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In-silico virtual biopsy platform to 
personalize breast cancer treatment

Background: Recent studies exhibit preliminary data on the relationship of MRI based imaging phenotypes of breast tumors to breast 
cancer molecular and genomic characteristics. This study serves to explore relationships between MRI imaging and clinically relevant 
breast cancer characteristics with acceptable accuracies. 

Methods: We analyzed 87 patients from the TCIA/TCGA (The Cancer Imaging Atlas/The Cancer Genome Atlas) open source dataset 
with invasive breast cancer and pre-operative MRI. LifeX open source software was used to extract radiomic features from MRI images. 
Machine learning based models based on the radiomic and imaging features were used to predict molecular subtype, recurrence 
score, novel miRNA correlations and biological pathways from the Hallmark GSEA dataset.

Results: Our models were able to use the radiomic analysis upon MRI images to predict the molecular subtype, risk of recurrence, 
miRNA expression, and genetic pathway expression. However, of these correlations the most accurate was the prediction of triple 
negative vs. non-triple negative cancers. The accuracy of the aforementioned correlations was around 92% (p-value = 0.02, 95% CI), 
while the other remaining correlations were around 69-73% accurate (95% CI), not high enough to be used in clinical practice, but 
a promising result that can be aided by larger datasets. Risk of recurrence was predicted with a 69-73% accuracy, and an imaging 
surrogate for miRNA 940 was identified.

Keywords: Breast cancer ■ Radiogenomics ■ TCGA dataset

Introduction
Breast cancer diagnosis currently is determined 
from pathology of tissue obtained from an 
invasive needle biopsy [1]. Following the biopsy, 
breast cancers can be categorized based on 
different immunohistochemistry (IHC) patterns 
of the biomarkers Estrogen Receptor (ER), 
Progesterone Receptor (PR), Human Epidermal 
Growth Factor Receptor 2 (HER2), and Ki-
67 [1,2]. The different expression patterns of 
these biomarkers define the molecular subtypes 
of breast cancer, and provide information on 
aggressiveness, response to treatments, and 
prognosis [1,3,4]. Therefore, clinicians use IHC 
surrogate markers to extrapolate the molecular 
subtype.

There are four breast cancer subtypes and by 
prevalence can be described as luminal A (ER 
positive/PR positive/HER2 negative), basal (ER 
negative/PR negative/HER2 negative), luminal 
B (ER positive/PR positive /HER2 negative 
or positive), HER2 enriched (ER negative/PR 
negative/HER2 positive). Chemotherapy is 
the standard treatment regimen for aggressive 
invasive cancers (HER2 positive, basal and 
some luminal B cancers)[2]. Chemotherapy 
treatment regimens are not personalized, 
and outcomes vary widely, primarily due to 
resistance [5,6].

For less aggressive invasive cancers (luminal A & 
some luminal B), genomic testing (e.g. Oncotype 
DX) is used to determine a systemic therapy7. 
Oncotype DX Test is a 21 Gene (16 Cancer 
& 5 reference) Recurrence Score Assay (1 -100 
scale) that is considered to be an independent 
prognostic factor in node negative, ER+ breast 
cancer measuring the risk of distant relapse at 
10 years7. The Tailor X study redefined the 
scores as low (<=25: no Chemo treatment) and 
high (>25: treated with Chemo) in patients >50 
years of age [7]. Although Oncotype DX helps 
determine treatment options, it is expensive 
and does not provide genetic biomarkers (e.g. 
miRNA, Genetic Pathways) that can be used 
for personalizing treatment, the goal of which 
is to provide the right drug to the right patient 
at the right time. Identification of biomarkers 
reflecting the biological differences of cancers 
is the key to personalize treatments and better 
outcomes.

One of the obstacles to breast cancer treatment 
is chemoresistance [6]. miRNA (microRNA) is a 
class of post-transcriptional gene regulators with 
critical functions in normal cellular processes as 
well as disease processes. Accumulating evidence 
suggests that chemo resistance and miRNAs 
are closely related as these miRNAs can target 
and modulate the key genes involved in breast 
cancer therapy resistance [8]. 

Arjun Moorthy
Arizona Center for Cancer Care, Peoria, 
Arizona, USA

*Author for correspondence : 

arjun.kumar.moorthy@gmail.com

RESEARCH ARTICLE



TABLE 1 describes miRNA’s that have been 
associated with specific therapies and their role 
in predicting sensitivity or resistance to specific 
conventional therapies. In this regard, miRNAs 
could be potential biomarkers for predicting 
a response to systemic therapy and prognosis 
in clinical settings. For instance, targeting 
specific miRNAs of the drug resistant network 
is promising in overcoming drug resistance in 
breast cancer [9].

There are multiple pathways that are involved 
within each of these categories [10-12]. 
The hallmarks of cancer include sustaining 
proliferative signaling, evading growth 
suppressors, activating invasion/metastasis, 
enabling replicative immortality, inducing 
angiogenesis, resisting cell death Tumor 
cells evolve a variety of strategies to limit or 
circumvent apoptosis. Most common is the loss 
of TP53 (gene making p53) tumor suppressor 
function, which eliminates this critical damage 
sensor from the apoptosis-inducing circuitry. 
Drugs that interfere with each of the acquired 
capabilities necessary for tumor growth and 
progression have been developed and are in 
pre-clinical / clinical trials or in some cases 
approved for clinical use in treating certain 
forms of human cancer [13]. Additionally, the 
investigational drugs are being developed to 
target each of the enabling characteristics and 

emerging hallmarks, which also hold promise 
as cancer therapeutics. The pathways and drugs 
listed in TABLE 2 are illustrative examples; 
there is a deep pipeline of candidate drugs with 
different molecular targets and modes of action 
in development for many pathways [13-15].

Radiogenomics is a new field amongst 
radiologists that aims to correlate imaging 
characteristics with genes, mutations and 
expression patterns. The underlying principle 
is that biomedical images are the product of 
processes occurring at the genetic and molecular 
level [10]. An impactful way to use radiomics 
/ radio-genomics is to look for imaging 
biomarkers of types of pathways up or down 
regulated in a cancer [11]. 

The objective of this study is to create an in-silico 
radiomics platform to predict cancer subtype, 
recurrence, & genomic profile of patients from 
‘Virtual Biopsy’ of Magnetic Resonance Imaging 
(MRI) that can be used as an adjunct to clinical 
practice to expedite, simplify the process to 
getting this information. Moreover, the added 
utility is to use MRI imaging to understand if 
imaging biomarkers can be elucidated to guide 
treatment. 

Methods
The platform has three major components: Data 
acquisition & radiomics feature extraction, 

Table 1. Selected miRNA and therapy correlations [9].
Therapy Generic Name miRNA Role in Response Evidence

Hormone therapy
SERM Tamoxifen miR-375 Sensitivity Preclinical/Clinical

miR-342 Sensitivity Preclinical
miR-221/222 Resistance Preclinical

SERD Fulvestrant miR-221/222 Resistance Preclinical
AI Letrozole let-7f Sensitivity Preclinical/Clinical

Target therapy
Monoclonal AB Trastuzumab miR-210 Resistance Preclinical/Clinical

Chemotherapy
FEC miR-1256 Resistance Preclinical/Clinical

Resistance Preclinical
Resistance Clinical

Taxol/doxo miR-30c Sensitivity Preclinical
Taxol miR-21 Resistance Preclinical

Radiotherapy
Radiotherapy miR-34a Sensitivity Preclinical

Table 2. Table shows selected pathways and targeted drugs that are under investigation.
Pathway Drugs Genes Targeted

p53 PRIMA1 (phase I/II) Mutated p53
Angio genesis Bevacizumab (phase III) VEGFR1-3

PI13K ATK MTOR Pictillsib  (phase II) PI13K
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feature selection & building Radiomics model, 
and prediction using radiomic model. The 
generic Radiomics model is created by integrating 
clinical, imaging and genomic datasets; 
therefore, Radiomics looks at "images as data" 
and provides high throughput conversion of 
images to mineable radiomic features, which are 
taken as input to the prediction framework that 
predicts and prioritizes top Radiomic features. 
Consequently, the proposed framework predicts 
molecular subtype, recurrence, and miRNA, 
and biological pathways. 

Our research follows a systemic approach 
that are detailed in the subsequent Sections. 
FIGURE 1 provides an overview of the process 
used in the study [11]. 

�� ROI Marking & Feature Extraction

Institutional Review Board Waiver was done 
since this study utilizes a de- identified public 
dataset. In this study, we acquire the MRI images 
of from BRCA dataset of The Cancer Imaging 
Archive (TCIA) [16]. The dataset includes 87 
patients out of which 53 with Luminal A, 13 
with Luminal B, 8 with HER2+, and 13 with 
Basal (13) from 3 institutions with patients age 
range of 29-82.

LifeX Open Source Software, was used for 
marking Region of Interest (ROI) & generating 
Radiomic features [17]. The post-contrast 
sequence MRI was selected for the study, and 
to ensure consistent marking across images, 
radiologist annotated ROI (Axial, Coronal, 
Sagittal) for Tumor (C1), and Non-Tumor 

Breast tissue (C2 – as control) using 3D 
free draw tool in LifeX. The ROI extraction 
parameters (Spatial Sampling (automated), 
Intensity discretization (Grey level = 128), 
Intensity rescaling (1-4000)) was set before 
generating Radiomic features. 

�� Feature Selection

LifeX (version 4) produces 62 features for each 
ROI. These features can be categorized into 
three categories:

•	 Shape Features: Describe the 
morphological and geometric characters of 
a tumor (Volume, Solidity, Eccentricity, 
Equivalent diameter, Extent, Surface area, 
Sphericity, and Compacity). These features are 
typically used by radiologists in their diagnosis.

•	 Histogram Features: Reflect the 
distribution of intensities of individual voxels 
in ROIs (Min value, Max value, Mean value, 
SD value, Skewness, Kurtosis, Entropy 
(log10), Entropy (log2), and Energy (gray level 
discretization)

•	 Texture Features: Measure the spatial 
complexity of the voxel values in ROIs, describing 
the degree of heterogeneity (Gray-level co-
occurrence matrix (GLCM), Neighborhood 
gray-level different matrix NGLDM). Gray-
level run-length matrix (GLRLM), Gray-level 
zone length matrix (GLZLM).

This step involves selecting features that are 
best to machine learning (ML) models used in 
this study which are Support Vector Machine 

Figure 1. Flowchart illustrating the organization of the study and data flow.
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(SVM), Random Forrest (RF), K-Nearest 
Neighbors (KNN), Linear Discriminate 
Analysis (LDA), Classification, and Regression 
Trees (CART). The data were mean centered 
and normalized to eliminate batch effect (for 
different institutions) and then unique features 
which did not correlate with one another 
(Pearson correlation R2 > 0.4) were selected for 
use in the ML models. Additionally, features 
that have shown relevance predictive value 
in other studies were also included. We used 
the first-order statistics (shape, histogram, 
min, mean, max, peak), and Texture matrices 
(GLCM, GLRM, NGLDM, GLZLM). 

�� Molecular Subtype Prediction

This step involves building machine learning 
models using R Packages to correlate selected 
Radiomics features and cancer subtype data 
available from the selected benchmark dataset11. 
Our objective is to identify the role of Virtual 
Biopsy with Radiomics features to predict 
Molecular Subtype. We combine the Radiomics 
Feature Patient File and Molecular Subtype 
File (Perou Dataset) [18]. The full dataset was 
randomly partitioned 100 times into a training 
set (comprising 80% of data and used in 
parameter learning) and a test set (comprising 
20% of data and used for model evaluation). 
Next, we learn and compare ML Models and 
pick the best models based on accuracy, which 
was LDA in our case (mean accuracy = 75%, 
with a 0.95CI of +/- 10%). 

�� Recurrence Risk Prediction

This step involves building machine learning 
models (RF, KNN, CART, SVM, LDA) to 
correlate select radiomic features and Oncotype 
DX data available from TCIA’s Multi Gene 
Assay Perou dataset18. The goal of this step is 
to build a Radiomics Score (low / high) that 
is analogous in function to the Oncotype 
DX Score (Low: <=30 and High: >31) but 
computed from the radiometric features. To 
this end, ML models were built and tested using 
the same approach as 1.3 (above), selecting 
models by their accuracy in classifying patients 
into Oncotype DX high or low groups. We then 
apply the Radiomics Recurrence Score Model 
to obtain predictions. Here, a support vector 
machine (SVM) classification was best able to 
predict the Oncotype DX Score status (high/
low) (mean accuracy = 78% with a 0.95CI of 
+/- 3%)

�� miRNA Correlations

This step involves extracting miRNA tumor 
expression data from The Cancer Genome 
Atlas (TCGA) database corresponding to the 
patients for whom we had radiometric data and 
correlating individual radiomics features to the 
miRNA with known clinical implications in 
cancer treatment. We next, correlated TCGA 
Genomic Data (miRNA) to individual patient 
Radiomic features and generated a heatmap 
to visualize the radiomic features with the best 
miRNA correlations. These results show the 
correlation of radiomic features that were highly 
predictive of miRNA.

�� Biological Pathway Correlations

The objective of this step is to identify the role 
of Radiomics in predicting Biological Pathway 
associations. Using the TCGA RNA-seq gene 
expression dataset, this step identifies disease 
pathways that are significantly associated with 
radiometric features of individual patients. 
Using the Hallmark gene set (MsigDB, Broad 
Institute) we performed single sample gene set 
enrichment analysis (ssGSEA) to compute the 
enrichment of Hallmark gene signatures in each 
patient [19,20]. The normalized enrichment 
scores of the pathways are then correlated to 
radiomic features using to identify significant 
relationships between radiomic features and 
gene pathways. FIGURE 2 shows how the gene 
pathways expressed in each MRI was identified. 
First, we took the miRNA data from the previous 
workflow and correlated the miRNA to the 
radiomic features. Then, by taking the highly 
correlating miRNA, we were able identify the 
highly expressive biological pathways through 
the ssGSEA pathway correlation software.

�� Statistical Analysis

All statistical analyses were carried out in the 
R statistical computing environment (v3.6.3). 
Machine learning models were built, tested and 
visualized using the R package CARET (v6.0-
85). Heatmaps were generated using heatmap3 
(v1.1.6) and corrgram (v 1.13). TCGA mRNA 
data were normalized using the DESeq2 package 
(v 1.24.0) with default parameters. SsGSEA 
was performed using the gene pattern cloud 
provided by the Broad Institute and normalized 
enrichment scores were used for all downstream 
analyses. Level of statistical significance, strength 
of correlations and accuracy of ML models were 
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determined separately for each analysis and are 
reported in situ. 

Results

�� Feature Selection Results

LifeX Software generates 62 distinct radiomic 
features. This section describes the process of 
narrowing down the features to distinct and 
relevant features. 

The TCIA breast cancer MRI images are from 3 
different institutions (AR, BH, E2), which can 
lead to differences in image texture that can cause 
variable results. Through principle component 
analysis, we were able to identify that this batch 
effect was due to the institution where the MRI 
was taken. This hypothesis can be validated 
as PC1(shown on the X-axis) contained 
the majority (54.59%) of the variability (or 
variance) in the dataset, and since the patient 
vectors (represented by the individual points) 
are vertically separated by the institution which 
they came from. Thus, we can determine that 
this match effect must be due to the institution 
or hospital where the MRI was taken. FIGURE 
3 allows us to visualize and confirm this 
significant batch effect, and in order to reduce 
and eliminate the batch effect, harmonization 
and normalization were used. Normalization 
and mean value scaling (all vectors set to one 
plane) were techniques used to remove imaging 
differences in the MRI images. 

FIGURE 4 shows the pairwise correlation 
coefficients among all the radiomic features, 
ranging from -1 to 1, to illustrate the strength 
of the correlation. A dark red box indicates a 
strong negative correlation, while a dark blue 
box indicates a strong positive correlation. 
FIGURE 4A illustrates all radiomic features 
and their correlations to each other. In order 

to reduce the feature space, highly correlated 
features were selectively excluded from further 
analysis, because these features would not add to 
the performance of the model. Including these 
features could lead to overfitting, especially in 
a smaller dataset. Using a correlation cutoff of 
0.4, and with further analysis, we only included 
features with a maximum correlation coefficient 
of 0.4, or were features identified as highly 
informative in the LifeX Software. The new, 
reduced set of features are shown in FIGURE 
4B. This feature set is detailed in TABLE 3.

In TABLE 3, highly correlated features are 
removed due to their non-uniqueness, and 
that the presence of these features may hamper 
the predictive ability of any model trained 
in another setting. From this table, we can 
conclude that sphericity, the measure of how 
spherical a Volume of interest is, along with 
Excess Kurtosis (the measure of the outliers of 
grey level distribution), Skewness(Asymmetry 
of grey level distribution), Conventional 
Mean(Standard uptake value in ROI), and 
GLCM Correlation(Linear dependency of grey 
level) were the features that had a correlation 
coefficient < 0.4. The other five features were 
manually selected by the LifeX Software, which 
selects features based on their previous highly 
correlated features.

�� Molecular Subtype Prediction Results

FIGURE 5 shows the Molecular Subtype 
ML Model accuracy, while FIGURE 6 shows 
the Decision Boundaries of Radiomics Features 
& Molecular Subtype. 

Looking at early visualizations to understand 
the accuracy of the model, it was shown that 
the model’s accuracy would be higher if trained 
with a basal vs. non-basal classification. This 

Figure 2. Shows how the gene pathways expressed in each MRI was identified.
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Figure 3. Analysis of Batch Effect. TCIA dataset came from 3 institutions (AR, BH, E2). Although some clustering is present, overall significant 
batch effect seen

Figure 4. Correlation of all features and statistically significant Correlation: Panel a (left): Shows all Features Correlation (to each other). 
Panel b (right): Features after applying Correlation Cutoff (<0.4)

Table 3. Selected radiomic features + LifeX recommended features.

Radiomic Features Category Description
Recommended 

Radiomic
Features

Category Description

Sphericity Shape Measure of sphericity GLCM Entropy_Log10 Textural Randomness of grey level voxels

Excess  Kurtosis Histogram Outliers of grey level 
distribution GLCM Homogeneity Textural Homogeneity of grey level Voxel

Skewness Histogram Asymmetry of grey level 
distribution GLRLM LRE Textural Distribution of homogenous runs

Conventional Mean Histogram Standard uptake value 
in ROI NGLDM Coarseness Textural Spatial rate of change in intensity

GLCM Correlation Textural Linear dependency of 
grey level GLZLM LZHGE Textural Distribution of long homogeneous 

zones with high grey level
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Figure 5. Molecular Subtype ML Model accuracy.

Figure 6. Decision boundary radiomics features & molecular subtype.

was opposed to the classification to be based on 
subtype, which is showed in the supplement. The 
radiomic dataset was partitioned into 70% 
training data, and 30% validation data. Each 
model was trained on the training data, and 
accuracy was determined based on performance 
in the validation data. This process was iterated 
100 times, and therefore providing a range of 
accuracies. FIGURE 5 illustrates the performance 
of these various machine learning models in 
predicting the radiomic features present from 
the MRI features. Although the variance seems 
high in the multiple iterations of the validation 
for kappa values, the mean value outputted for 
the kappa values was 0.75, thus showing a much 
more statistically significant kappa value than 
the previous 0.36 kappa value. Even though, the 
variance in accuracy of the models are high, the 

random forest (RF) model predicted with the 
highest accuracy, and the lowest variance.

The results from the test set are shown. From 
our analysis, the task of distinguishing between 
subtypes from each other had an accuracy 
level of 75%. The signatures of each molecular 
subtype could be predicted sphericity, excess 
kurtosis and skewness for luminal A vs B. 
GLCM correlation predictive of Her2 status 
and Basal Conventional Mean, Sphericity, 
GLCM_Correlation

FIGURE 6 details the specifics of the model 
accuracy and labels the classification of each 
individual data point in the test set. By using a 
decision boundary model, visualizing the precise 
accuracy of the model in each individual data 
point becomes possible. From these decision 
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boundaries, the lack of variation in this dataset 
is apparent. The boundaries contain only two 
possible classifications for only three of the eight 
graphs. This fact demonstrates the difficulty 
of creating a highly accurate model with low 
variance, as the Luminal A and Luminal B 
subtypes dominated the dataset, thereby making 
it difficult for the model to classify HER2 and 
Basal breast cancers. However, in order to 
increase the accuracy of this model and produce 
clinically viable results, the data was segmented 
into basal and non-basal cancers. This 
classification was possible due to the similarities 
between the three non-basal subtypes, (Luminal 
A, Luminal B, and HER2) and their difference 
from the basal or triple negative cancers. Thus, 
by further classifying these cancer subtypes we 
were able to achieve much higher accuracies and 
statistical significance (92% accuracy, 95% CI). 
The Decision Boundary Model is once again 
extremely important as we can visualize the 
specific classifications of the data based on the 
radiomic features of interest identified earlier. 

�� Recurrence Risk Prediction Results

FIGURE 7 details the specifics of the model 
accuracy in predicting the Recurrence Risk 
Scores by correlating radiomic features and 
Oncotype DX. The dataset was partitioned 
exactly the same as it was in FIGURE 5, and 
thus lead to large variances in the accuracy of the 
models. Even though, the variance in accuracy 

of the models are high, the Linear SVM model 
predicted with the highest accuracy, and the 
lowest variance. 

Similarly, TABLE 4 shows the predictive 
features of radiomics recurrence risk predictor. 
The accuracy of prediction was 69-73% on the 
best model which was K Nearest Neighbors 
(KNN) with a confidence level of 95%. The 
table shows that the Radiomics Recurrence 
Predictor correlated to OncotypeDx. The 
tumor entropy (measure of heterogeneity) and 
GLRLM_LRE (measure of homogeneity) were 
highly predictive of recurrence score.

�� miRNA Correlations Results

Through GSEA (Gene-Set Enrichment analysis) 
and linear regression analysis, we performed a 
study to associate genomic features, including 
miRNA expressions, and genetic pathways in 
the Hallmark database with three categories 
of radiomic phenotypes including 1st order 
histogram features, shape features, and textural 
features. 

FIGURE 8A displays the strength of the 
correlation of the radiomic feature to the 
particular miRNA using a Pearson’s correlation. 
The correlation coefficient is illustrated in the 
color of the box (blue boxes indicate negative 
correlations, the red boxes indicate positive 
correlations, and the darker the box, the 
stronger that correlation). Gray-Level Zone 

Figure 7. Radiomics to oncotype correlation models.

Table 4. Radiomics recurrence risk predictor.
Radiomics Recurrence Predictor Predictive Features

Low GLRLM_LRE
High GLRLM_LRE; GLCM_Entropy (Log10); GLZLM_LZHGE
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Length Matrix Gray-Level Non-Uniformity 
(GLZLM_GLNU), Kurtosis, Entropy, and 
Neighborhood Grey-Level Different Matrix 
Coarseness (NGLDM_Coarseness), are 
features that best correlate to miR-125b, miR-
940, miR-20b, and respectively. FIGURE 8B 
illustrates the best correlating radiomic feature, 
Conventional_TLG with the best correlating 
miRNA, miR-940.

�� Biological Pathway & Radiomic 
Correlations

The associations between the transcriptional 
activities of the Hallmark pathways and the 
radiomic phenotypes were studied using 
GSEA14–15. A total of 1,103 statistically 

significant (adjusted p-values ≤0.05) associations 
have been identified.

FIGURE 9A shows correlations between 
radiomic features to the genetic pathways. In 
Panel 10a all correlations are displayed and the 
strongest pathway correlations occurred between 
the p53 tumor suppressor pathway and Gray-
Level Co-Occurrence Matrix(GLCM) Entropy, 
GLZLM_GLNU, PI3 Kinase-AKT-MTOR 
signaling pathway (P13K_AKT_MTOR) 
and Skewness, Kurtosis, GLCM_Contrast, 
and GLCM_Correlation, and Angiogenesis 
and GLZLM_Short-Zone High Gray-level 
Emphasis (SZHGE) and GLZLM_High Gray-
level Zone Emphasis (HGZE). Panel 9b and 9c 
illustrate the two strongest correlations between 

Figure 8A. Top miRNA vs. select radiomics features.

Figure 8B. miRNA 125b vs a) Excess Kurtosis and b) Skewness.
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the radiomic features and the genetic pathways. 
Panel 9b and 9c displays the correlation 
between Gray-Level Run Length Matrix Long-
Run Emphasis (GLRLM_LRE) to Estrogen 
Response Early, and Estrogen Response Late, 
respectively. Each of these graphs indicate a 
moderately strong positive correlation between 

the genetic pathway, and the radiomic feature 
(FIGURE 9B & 9C).

The strongest radiomic predictor was estrogen 
response early and late. Late response can predict 
later recurrence in ER+/Her2 negative patients 
and predict a longer course of treatment. 

Figure 9A. Radiomics features vs. all hallmark pathway.

B)                                                                                                                                     C)

Figure 9B & 9B. Cluster analysis for select hallmark pathways & radiomics features.
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Discussion
The work up until today in the field of breast 
radiogenomics has been emerging with promising 
results. The literature supports that there is some 
association between the genomics of breast 
cancer and the MRI imaging characteristics 
[10,11]. Numerous radiomic studies exist with 
regards to breast cancer and mammography 
and breast MRI. Radiomics has recently been 
used to look at female breast cancer status and 
predict axillary node status with a confidence 
interval of 90% using deep learning radiomics 
of US and shear wave elastography in early stage 
breast cancer [21-28]. Looking at Computer 
extracted textural features (Radiomics) has been 
used in predicting BRCA1/2 probability from 
textural parenchymal differences not visible to 
the naked eye [29]. There are numerous studies 
looking at radiogenomics of MRI imaging 
features to predict molecular subtypes, luminal 
A(p=0.004), Her2 enriched (p=0.00277) and 
basal like (p=0.0117)30, and imaging biomarkers 
predicting pathways associated with survival.

Machine learning models capable of discerning 
luminal A molecular subtype (AUC=0.697), 
triple-negative breast cancer (AUC = 0.654), 
ER status (AUC=0.649), and PR status (AUC 
= 0.622) were reported [23].

In this study, we conducted an analysis of 
radiomics features to predict molecular subtype 
of breast cancer. Our accuracy for individual 
molecular subtypes was in line with literature. 
Our accuracy was similar to prior reports if 
we look at molecular subtype individually. 
However, by classifying luminal A, and B 
cancers together, we can predict luminal type 
cancers, HER2 positive cancers and basal type 
cancers with a higher confidence This may be 
clinically more relevant as basal and HER2 
positive tumors generally require neoadjuvant 
chemotherapy. The added clinical value is that 
the core needle biopsy has an accuracy of 87% 
in identifying the state of HER2 [24]. Predicting 
HER2 with a higher confidence interval can be 
an additional tool to correctly identify HER2-
positive cancers by providing these patients with 
the same benefits as HER2-based therapy’. 

Having the ability to predict which miRNA may 
be influencing a tumor’s behavior may allow 
treatment modifications. Many studies have 
shown miRNA 125b to have tumor suppressor 
functions. 26  Specifically, our model suggests 
miRNA 125b can be predicted by radiomic 
features kurtosis and skewness. Studies show that 

miRNA 125b is downregulated in breast cancer 
cell lines [26]. Furthermore, it has been shown 
that miRNA125b absence confers resistance to 
doxorubicin (chemotherapy drug commonly 
used in breast cancer). Having the ability to 
predict the presence or absence of miRNA125b 
may aid in understanding the resistance or 
sensitivity chemotherapeutic agents. TABLES 
5-8 exhibits imaging biomarkers for specific 
biological pathways such as the p53 pathway. 
Having knowledge of an impaired p53 pathway 
can help customize therapy to use drugs like 
Prima-1 [27].

TABLE 5 summarizes predictive radiomic 
features. The overall accuracy of prediction was 
63-72% based on the best model which was the 
Random Forest-confidence level 95%. The table 
shows that luminal A and luminal B do not have 
clear radiomic classifiers among them, but they 
can be well classified against HER2 and basal 
subtypes

Similarly, TABLE 6 shows the predictive 
features of radiomics recurrence risk predictor. 
The accuracy of prediction was 69-73% on the 
best model which was K Nearest Neighbors 
(KNN) with a confidence level of 95%. The 
table shows that the Radiomics Recurrence 
Predictor correlated to OncotypeDx. The 
tumor entropy (measure of heterogeneity) and 
GLRLM_LRE (measure of homogeneity) were 
highly predictive of recurrence score. Imaging 
biomarkers can be used to predict recurrence 
score, consistent with prior studies. Currently, 
recurrence score (high vs low) is not available 
rapidly and can take up to 2 weeks to get a result. 

Our study adds to the body of existing literature, 
in really evaluating imaging biomarkers that can 
help understand associations between genotypes 
and imaging phenotypes. 

TABLE 7 shows select miRNA prediction 
features. The miR-940 had the strongest 
radiomic correlation to GLZLM_ZLNU. miR-
125b, miR-21, and miR-221 also have radiomic 
correlations. They are known to predict drug 
resistance and lymph node metastasis (miR-
940). However, the up/downregulation is not 
currently captured in radiomic correlations of 
this study.

Table 7 shows several possible imaging 
biomarkers for miRNA. The loss of several 
tumor suppressor miRNA (i.e. miRNA 125b) 
has been observed in breast cancers. Having 
the ability to predict which miRNA may be 
influencing a tumor’s behavior may allow 
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treatment modifications. Many studies have 
shown miRNA125b to have tumor suppressor 
functions specifically, our model suggests 
miRNA 125b can be predicted by radiomic 
features kurtosis and skewness. Studies show that 
miRNA125b is downregulated in breast cancer 
cell lines [26]. Furthermore, it has been shown 
that miRNA125b absence confers resistance to 
doxorubicin (chemotherapy drug commonly 
used in breast cancer). Having the ability to 
predict the presence or absence of miRNA125 
may aid in understanding the chemo sensitive or 
resistant nature to common chemotherapeutic 
agents. TABLE 8 exhibits imaging biomarkers 
for specific biological pathways such as the p53 
pathway. Having knowledge of an impaired 
p53 pathway can help customize therapy to use 
drugs like Prima-1 [27,30]. 

Biological Pathway Prediction features shown in 
TABLE 8 indicates a strong correlation between 
radiomic features of heterogeneity (GLCM-
Entropy, Contrast) and pathway associated with 
proliferation. 

Implications
The platform offers several major improvements 
over existing experimental and computation 
methods. The proposed framework is an 

end-2-end computational framework that 
allows the entire radiomic pipeline in one 
platform - from MRI analysis to generating 
clinically relevant information to guiding 
treatment. The framework can enhance clinical 
medicine. The platform leverages computation 
methods, research, and associations between 
pre-determined biological features and gene 
expression to provide clinically relevant 
information. As a data platform, it can be 
continually enhanced to improve accuracy. With 
minimal modification to the current diagnosis-
treatment, the framework is inexpensive and 
can be used on a larger patient population. 
Moreover, the platform like this can be used to 
reduce the time for drug discovery by modeling 
the process in-silico.

There are certainly limitations to our study as 
this study is based on retrospective datasets, e.g. 
TCGA, TCIA. These datasets were useful for 
the first publications on this topic; however, to 
advance in this field, new databases with larger 
sample sizes with uniformity of imaging data are 
needed’.

Conclusion
This study provides an approach for building 
a data-driven approach to generate molecular 

Table 5. Molecular subtype prediction.
Subtype Predictive Radiomic Features

Luminal A Sphericity, Excess Kurtosis, Skewness
Luminal B Sphericity, Excess Kurtosis

HER2 GLCM_Correlation
Basal Conventional Mean, Sphericity, GLCM_Correlation

Table 6. Radiomics recurrence risk predictor.
Radiomics Recurrence Predictor Predictive Features

Low GLRLM_LRE
High GLRLM_LRE; GLCM_Entropy (Log10); GLZLM_LZHGE

Table 7. Selected miRNA prediction.
miRNA Radiomic Features
miR-940 GLZLM_ZLNU (+)
MiR-20b Entropy, GLRLM_LRLGE, GLRLM_RP,GLRLM_SRE
miR-125b Kurtosis, Skewness
miR-21 Sphericity, GLRLM_RLNU, GLNU
miR-221 Kurtosis

Table 8. Biological Pathway Prediction (select).
Hallmark Pathway Radiomic Features

P53 pathway GLCM Entropy (+), GLZLM_GLNU (-)
P13K_AKT_MTOR Skewness (+); kurtosis (-), GLCM_Contrast (+); GLCM_Correlation (-) 

Angiogenesis GLZLM_SZHGE,(-) GLZLM_HGZE (-)
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subtype, predict recurrence, predict genetic 
pathways, and miRNA profile using Radiomics. 
Although current accuracy level is not good 
enough for clinical practice, it can be used 
to augment clinical medicine. The platform 
suggests a Virtual Biopsy approach can 
potentially eliminate the need for an invasive 
biopsy by using MRI and obtaining information 
that can aid clinicians to personalize treatment. 
The Radiomic features of MRI show promise 
as a means of high-throughput image-based 
detection and treatment and can potentially 
predict molecular subtypes and recurrence 
profile. This study also suggests imaging 
biomarkers for predicting recurrence risk, 

miRNA940b whose down regulation was 
observed in breast cancer patients with lymph 
node metastasis21. It investigated recurrence 
correlations through texture analysis with 
Radiomics. The unique integration approach 
requires no expensive equipment and therefore 
could be used to provide precise tumor 
information for clinicians and help speed up 
drug discovery. In the future, we plan to extend 
the platform to predict other cancer types such 
as lung cancers including new imaging types 
(PetCT & CT Scan) and work on Radiomics 
features that can predict lymph node metastasis 
and potentially avoid lymph node biopsy if 
negative lymph nodes can be predicted.

REFERENCES
1.	 Mohamed IN, Fatema EA, Nada Ahmed et 

al. Breast Cancer: Conventional Diagnosis 
and Treatment Modalities and Recent Patents 
and Technologies. Breast. Cancer. 9, 17-34, 
(2015).

2.	 Goldhirsch A, Winer EP, Coates AS et 
al. Personalizing the treatment of women 
with early breast cancer: highlights of the St 
Gallen International Expert Consensus on the 
Primary Therapy of Early Breast Cancer 2013. 
Ann. Oncol. 24, 2206-2223, (2013).

3.	 Sorlie T, Perou CM, Tibshirani R et al. Gene 
expression patterns of breast carcinomas 
distinguish tumor subclasses with clinical 
implications. Proc Natl. Acad. Sci. 98, 10869-
10874, (2001).

4.	 Smid M, Wang Y, Zhang Y et al. Subtypes of 
breast cancer show preferential site of relapse. 
Cancer. Res. 68, 3108-3114, (2008).

5.	 Simona MF, Andrew Sciallis, Jacqueline S, et 
al.  Molecular Subtypes and Local-Regional 
Control of Breast Cancer. Surg. Oncol. Clin. 
N. Am. 27: 95-120, (2018). 

6.	 Crawford S. Is it time for a new paradigm 
for systemic cancer treatment? Lessons from 
a century of cancer chemotherapy. Front. 
Pharmacol. 25, 68, (2013)

7.	 Sparano J,  Robert JG, Della FM et al. 
Adjuvant Chemotherapy Guided by a 21 Gene 
expression Assay in Breast Cancer. N. Engl. J. 
Med. 12,111-121, (2018).

8.	 Baohong Z, Xiaoping P, George PC et 
al microRNAs as oncogenes and tumor 
suppressors. Dev. Biol. 302, 1-12, (2007).

9.	 Eleni VS, Hans W, Ignace V et al. 
Dysregulation of microRNAs in breast cancer 
and their potential role as prognostic and 
predictive biomarkers in patient management. 
Breast. Cancer. Res. 17, 21, (2015).

10.	Pinker K, Joanne C, Amy N et al. Precision 
Medicine and Radiogenomics in Breast 
Cancer: New Approaches toward Diagnosis 
and Treatment. Radiology. 287, 733-743, 
(2018).

11.	Yitan Z, Hui L, Wentian G et al, Deciphering 
genomic underpinnings of quantitative MRI-
based radiomic phenotypes of invasive breast 
carcinoma. Sci. Rep. 5. 17787, (2015).

12.	Hanahan D, Weinberg RA. Hallmarks 
of cancer: the next generation. Cell. 144, 646-
674, (2011).

13.	Parrales A, Iwakuma T. Targeting Oncogenic 
Mutant p53 for Cancer Therapy. Front. Oncol. 
5, 288, (2015). 

14.	Yujie Z, Alex A. Targeting Angiogenesis in 
Cancer Therapy: Moving Beyond Vascular 
Endothelial Growth Factor. Oncologist. 20, 
660-673, (2015).

15.	Schöffski P, Cresta S, Mayer IA et al. A 
phase Ib study of pictilisib (GDC-0941) in 
combination with paclitaxel, with and without 
bevacizumab or trastuzumab, and with 
letrozole in advanced breast cancer. Breast. 
Cancer. Res. 20, 109, (2018).

16.	Clark K, Smith BVK, Freymann J et al. The 
Cancer Imaging Archive (TCIA): maintaining 
and operating a public information repository. 
J. Digit. Imaging. 26, 1045-1057, (2013).

17.	Christophe N, Fanny O, Sarah B et al. LIFEx: 
a freeware for radiomic feature calculation 
in multimodality imaging to accelerate 
advances in the characterization of tumor 
heterogeneity,” Cancer. Res. 78, 4786-4789, 
(2018).

18.	Perou, CM, Sorlie T, Eisen MB et al. 
Molecular portraits of human breast 
tumours. Nature. 406, 747-752, (2000)

19.	Subramanian A, Pablo Tamayo, Vamsi K et al. 
Gene set enrichment analysis: A knowledge-
based approach for interpreting genome-

wide expression profiles. 102, 15545-15550, 
(2005).

20.	Mootha KM , Lindgren CM, Eriksson KF et 
al. PGC-1alpha-responsive genes involved in 
oxidative phosphorylation are coordinately 
downregulated in human diabetes. Nat. Genet. 
34, 267-273,  (2003).

21.	Lingmi H, Maoshan C, Hongwei Y et al. MiR-
940 Inhibited Cell Growth and Migration in 
Triple-Negative Breast Cancer. Med. Sci. 
Monit. 22: 3666-3672, (2016).

22.	Tang P, Tse GM. Immunohistochemical 
Surrogates for Molecular Classification of 
Breast Carcinoma: A 2015 Update. Arch. 
Pathol. Lab. Med. 140, 806‐814, (2016).

23.	Saha A, Harowicz MR, Grimm LJ et al. A 
machine learning approach to radiogenomics 
of breast cancer: a study of 922 subjects and 
529 DCE-MRI features. Br. J. Cancer. 119, 
508-516, (2018). 

24.	You K, Park S, Ryu JM et al Comparison of 
Core Needle Biopsy and Surgical Specimens in 
Determining Intrinsic Biological Subtypes of 
Breast Cancer with Immunohistochemistry. J. 
Breast. Cancer. 20, 297‐303, 2017.

25.	Scott GK, Goga A, Bhaumik D et al. 
Coordinate suppression of ERBB2 and 
ERBB3 by enforced expression of micro-RNA 
miR-125a or miR-125b. J. Biol. Chem. 282, 
1479-1486, 2007.

26.	Hu G, Zhao X, Wang J et al. miR‑125b 
regulates the drug‑resistance of breast cancer 
cells to doxorubicin by targeting HAX‑1. 
Oncol. Lett. 15, 1621-1629, (2018). 

27.	Parrales A, Iwakuma T. Targeting Oncogenic 
Mutant p53 for Cancer Therapy. Front Oncol. 
5, 288, (2015).

28.	Zheng X, Yao Z, Huang Y et al. Deep 
learning radiomics can predict axillary lymph 
node status in early-stage breast cancer. Nat 
Commun 11, 1236 (2020). 

Imaging Med. (2020) 12(5)63

RESEARCH ARTICLE Moorthy



Imaging Med. (2020) 12(5) 64ISSN 1755-5191

29.	Gierach GL, Li H, Loud JT et al. Relationships 
between computer-extracted mammographic   
texture pattern features and BRCA1/2mutation 
status: a cross-sectional study. Breast Cancer 

Res. 16, 424, (2014). https://doi.org/10.1186/
s13058-014-0424-8

30.	Saha A, Harowicz MR, Grimm LJ et al. A 

machine learning approach to radiogenomics of 
breast cancer: a study of 922 subjects and 529 
DCE-MRI features. Br. J. Cancer. 119, 508-516, 
(2018).

RESEARCH ARTICLEIn-silico virtual biopsy platform to personalize breast cancer treatment


