibroblasts. However, the neutralization of
NFkB and PI3 kinase makes the RA cells suscep-
tible to TNF-mediated apoptosis. RA synovial
T cells and fibroblasts express Fas, but not FasL,
and do not undergo spontaneous apoptosis
in vivo. However, 20–90% of cells are sensitive to
Fas-mediated apoptosis in experimental condi-
tions. Increased levels of soluble Fas, neutralizing
FasL stimulation, in RA synovial fluid have been
suggested as a possible explanation for the low
apoptotic rate in the Fas-positive cells in the RA
synovium [14]. Fas-deficient mice spontaneously
developed chronic synovitis, which further sup-
ports the importance of the disruption of
Fas–FasL signaling in the pathogenesis of RA [15].

Moreover, erosive arthritis will develop following
exposure of these mice to bacterial infection [16].

Resistance to Fas-induced apoptosis in RA
synovium correlates with a marked increase in
expression of sentrin-1[17]. Binding of sen-
trin-1/small ubiquitin-related modifier (SUMO)
to a given protein results in the prevention of
ubiquitin-related processing and degradation of
the protein. Sentrin-mediated protection has
been shown for a number of proteins, including
p53 and IκBα. Overexpression of synoviolin,
described recently as ubiquitin ligase, is also
associated with apoptosis recovery [18].

Upregulation of antiapoptotic molecules
belonging to the Bcl family and the caspase 8
inhibitor FLIP has been reported repeatedly in
RA [19] and has been shown to contribute to the
pathogenesis of experimental arthritis [20,21].
Among the antiapoptotic genes, Bcl-xL, survivin
and Bcl-2 were reported to be overexpressed in
RA fibroblast-like cells and T cells, suggesting
deficient control of synovial hyperplastic
growth. It has been shown recently that the
expression of Bcl-2 and Bcl-xL in synovial tissue

is enhanced following stimulation with IL-15. In
addition, increasing apoptosis of RA synovial
fibroblasts occurs when IL-15 stimulation is
stopped [20]. The presence of extracellular sur-
vivin in blood and synovial fluid of RA patients
was associated with destructive joint disease [22].
Less is known regarding the role of mito-
chondria-induced apoptosis in the pathogenesis
of joint inflammation. Recent studies on syno-
vial fluid showed the low cytochrome C pool in
inflamed RA joints [23].

Overexpression of p53 in the synovial tissue of
RA patients has been reported in several
studies [24,25]. Further studies on the cell-cycle reg-
ulators indicated that p53 in RA synovia is
active [26]. It has been suggested that p53 has a pro-
tective role preventing synovial hyperthrophy and
invasive growth in RA by abrogation of the cell
cycle and inducing apoptosis [25,27]. Somatic muta-
tions in the p53 gene have been reported in RA
synoviocytes and mononuclear cells, but not in
RA skin or control osteoarthritis synovium [24,28].
Strikingly, overexpression of p53 was present in the
synovial tissue of RA patients, independently of
proliferation and even during the remission of
articular inflammation [26,29]. Finally, the direct
pathogenetic role of p53 mutation in RA was
proved by demonstration of an increased cellular-
ity and severe cartilage destructions in the p53
knockout mice [30].

Influence of contemporary 
antirheumatic treatment on apoptosis
Modern treatment of RA is based on the use of a
dihydrofolate reductase inhibitor, methotrexate
(MTX). Although apoptosis has been suggested as
a methotrexate-induced effect on RA lymphocytes
and synovial monocytes [31], other mechanisms
may also play a role in the anti-inflammatory
effects of methotrexate [32]. Analogously, it has
been reported that other frequently used disease-
modifying agents in patients with RA, for exam-
ple sulfasalazine, cyclosporin A and gold com-
pounds, might function through the induction of
apoptosis. The benefit of RA treatment using bio-
logical substances is evident. The induction of
apoptosis is suggested as the main mechanism
through which TNF-α inhibitors alleviate inflam-
mation. Polymorphisms in the FasL and caspase-9
genes are predictive of beneficial effect following
treatment with TNF-α inhibitors [33]. There are
contradictory reports regarding the sensitivity of
different cell populations to apoptosis achieved by
TNF-α antagonists. Infliximab and adalimumab
induce apoptosis by ligating membrane-bound
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TNF α and induce apoptosis in T lymphocytes
and monocytes, but not in synoviocytes of RA
patients [34–36]. Being a TNF-α receptor analog,
etanercept neutralizes soluble TNF α with no
connection to the cell surface. Treatment with
etanercept increases apoptosis of synovial fluid
monocytes [37]. The lack of specificity of
conventionally used antirheumatic drugs and
simultaneous promotion of both pro- and anti-
apoptotic signals, indicates a need for more selec-
tive therapeutic agents interfering with apoptosis
during RA.

Development of genetic therapy for RA
Prevention of intracellular proapoptotic signals
in RA synovium may be achieved by:

• Direct inhibition of IAPs or proteasome
enzymatic activity using synthetic inhibitors

• Short inhibitory RNA or oligonucleotide
sequences preventing transcription of
apoptosis inhibitors

• Supporting naturally occurring inhibitors
(recombinant proteins or genetic trans-
fectans with continuous production of the
protein of interest)

The use of biological antirheumatic drugs has
proved that delivery of the macromolecule may
provide a beneficial effect. However, due to the
short half-life of cytokines this mode of treatment
appears to be expensive and often insufficient to
stop the complex pathological process of joint
inflammation. Efficient methods of intra-
articular gene delivery systems have been estab-
lished, including plasmid DNA and replication-
deficient viral vectors [38]. These new methods
allow the precise intracellular targeting of patho-
logical processes and permit the transcriptional
regulation of gene expression in response to
pharmacological agents. Regulated gene expres-
sion is an important issue for chronic conditions,
such as RA, being characterized by phases of
relapse and remission. Therapeutic genes may be
delivered directly into the patient (in vivo) or
indirectly into isolated cells (ex vivo). Both cul-
tures of mobile (T cells, B cells, or dendritic cells)
and transplanted islets of synovial fibroblasts have
been used for genetic manipulations.

Future therapeutic approaches to 
enhance apoptosis during RA
Fas ligation
Administration of antagonistic anti-Fas antibod-
ies or FasLs has been shown to be effective in
abrogation of collagen-induced arthritis [39,40].

Treatment of Fas-deficient mice with FasL-
expressing cells reduced synovial hyperplasia and
lymphocyte infiltration in affected joints. Local
injection of anti-Fas antibodies targeted FasL-
expressing cells, leading to their apoptosis and a
significant reduction in cell number within the
synovial tissue. However, clinical use of direct Fas
ligation is unacceptable due to adverse effects on
the liver. Suppression of FLIP, one of the intracel-
lular inhibitors of the Fas-dependent pathway, by
antisense transfection [41] or CD40 ligation [42]

significantly increased sensitivity to Fas-mediated
death stimuli in cell cultures. Therapeutic
approaches using ex vivo manipulated dendritic
cells to express the proapoptotic ligands FasL and
TRAIL have been successful for the elimination
of autoreactive T cells and neutrophils in estab-
lished arthritis [43–46]. The favorable effect of
TRAIL on the course of collagen-induced arthri-
tis has been proved, both by exacerbation of
arthritis following the administration of soluble
DR5 blocking TRAIL and in contrast, reduction
of arthritis was achieved by treatment with
TRAIL-expressing dendritic cells [45].

Alternative ways of activating apoptosis have
been explored, including use of nonprofessional
death receptors. It is known that tissue inhibitor
of metalloproteinases (TIMP)-3 mediates apopto-
sis induction by ligation and trimerisation of the
Fas activating caspase-8-dependent cascade [47,48].
Transfection of synovial fibroblasts with adenovi-
ral vectors encoding TIMP-1 and -3 protects effi-
ciently from the invasive behaviour of RA
synovial fibroblasts ex vivo and from cartilage deg-
radation in vivo [49]. The expression of mamma-
lian lectin, galectin-1, by autologous fibroblasts
was effective for the treatment of established col-
lagen-induced arthritis by inducing apoptosis of
pathogenic T cells and promoting the shift
to a therapeutic T helper (Th) 2 immune
responses [50]. A synergy of proapoptotic effects
was observed between recombinant TRAIL and
synthetic retinoid receptor agonists potentiating
mitochondrial and caspase-3-dependent apopto-
sis as well as downregulating Bcl-2 and increasing
expression of Bad [51].

Targeting IAPs
Adenoviral transfection of RA synovial fibroblasts
with XIAP-antisense facilitated apoptosis in syno-
vial tissue [52]. High survivin expression is associ-
ated with a decrease in p53 expression [53] and a
relative PTEN deficiency leading to activation of
PI3-kinase pathway. Small interfering RNA
(SiRNA) against survivin sensitized p53 mutated
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cells to apoptosis [54]. Smac/DIABLO, a protein
released from mitochondria together with cyto-
chrome C, acts as a proapoptotic protein by phys-
ically preventing IAPs from caspase inhibition [55].
Therefore, peptide inhibitors of IAPs have been
designed using the Smac protein as a template.
Such a peptide sensitized resistant malignant cells
ex vivo to TNF-induced apoptosis [56]. Interest-
ingly, these Smac peptides have little or no activity
without an additional apoptotic signal. Thus, the
utilization of these peptides may be a valuable
agent for combination therapy of arthritis.
The inhibitors of 3-hydroxy-3-methylglutaryl
(HMG) coenzyme A (CoA) reductase (statins)
exert proapoptotic properties on lymphocytes by
increasing the cytosolic Smac pool [57]. This may
be one of the mechanisms explaining efficient,
anti-inflammatory properties of statins in the
adjuvant arthritis model in rats [58].

Proteasome inhibitors have a unique ability to
activate caspases through a mitochondrial
pathway that does not need a functional
apoptosome [59]. In certain cases, the effect of
proteasome inhibitors is mediated by Bcl-2 fam-
ily members [60]. Migita and colleagues demon-
strated an accumulation of p53 in RA
synoviocytes following in vitro treatment with
the protesome inhibitor, MG-132 [61]. In the ani-
mal model of streptococcal wall-induced arthri-
tis, treatment with proteasome inhibitor, PS-341,
resulted in the attenuation of clinical progression
of arthritis with respect to inflammatory cell
infiltration and cartilage destruction [62].

Cell-cycle inhibitors
Despite the fact that p53 is an important compo-
nent in the pathogenesis of arthritis, its direct
inhibition may lead to significant damage of nor-
mal cells. In contrast, overexpression of p53 inhib-
ited IL-1β-mediated arthritis [63]. It has been
suggested that a selective G2 checkpoint abroga-
tion, not involving p53, could be a preferable tar-
get [11]. Several synthetic inhibitors and peptides
affecting check point kinase (CHK) 1 and/or
CHK2 are presently undergoing clinical safety
trails for cancer indications. The authors have
shown recently that etoposide, a topoisomerase II
inhibitor, has remarkable antierosive properties in
collagen-induced arthritis [64].

Peroxisomal proliferator-activated 
receptor-γ agonists 
Peroxisomal proliferator-activated receptor
(PPAR)-γ agonists have recently shown efficiency
in promoting apoptosis in vitro and alleviating

adjuvant arthritis [65,66] and collagen-induced
arthritis [67] by reducing cellularity in the synovia
and cartilage destruction. A clinical study of pio-
glitasone in psoriatic arthritis demonstrated a sig-
nificant reduction in disease activity during
treatment [68]. Activation of PTEN in response to
PPARγ agonists has been suggested as the major
antiarthritic mechanism associated with an
increase caspase-3-dependent apoptosis and
increased expression of p53 [69].

Transduction pathway inhibitors
The transcription of genes encoding for apopto-
sis proteins is regulated by NFκB and PI3-kinase
signaling pathways. The intra-articular use of a
combination of antisense-targeting NFκB has
been suggested as a promising approach in the
treatment of arthritis [70]. However, the benefit of
direct NFκB inhibition varied depending on the
model of arthritis used [52,71]. The insufficient
effect could be related to the short half-life of
injected antisense sequences. Indeed, ex vivo
transfection of synovial fibroblasts for permanent
NFκB inhibition might be a promising option.
The insertion of I κB kinase (IKK)-β overexpress-
ing plasmid [72] or inactivation-resistant IKKβ
mutant [73] into synovial fibroblasts ameliorated
the severity of adjuvant-induced arthritis. A syn-
thetic IKK inhibitor, BMS-345541, has also
been shown to be efficient in improving the clin-
ical course of collagen-induced arthritis, decreas-
ing both synovial inflammation and joint
destruction [74]. The intra-articular instillation of
a peptide blocking the NFκB essential modulator
(NEMO)-binding domain of IKK attenuated
swelling, cell influx and cartilage destruction of
the inflamed joints [75]. Inhibition of PI3-kinase
facilitates TNF-induced apoptosis in synovial
fibroblasts [76].

Future perspective
Restitution of apoptosis in the inflamed synovial
tissue is an essential step in combating arthritis.
Several approaches using pharmacological com-
pounds and intracellular engineering have been
tested and proved efficient in overcoming apopto-
sis resistance in RA synovia in vitro and in animal
models of arthritis. Clinical studies of proapop-
totic substances in patients with RA are awaited in
the near future. Recent benefits in the treatment
of RA using a cytokine-targeting approach
encouraged enthusiasm in both patients and rheu-
matologists. A better understanding of the mecha-
nisms initiating and perpetuating inflammation in
RA will help identify the appropriate therapeutic
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target for various stages of the joint disease. The
combination of interventions inducing synergistic
effects in remodeling intracellular processes and
supporting a healthy cell cycle and apoptosis
would be advantageous in the treatment of RA.

Therapeutic modalities directed at the induction
of apoptosis in the inflamed synovia will find their
place in the treatment of RA. They will be a valu-
able addition to the existing disease-modifying
and biological antirheumatic drugs.
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Executive summary
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• Present treatment modalities, although beneficial in approximately 40% of RA patients, are insufficient to stop severe disability in 
a high number of nonresponders.

• Thus, new treatment approaches for RA are required.

Apoptosis pathways
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the cell surface and intracellularly by the liberation of cytochrome C from mitochondria into cytoplasm.

Mechanisms regulating apoptosis
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the ubiquitin–sentrin proteasome system of protein elimination and, finally, by transcription factors governing apoptosis genes.

Pro- and anti-apoptosis activities in RA

• Insufficient apoptosis in the inflamed RA synovia leads to intra-articular accumulation of highly differentiated B and T lymphocytes 
and invasive growth of macrophages and fibroblasts destroying the cartilage.

• Resistance to apoptosis might also prevent response to antirheumatic treatment.
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Influence of contemporary antirheumatic treatment on apoptosis
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Development of genetic therapy for RA
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Future therapeutic approaches to enhance apoptosis during RA
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by stimulation of death receptors, targeting proteins of the IAP family, using inhibitors of transcriptional pathways and inhibitors of 
the cell cycle.

• Similar approaches efficiently changed invasive, pro-inflammatory phenotype in rheumatoid synoviocytes.

• Increasing susceptibility of synovia to apoptosis in patients with RA may be an attractive therapy in addition to the existing 
treatment modalities.
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