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Is there a role for bone tissue in osteoarthritis?

Osteoarthritis (OA) is characterized by progressive 
articular cartilage loss, appositional new bone for-
mation and sclerosis of the subchondral trabecu-
lae and growth plate, formation of osteophytes, 
and an imbalance between loss of cartilage due 
to matrix degradation and an attempt to repair 
this matrix [1–3]. Synovitis is often observed and is 
considered to be secondary to the changes in hard 
tissues within the joint. In situ structural changes 
in subchondral bone during the course of OA can 
now be readily observed using imaging techniques. 
Indeed, increased subchondral bone activity, as 
judged by enhanced uptake of technetium-labeled 
diphosphonate, can predict cartilage loss [4], and 
cartilage lesions do not progress in the absence of 
significant subchondral activity. MRI revealed the 
presence of bone marrow lesions (BMLs) in OA 
patients, which increased in size gradually over 
time [5–7]. Using this technology, the presence 
of edema-like lesions in subchondral bone mar-
row and bone attrition were found to be strong 
indicators of bone turnover, as well as structural 
deterioration in knee OA. BMLs not only predict 
increases in knee cartilage loss in patients with 
knee pain, but even in patients without knee 
pain [5]. BMLs are characterized by sclerotic bone 
that is undermineralized [8]. Risks factors for OA 
in humans include age, gender, genetic predisposi-
tion, mechanical stress and/or joint trauma, and 
obesity [9], factors also affecting BMLs [5,6,8,10–13].

What is the importance of 
subchondral bone in OA?
Our comprehension of OA has been hampered by 
the nature of the disease with its slowly progressive 

and multifactorial nature, and its periods of 
active disease followed by remission. Therefore, 
our knowledge of the etiology, pathogenesis and 
progression of this disease remains incomplete. 
However, in recent years, our focus has evolved 
from a disease affecting only cartilage, with 
attempts to repair this loss or damaged cartilage, 
to one of a heterogeneous disease involving all the 
articular tissues including cartilage, subchondral 
bone, menisci and peri articular soft tissues such 
as the synovial membrane. Synovitis, although 
considered to be secondary to the alterations in 
other joint tissues, could also be a component of 
the early events leading to the clinical stage of 
the disease.

Changes in bone tissue in OA have long been 
considered secondary to cartilage degradation, yet 
it is now suggested that the modifications of the 
subchondral compartment is one of the causally 
most significant pathophysiological events occur-
ring in cartilage. Indeed, subchondral bone altera-
tions may actually precede cartilage changes as 
assessed in different animal models [14–20]. The 
remodeling of the OA subchondral bone is now a 
key event in OA and, in addition to appositional 
new bone formation and sclerosis, we now know 
that phases of resorption are also important [21,22]. 
Moreover, imaging studies revealed that differ-
ences in the shape of the femoral head actually 
preceded manifestations of clinical OA [23]. 
Accumulating data from MRI now clearly indicate 
that two subgroups of patients can be observed, 
fast or slow progressors, in whom BMLs progress 
either rapidly or slowly [24–26]. Data from in vitro 
studies also indicate that subchondral bone tissue 
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isolated from OA patients is not uniform [27–29]. 
Indeed, in vitro studies have shown that some 
features of human primary OA osteoblasts can 
discriminate two sub-groups of patients either 
presenting normal or high prostaglandin E

2
 lev-

els [27,28] and that osteoblasts prepared from non-
sclerosing and sclerosing areas of tibial plateaus of 
OA patients also show differentially altered fea-
tures [30–32]. Moreover, indices of bone resorption 
can also discriminate patients with progressive 
knee OA from those who are nonprogressing OA 
patients [4,33]. This could be key evidence, since a 
study in a mouse model of OA recently described 
that inhibition of bone resorption reduced indices 
of OA in those mice showing high bone remodel-
ing [34]. Evidence obtained using micro-computed 
tomography indicates an altered microarchitecture 
of the OA bone with trabeculae showing more 
plate-like structures than rod-like structures [35,36]. 
Such structures lead to increased bone stiffness.

What are the causes of abnormal 
subchondral bone remodeling  
in OA?
The progression of joint cartilage degeneration is 
associated with intensified remodeling of the sub-
chondral bone and increased bone stiffness [37]. 
OA patients have high BMI, a better preserved 
bone mass [38–41], independent of body weight [42], 
and increased bone mineral density (BMD), sug-
gesting that new bone synthesis exceeds degrada-
tion in OA, which could be viewed as a failed 
attempt at bone formation [43]. Studies have also 
revealed that OA bone tissue shows numerous 
microfractures [44–47]. Healing of trabecular 
microfractures in OA subchondral bone could 
generate a stiffer bone that is no longer an effective 
shock absorber [48,49]. This hypothesis, although 
attractive, was never demonstrated. However, 
recent evidence has indicated that OA bone tissue 
actually shows signs of increased microfractures 
compared with normal bone tissue and this was 
used as an indication that OA bone tissue may 
experience more fracture healing without reaching 
full maturity, a situation that would alter OA bone 
tissue composition and mechanical integrity [50]. 
Moreover, a very recent study indicated that exces-
sive mechanical stress on isolated OA osteoblasts 
actually increase their capacity to alter chondro-
cytes in a co-culture system in vitro [51], imply-
ing that increased mechanical stress or increased 
stiffness of OA subchondral bone could alter 
the integrity of the overlying articular cartilage. 
In addition, subchondral bone stiffness may be 
part of a more generalized bone alteration, lead-
ing to increased apparent BMD or volume, and 

the association between osteophytes and femo-
ral BMD indicates that a primary attribute of 
bone formation may underlie the pathophysio-
logy of OA [52]. This also agrees with the recent 
hypothesis of a problem with growth of bone cells 
proposed by Aspden as opposed to a problem of 
decay [50]. IGF-I and -II, and TGF-b levels are 
higher in iliac crest bone biopsies of patients with 
OA [53]. Since the iliac crest is not a weight-bearing 
joint and is distant from any of them, this sug-
gests that OA is a generalized bone metabolic 
dysfunction. However, stiffness and BMD are 
not uniform in OA bone [54–56]. The bone closest 
to the articular cartilage has the greatest effect 
on cartilage integrity, and variations in stiffness 
and BMD at this site in OA bone are probably 
causing more damage to cartilage than any of 
these parameters under normal conditions [57,58]. 
Increased osteoid volume is often more severe than 
cartilage changes in animal models of spontane-
ous OA [14–20], and the severity of cartilage fibrilla-
tion and loss generally exceeds bone changes only 
in advanced OA [14]. A recent study also provided 
contrasting data on the link between bone area 
and medial and lateral cartilage defect, whereas 
subchondral BMD was linked with medial defect 
but not cartilage loss, indicating that multiple 
mechanisms present in subchondral bone could 
lead to cartilage loss in older OA individuals [59]. 

The sum of these data seems to suggest that 
OA bone tissue is inappropriate and should show 
altered composition and/or features. Indeed, 
explants of the femoral head of OA patients at 
autopsy showed a lower mineralization of bone 
tissue than is normal [60–63]. Therefore, the appar-
ent increase in BMD observed in OA patients 
may be due to an increase in material density, 
not an increase in mineral density. BMLs, con-
sisting of edema-like lesions and cysts in sub-
chondral bone, observed using MRI, are one 
of the hallmarks of knee OA [24,64]. BMLs are 
strong indicators of bone turnover and of pro-
gressive structural changes in knee OA patients. 
Felson et al. reported a strong correlation between 
bone marrow edema, the former description of 
BMLs, and pain in OA patients, but not with 
the severity of pain. In a longitudinal study, limb 
alignment and bone marrow edema were also 
shown to be related [65,66]. However, we must 
be cautious interpreting BMLs as they can be 
identified in patients without reported knee OA, 
whereas BMLs show a complex relationship with 
OA, obesity, dietary habits and bone mechan-
ics [5,10,67–71]. Medial BMLs were mainly observed 
in OA patients with varus limbs, whereas lateral 
lesions were seen mostly in patients with valgus 
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limbs. Notwithstanding the adjustment for mis-
alignment, bone marrow edema lesions were still 
strongly associated with radiographic progression. 
BMLs are also associated with poorly mineral-
ized sclerotic bone tissue in OA patients [8]. This 
increased, under mineralized osteoid matrix is due 
to an increase of the ratio of a1 to a2 chains in 
OA compared with normal tissue [61,62,72,73]; a sit-
uation we and others also observed in human OA 
osteoblasts in vitro [74] and which was linked with 
elevated TGF-b1 levels in these cells [27,74]. The 
control of skeletal patterning and tissue remodel-
ing involves a number of signaling molecules, and 
in particular, members of the bone morphogenetic 
protein, TGF-b superfamily and Wnts [75–84]. A 
potential role for Wnts in OA pathophysiology 
has been proposed based on elevated circulating 
Dickkopf-related protein 1 (DKK1) levels in hip 
OA patients that corresponded to OA grade [85], 
therefore implying that reduced Wnt/b-catenin 
signaling would be present in OA since DKK1 
is an antagonist of this pathway [86,87]. The 
low-density lipoprotein receptor-related protein 
(LRP)5 locus on chromosome 11q was recently 
associated with OA susceptibility following 
genome-wide scans. Mutations of LRP5 have pre-
viously been associated with abnormal bone mass 
regulation and could be the cause of the abnor-
mal bone tissue mineralization and remodeling 
observed in OA patients. Although no individual 
poly morphisms were found in a study of 187 indi-
viduals, an altered haplotype of LRP5 was identi-
fied that increases the risk of OA by 1.6-times [88]. 
Zhu et al. recently demonstrated a key role of both 
increases [89] and decreases [90] of the Wnt canoni-
cal b-catenin pathway in mouse cartilage in the 
development of OA-like features. Hence, whether 
the Wnt/b-catenin signaling pathway is involved 
in OA will need more substantial evidence both 
from basic science and clinical studies. In addi-
tion, although LRP5 has been exclusively associ-
ated with the canonical Wnt/b-catenin signal-
ing pathway in bone, recent studies also suggest 
that it could be involved with a skeletal role of 
gut-derived serotonin signaling in osteoblasts, 
osteocytes and osteoclasts [91,92]. If demonstrated 
in OA, this could be very attractive as serotonin 
mediates central and peripheral effects that could 
be linked with bone remodeling, which is altered 
in OA.

Hypotheses to explain the role of bone in OA 
have been proposed. Indeed, an inappropriate 
attempt to form and/or repair the sub chondral 
bone tissue could lead to altered cartilage 
remodeling/degeneration and synovitis [93]. Since 
an increased BMI in OA patients is a risk factor, 

it was also proposed that OA could be a systemic 
disorder of stromal cell differentiation and lipid 
metabolism [94]. Recent observations of BMLs 
in OA [95–97], the increased risk of BMLs in the 
presence of dietary saturated lipid levels [10], and 
the fact that bone marrow cells show a deficit 
of chondrocytes and adipocytes yet increased 
osteogenesis would support this view [98]. In 
addition, the fact that leptin levels are high in 
the synovial fluid and sera of patients also agrees 
with a role of abnormal lipid metabolism [99–101]. 
Lately, Aspden proposed yet another hypothesis, 
in which OA would be a pathological growth, 
not decay, problem with excessive and poorly 
regulated growth of musculoskeletal tissues [50]. 
Cells would revert to an abnormal developmental 
phenotype with a loss of proper function such 
that tissue integrity could never be attained. 
The observation that OA osteoblasts grow at a 
faster rate than normal cells [30], their reported 
increased rate of proliferation [102] or their reduced 
apoptosis [102,103] would support this hypothesis. 
The abnormal phenotype of OA osteoblasts, as 
observed in a number of studies [27,28,30–32], also 
indicates abnormal development of these cells, 
with the ultimate differentiation parameter, 
namely mineralization, never fully attained in 
OA bone tissue [61,62,72]. This abnormal min-
eralization was also observed in vitro and was 
linked with abnormal type 1 collagen produc-
tion in response to elevated TGF-b1 levels in 
these cells [74]. Moreover, abnormal responses to 
parathyroid hormone, prostaglandin E

2
, IGF-1 

and TGF-b1 have all been observed in OA osteo-
blasts, also suggesting an abnormal development 
of these cells, yet we still do not have any clues as 
to why the response to growth factors, hormones 
or eicosanoids is altered in these cells. Hence, the 
latter hypothesis is very attractive and deserves 
careful consideration.

Recent evidence also links leptin with OA 
pathophysiology [99,100,104], again supporting 
a hypothesis proposed by Aspden [94]. Here, 
centrally controlled bone resorption via leptin, 
an adipocytokine produced by adipocytes, and 
local modulation by adrenergic b2 receptors in 
osteoblasts [105,106], would be altered in OA. In 
addition, local leptin production by OA osteo-
blasts [102] could affect both osteoblasts and 
chondrocytes, whereas leptin production by 
chondrocytes would also affect chondrocytes 
via autocrine/paracrine interactions [104]. In addi-
tion, a recent study clearly showed that a link 
exists between leptin responsiveness of chondro-
cytes and BMI in OA patients [107]. This would, 
in turn, suggest that not all OA patients may 
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respond similarly to local leptin delivery. OA 
osteoblasts are also very sensitive to leptin, as we 
recently showed that it can alter the phenotype of 
these cells and their proliferation [102].

Could OA be considered as a systemic bone dis-
order? A number of data would support this notion. 
Indeed, OA patients show increases in BMD, yet 
analyses of their bone tissue show reduced bone 
mineral content and increased osteoid, in addition 
to alterations in sub chondral bone microstructure. 
The progression of joint cartilage degeneration is 
associated with intensified remodeling of the sub-
chondral bone and increased subchondral bone 
stiffness [37]. Alterations of bone formation and 
resorption indices have been described. Indeed, 
the group of Gevers and Dequeker was the first 
to demonstrate altered composition of bone tis-
sue in OA with bone explants from non-weight-
bearing areas. They reported elevated serum 
osteo calcin levels in women with hand OA, and 
elevated osteocalcin in cortical bone explants [108]. 
The levels of IGF-1, IGF-2 and TGF-b, were also 
found to be elevated in samples of iliac crest bone 
of patients with OA [53].

Inasmuch as OA is associated at a later stage with 
a thickening of subchondral bone, bone explants 
of the femoral head of OA patients at autopsy 
actually showed a low mineralization pattern 
compared with normal bone explants [61,63,109]. 
An increase in material density could explain the 
apparent increase in BMD in OA patients since 
there does not seem to be an increase in mineral 
density. Indeed, bone tissue mineralization in OA 
is lower than normal and even lower than in osteo-
porosis [110]. By contrast, the increase in material 
density is based on an increase in type I collagen 
production, which, combined with an increase in 
the ratio of type I collagen a1 to a2 chains in OA 
compared with normal tissue, would explain the 
under mineralization [72,74,111]. Indeed, a two- to 
threefold increase in the expression of COL1A1 
chains of type I collagen, together with no varia-
tions in COL1A2 expression in OA osteoblasts, 
leads to an increase in the production of collagen 
type I a1 chains and this abnormal ratio. Together 
with the reduced number of cross-links in OA 
bone tissue [61], this could explain the reduction 
in bone mineralization. Other features of mature 
osteoblasts, such as increased levels of osteocalcin 
and alkaline phosphatase, have been reported for 
OA osteoblasts [30,112]. Therefore, both features of 
terminal differentiation and mineralization of OA 
osteoblasts are altered.

Besides modification of BMD, micro  damage 
to bone tissues, such as microcracks and sub-
microscopic cracks, can contribute to loss of bone 

quality [113], a key factor for the progression of 
OA. Indeed, the accumulation of microdamages 
to bone is directly related to OA [114]. Since nor-
mal bone and articular cartilage are good shock 
absorbers [115,116], subchondral bone stiffening in 
OA tissue could increase trabecular bone strain 
in both the proximal tibial plateau and distal 
tibia [117–119]. In patients already showing com-
promised articular cartilage, this increased strain 
could then lead to subsequent cartilage lesions. 
Indeed, evidence suggests that increased stiffness 
leads to subchondral bone sclerosis in OA and 
not an increase in BMD [63]. 

Increased bone mass observed in OA indi-
viduals could be related to normal cell numbers 
producing more collagen, more cells producing 
similar amounts of extracellular matrix compo-
nents or increased cell numbers producing more 
collagen. The exact mechanism(s) in place still 
remain poorly understood, yet evidence to date 
indicate that more cells are producing more 
collagen per cell [62,63,74]. Uncoupling of bone 
remodeling processes, bone formation and bone 
resorption could also explain this observation. 
The molecular mechanisms locally involved in 
the bone remodeling process include the coupling 
between osteoblasts and osteoclasts. The mole-
cular triad receptor activator of nuclear factor-kB 
ligand (R ANKL)/R ANK/osteoprotegerin 
(OPG) emerged as playing essential roles not 
only in bone formation, but also in bone resorp-
tion. RANKL, a member of the TNF ligand 
family and produced by osteoblasts, binds to its 
specific receptor RANK on osteoclast precursors, 
promoting their differentiation and fusion into 
mature osteoclasts, and on mature osteoclasts to 
promote their activity. On the other hand, OPG 
acts as a decoy receptor for RANKL, prevent-
ing the recruitment, differentiation and fusion 
of osteoclasts. Bone remodeling is, thus, kept 
in equilibrium via the interplay of OPG and 
RANKL [120]. The ratio of OPG to RANKL 
in bone tissue, produced by osteoblasts, con-
trols bone resorption under normal conditions. 
Studies using both ex vivo explants and in vitro 
osteoblasts have described modifications of the 
OPG:RANKL ratio in OA [121–125]. Of inter-
est is the observation that this ratio was reduced 
in a subpopulation of OA patients, suggesting 
increased subchondral bone resorption, and 
increased in another subpopulation, favoring 
bone formation [124]. 

The control of osteogenesis in bone marrow 
appears to be regulated locally, at least in part, by 
Wnt agonists and antagonists produced by osteo-
cytes [126,127]. Such antagonists include members 
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of the DKK family (DKK1 and 2) [86,87,128] and 
sclerostin [129]. DKK1 is a master regulator of 
osteogenesis, and has opposite effects on early and 
late osteoblast development [86,87]. DKK2 con-
trols terminal differentiation of osteoblasts and 
mineralization [128]. The Wnt signaling pathway 
may play a role in OA, but puzzling contradictory 
results have been published using animal mod-
els [89,90], whereas, in human studies, a potential 
role has been ascribed to DKK1 in advanced hip 
OA [85], and specific poly morphisms of the LRP5, 
LRP6 and FRZB (key receptors for Wnt signal-
ing) have been described [130]. In addition, our 
own results indicated altered Wnt signaling in 
isolated OA osteoblasts and abnormal levels of 
DKK2 and sclerostin [131,132]. 

How can abnormal bone  
tissue features in OA alter  
cartilage integrity?
�n The bone/cartilage cross-talk issue

In order for two tissues to exchange informa-
tion or have an ongoing cross-talk, a route of 
communication must be present between them. 
Although the subchondral bone is richly vascu-
larized, it was a long-held belief that the hyaline 
cartilage is not. This, however, is now chal-
lenged by histo chemical studies demonstrating 
that the deep layer of hyaline cartilage is also 
vascularized. This implies that the hyaline car-
tilage can be nutritionally supplied via the sub-
chondral bone as well as by the synovial fluid. 
Therefore, microvascular damage affecting the 
venous circulation in the bony tissue may cause 
alterations of chondrocyte function [133], but 
whether they are secondary to bony changes or 
the primary cause of bone changes in OA has 
not been investigated. A correlation between 
OA and cardiovascular disease risk factors 
exists [134–136], whereas the abnormal vascu-
larization of OA tissues could initiate cartilage 
tissue damage [137]. Moreover, Conaghan et al. 
proposed that OA could be an atheromatous 
vascular disease [138]. Leptin increases arterial 
wall thickness, decreases vessel distensibil-
ity and elevates C-reactive protein levels [139], 
thereby contributing to abnormal vascular func-
tion in OA, a situation that would agree with 
the hypothesis of Conaghan et al. [138].

As the presence of the tidemark between 
articular cartilage and subchondral bone 
was believed impermeable, it was thought 
that chemical exchanges could not exist 
between the two tissues. However, cross-talk 
between cartilage and subchondral bone is 
now considered an integral part of the disease 

process [54,140,141]. Radin and Rose first sug-
gested a possible role for subchondral bone 
in the initiation and progression of cartilage 
degeneration, since increases in bone mass and 
thickness might modify biomechanical prop-
erties that favor the appearance/progression 
of structural changes in the articular carti-
lage [49]. Indeed, the progressive structural 
changes experienced by the subchondral bone 
as the disease progresses are now considered to 
be part of the disease process [15,16,109,142,143]. In 
turn, these changes include biochemical path-
ways involved in both bone and cartilage tissue 
homeostasis and could contribute to cartilage 
degradation [27,30,31,53,61,144–147].

A number of studies have also reported that 
chondrocyte differentiation can be modified by 
factors secreted by osteoblasts [31,32,146,148,149]. 
Hence, locally produced cytokines/growth 
factors/eicosanoids could diffuse from sub-
chondral bone tissue through the bone–cartilage 
interface and stimulate cartilage breakdown. 
Channels and fissures between cartilage and 
bone [46,47] could allow the diffusion of biological 
signals between the two compartments [150–152]. 
Microcracks have also been described in the cal-
cified layer of aging articular cartilage [44,152], 
which could allow the transfer of humoral infor-
mation from the subchondral bone region to the 
basal layer of cartilage. Pan et al. recently tested 
this hypothesis directly by measuring in  situ 
sodium fluorescein (376 Da) diffusion from the 
subchondral bone region to the articular car-
tilage in mice, using a novel imaging method 
based on fluorescence loss induced by photo-
bleaching [153]. Their results suggest that this 
long sought-after cross-talk between the two 
tissues exist, and that they form a functional 
unit with both mechanical and biochemical 
interactions. More importantly, a recent study 
also raised the possibility that mechanical con-
straints also influence the features of isolated 
osteoblasts. Indeed, applying a high-magnitude 
cyclic tensile stress of 15 kPa on isolated osteo-
blasts from porcine mandibular condyles modi-
fied their capacity to generate factor(s), which, 
in turn, disrupted chondrocytes in co-culture 
systems. These chondrocytes showed altered 
type II and type X collagen, aggrecan, and car-
tilage oligomeric matrix protein production, and 
increased matrix metalloproteinase-1, -3 and -13 
genes, reminiscent of alterations observed in OA 
chondrocytes [51]. OA osteoblasts obtained from 
sclerotic and nonsclerotic areas of tibial plateaus 
were shown to have different features [27,30–32,111] 
and affect chondrocytes differently in 
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co-cultures [31,32,146,154]; this suggests that 
altered features of human OA osteoblasts could 
further change as mechanical pressure increases. 
Therefore, the progressive alteration of the bony 
tissue and articular chondrocytes in OA could 
be explained by both biomechanical and biologi-
cal factors. This could then bring together the 
hypotheses of altered OA osteoblasts producing 
putative factor(s) affecting articular cartilage, 
disturbed mechanical forces and joint malalign-
ment, creating these altered mechanical forces 
into a global concept of altered bone tissue in 
OA, leading to inadequate articular cartilage 
support, and, ultimately, failure of the joint.

Future perspective
As an increasing amount of data uncover the role 
played by bone tissue in OA initiation and/or 
progression, efforts should be put forward to 
determine the key mechanisms involved in 

altered bone remodeling. Indeed, new therapies 
to treat OA should target both the articular 
cartilage and bone remodeling. Moreover, since 
recent studies have suggested a role of BMLs in 
the initiation/progression of OA, special care 
should be taken to determine the causes of these 
lesions. Most importantly, we need to know how 
these lesions relate to either pain, altered tissue 
integrity or altered bone biomechanics.
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executive summary

Key factors involved in osteoarthritis
 � Osteoarthritis (OA) is considered a whole-joint organ failure.
 � OA involves modifications of the articular cartilage, the synovial membrane, the bone and subchondral bone tissues, and the  

bone marrow.
 � Bone tissue changes in OA include increased bone mineral density, reduced bone mineral content, increased osteoid tissue; yet reduced 

mineralization, increased incidence of microfractures, and increased bone marrow lesions.
 � OA incidence and progression are linked with bone tissue changes, including increased bone resorption and bone remodeling.
 � A cross-talk exists between the articular cartilage and the subchondral bone, which permits chemical exchanges between the  

two tissues.

Future perspective
 � OA therapies should target both the articular cartilage and bone remodeling; as further research uncovers the role played by bone tissue 

in OA initiation and/or progression, efforts should be made to determine the key mechanisms involved in altered bone remodeling.
 � As recent studies also indicate a role of bone marrow lesions in the initiation/progression of OA, special care should be taken to 

determine the causes of these lesions.
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