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The JAK/ STAT signal transduction pathway is primarily involved in regulating 
STAT-target gene transcription. Many of the STAT-target genes are those 
responsible for the synthesis of proinflammatory cytokines, proteins that 
regulate apoptosis and/or cell survival and genes that control determination 
of cell fate. The aberrant over production of proinflammatory cytokines, the 
imbalance between cell survival and apoptosis skewed towards survival and 
the abnormal proliferation of cells of the immune system and synoviocytes 
are several hallmark characteristics of the pathophysiology of human 
rheumatoid arthritis (RA). Several of the disease-modifying antirheumatic 
biological drugs, including TNF-a antagonists and IL-6-receptor neutralizing 
monoclonal antibodies retard the clinical and radiographic progression 
of RA and also inhibit JAK/STAT pathway activation. The long-term goal 
of developing JAK-specific small-molecule inhibitors through medicinal 
chemistry strategies may ultimately be to reduce the dependency on the 
use of biologics by directly inhibiting activation of JAK/STAT signaling. A 
few of these small-molecule inhibitors have been proven to have efficacy 
by ameliorating the severity of arthritis in rodent models of inflammatory 
arthritis. Several of these small-molecule JAK inhibitors are now being 
evaluated in human RA clinical trials where the preliminary evidence indicates 
that JAK inhibitors are safe and well-tolerated and produce positive RA 
clinical responses, as measured by the American College of Rheumatology 
response criteria.
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The medical therapy of rheumatoid arthritis (RA) was revolutionized more than 
a decade ago by the introduction of disease-modifying antirheumatic biological 
agents (DMARBDs) into the clinical practice of rheumatology. The development 
of DMARBDs for RA originally arose from positive results obtained in preclinical 
in vitro studies, as well as from the results of studies of the arthritis-ameliorating 
effects of experimental DMARBDs in experimentally induced inflammatory 
arthritis in mice, rats and rabbits. The results of these studies helped to clarify 
which of the many potential biological molecules involved in immune dysregu-
lation and inflammation should be targeted for intervention in human RA. The 
results of these studies ultimately led to the full-scale commercial development 
of DMARBDs using this target-driven approach. 

Among the targets chosen for drug development in RA were monoclonal anti-
bodies or fusion proteins that neutralized receptor interactions or otherwise 
altered the biological activity of TNF-a [1–5], IL-1 [6–9], T-lymphocyte-derived 
CTLA-4 [10–13], IL-6 [14–17], B-lymphocyte-derived CD20/CD22 [18–20] and most 
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recently, a proliferation-inducing ligand (APRIL) 
and B-lymphocyte stimulator, also known as B-cell 
activating factor, belonging to the TNF family [21–24]. 
APRIL can also be expressed as a cell surface fusion 
protein with TWEAK, termed TWE-PRIL [23].

Although many of these DMARBDs are now rou-
tinely employed in the therapy of RA, most are not 
recommended for use as first-line RA therapies or 
combined with more than one of the DMARBDs 
[25]. In RA clinical therapy DMARBDs are usually 
combined with, for example, a conventional disease-
modifying antirheumatic drug (DMARD) such as 
methotrexate (MTX) [26–28]. At present, first-line RA 
therapy usually involves the use of only DMARDs, 
which can include, nonsteroidal anti-inflammatory 
drugs, glucocorticoids, sulphasalazine, antimalarial 
drugs and, of course, MTX as monotherapies [29,30] or 
in various combinations and dosages. Of note, some 
anti-TNF antagonists have also been approved for a 
first-line therapy indication, but MTX is generally 
used as the first-line treatment for mild to moderately 
severe RA patients who become unresponsive to ther-
apy with nonsteroidal anti-inflammatory drugs [30] 
and/or glucocorticoids. Moreover, whilst there is rela-
tively strong agreement that TNF-antagonists either 
employed as monotherapies, or in combination with 
MTX, reduce the progression of RA bone erosions 
[31–33], controversy still exists regarding the extent to 
which early and aggressive RA therapy with anti-TNF 
biologics alone employed for treatment in moderate-
to-severe RA patients curtail the progression of the 
cartilage destruction seen in RA [34,35]. 

Furthermore, development of drug refractori-
ness, inadequate drug responsiveness and, most 
significantly, serious adverse events (AEs), includ-
ing infections, malignancies and death attributed to 
DMARBDs have been reported in RA patients who 
have been treated with these drugs for varying periods 
of time [33,36–38]. These important issues have led many 
to contend that there must be a continuous develop-
ment of novel therapeutic targets for clinical interven-
tion in RA and other rheumatic diseases [39]. 

History of development of JAK inhibitors in RA  
The JAK family of proteins consists of three JAK iso-
forms, JAK1, JAK2 and JAK3 and TYK2 [40–45]. The 
differential stimulation of STAT proteins by each of 
the JAK proteins has been previously and extensively 
reviewed [46–48]. The functional role of JAK is basi-
cally to activate the STAT proteins [46,49–53]. Thus, the 
phosphorylation of STAT proteins by activated JAKs 
converts STATs into potent transcriptional factors 
that regulate the transcription activity of many of 
the cytokine genes for which DMARBDs have already 

been developed, including TNF-a and IL-6 as well 
as other STAT-target genes critical to cell survival, 
apoptosis and differentiation and cytokine signaling 
(e.g., cyclin D1, c-myc, Bcl-xL, Mcl-1, survivin, MKP-
1, TNFRSF13b and SOCS-3). Additionally, the expres-
sion of several additional proinflammatory cytokines 
that appear to be critical to RA disease progression, 
such as IFN-g, IL-7/IL-7R, IL-15, IL-19, IL-17, IL-21 
and IL-23, as well as other transcription factors, are 
also regulated by STATs [44,45]; for example, the inter-
action between IL-7 and IL-7R was found to be critical 
for regulating the T-cell receptor-g-locus by STAT5 
and histone acetylase [45]. Importantly, Hartgring 
et al. found elevated levels of IL-7R in the synovial 
fluid of RA patients as well as in the synovial fluid of 
patients with undifferentiated arthritis [54]. 

With respect to IL-17, Nishihara et al. [55] posited 
that blockade of specific STAT protein activation 
via neutralizing the IL-6/gp130 pathway could be 
exploited to suppress the generation of Th17 cells, 
which can also become Th1 cells that produced IFN-g 
[56]. In fact the activation of a specific STAT protein 
by IL-6 was later confirmed when it was shown that 
IL-6/sIL-6R only induced the activation of STAT3 [57]. 

For the sake of completeness, it should be noted 
that STATs can also be activated by several anti-
inflammatory cytokines (e.g., IL-4, IL-10, IL-12, IL-13 
and IFN-a) as well as other genes that are intimately 
involved in adaptive immune responses (e.g., TGF) 
[58,59]. Activation of specific STAT proteins by anti-
inflammatory cytokines has also been reported. Thus, 
STAT6 and STAT4 activation was shown to result from 
the interaction of IL-4 and IL-12 with their respective 
receptors [58]. Therefore, in the current context it is 
appropriate to consider that proinflammatory as well 
as anti-inflammatory cytokine gene expression that is 
dysregulated in RA could be suppressed by inhibiting 
JAK activation [47,53]. 

Furthermore, JAK/STAT pathway signaling also 
appears to regulate many other cellular processes that 
are integral to RA pathogenesis and disease progres-
sion, including aberrant immune-cell and synoviocyte 
survival and proliferation, immune-cell fate determi-
nation and apoptosis [17,45]. Although JAK inhibitors 
were originally formulated for preventing transplant 
rejection [60–62], the inhibition of JAK/STAT pathway 
activation was also considered to be of possible util-
ity in RA patients because the JAK/STAT pathway 
was envisioned as a regulator of immune-mediated 
inflammation, and thus relevant to RA pathology [39]. 

Development & preclinical studies of 
CP-690,550 
JAKs were identified as potential targets for 

intervention in RA because previous studies had 
shown that these protein kinases were intimately 
involved in immune-mediated inflammation [39,45]. 
For that reason, a library of compounds was pro-
duced by medicinal chemistry strategies, which 
were screened for their inhibitory activity against 
the catalytic domain of JAK3. This protocol resulted 
in the discovery of a series of pyrrolopyrimidine-
based JAK3 inhibitors, among which CP-352,664 
was further refined and developed [52]. Following 
that strategy synthetic analogues of CP-352,664 were 
analyzed for their pan-JAK activity inhibitory and 
JAK-specificity using an in vitro IL-2-induced T-cell 
blast proliferation assay where CP-352,664 showed 
potent suppression of T-cell growth [63]. Additional 
evaluation to determine the effective use of these 
compounds included the use of another compound, 
namely PF-956,980 [64], which was also assessed for its 
preclinical efficacy and toxicity in a model of rodent 
inflammatory arthritis [64], in a model of rodent 
allograft rejection [64] and on the delayed hypersensi-
tivity response in mice [65]. From these analyses where 
both efficacy and nontoxicity were demonstrated, the 
JAK-specificity of PF-956,980 was shown to be mainly 
towards JAK3, although inhibition of the more ubiq-
uitous, JAK1 and JAK2 was also indicated from these 
results. The optimization of several series of JAK3 
inhibitory compounds resulted in the identification 
of CP-690,550, now called tofacininib [66–68]. 

CP-690,550 at an approximate ED50 dose of 
1.5  mg/kg/day corresponding to a serum level of 
5.8 ng/ml resulted in the amelioration of the sever-
ity of arthritis in murine collagen-induced arthritis 
(CIA) and in an adjuvant-induced arthritis model in 
the rat [67]. A reduction in the severity of arthritis 
was characterized by a lower level of inflammatory 
cell influx into the affected joints and a histological 
assessment revealed a significant reduction in joint 
damage. In fact, CP-690,550 employed at a dosage 
of 15 mg/kg/day showed no histological evidence of 
arthritis. 

More recently, several biomarkers of innate and 
adaptive immunity and the inflammatory response 
associated with human RA have been shown to be 
altered by CP-690,550. Of note, CP-690,550 inhib-
ited IL-4-dependent Th2 differentiation in vitro [68]. 
Although Th2 cells are nonpathogenic in rodent CIA 
the inhibitory effect of CP-690,550 may have a nega-
tive impact on human RA disease progression because 
RA is characterized, in part, by an imbalance of Th1/
Th2 cells skewed to Th1 [1,2]. Importantly, CP-690,550 
also blocked the expression of the IL-23 receptor as 
well as the expression of the IL-17 cytokines IL17A 
and IL-17F. CP-690,550 also inhibited production 

of IL-22 by Th1 cells in response to the treatment 
of Th1 with exogenous IL-6 and IL-23 [68]. Finally, 
CP-690,550 blocked the activation of STAT1, induc-
tion of the Th1-cell transcription factor, T-bet and the 
generation of Th1-cells. 

The efficacy of CP-690,550 in animal models of 
arthritis correlated with the suppression of STAT1-
target genes as well as inhibition of JAK1/JAK3. Of 
note, Sewgobind et al. showed that CP-690,550 effec-
tively inhibited T-cell effector function in vitro with-
out altering the activity of CD4+-regulatory T-cells 
[69]. Taken together, the results of these preclinical 
in vitro and in vivo studies strongly indicated that 
CP-690,550 was nontoxic and could be useful for the 
treatment of RA.

Clinical studies with CP-690,550 in normal 
volunteers & in kidney transplant recipients
The initial clinical studies of CP-690,500 focused 
on its effect on renal toxicity and allograft rejec-
tion. Thus, Lawrendy et al. showed that CP-690,500 
at a dosage of 15 mg twice-daily (b.i.d.) was well-
tolerated in healthy volunteers in a placebo-con-
trolled study with headache and nausea noted as the 
major clinically apparent side-effects [70]. However, 
CP-690,500 did not alter glomerular filtration rate, 
effective renal plasma flow or creatinine clearance, 
but the co-administration of CP-690,550 (30  mg 
b.i.d.) with mycophenolate mofetil resulted in ‘over-
immunosuppression’ in de  novo kidney allograft 
recipients, although CP-690,550 (15 mg b.i.d.) had 
an efficacy/safety profile that was comparable with 
a control group receiving tacrolimus [71].

AEs associated with CP-690,550 in clinical trials
Although CP-690,550 has shown more efficacy in 
treating transplant rejection and other autoimmune 
disorders in comparator studies with other immuno-
suppressant drugs, the inhibition of JAK1 and JAK2 
by CP-690,550 was suggested as a likely cause of over
immunosupression. Although anemia has been asso-
ciated with CP-690,550 therapy, this was a predict-
able clinical response based on the results of previous 
studies that showed that inhibition of JAK3 would 
be expected to alter red blood cell homeostasis [68]. 

RA clinical trials with CP-690,550
Riese et al. summarized the results of several dose-
ranging Phase  IIA and IIB clinical trials in RA 
patients treated with orally administered CP-690,550 
alone [72] or in combination with MTX [73]. The results 
of these clinical trials revealed a significant clinical 
response, as measured by the American College of 
Rheumatology (ACR)20 criteria with only headache 
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and nausea noted as the major side-effects of mono-
therapy with CP-690,550. However, infection was 
more common in CP-690,550-treated RA patients 
compared with RA patients in the placebo arm of these 
clinical trials. Of note, a decrease in hemoglobin and 
white blood cells were seen, as were small increases in 
serum creatinine. Elevated transaminase levels as well 
as elevated low-density lipoprotein and high-density 
lipoprotein were also observed when CP-690,550 
was co-administered with MTX. Interestingly, the 
changes observed in liver enzyme levels and in bio-
markers of cholesterol synthesis that were seen in RA 
patients treated with CP-690,550 were similar to those 
changes in biomarkers of liver metabolism that were 
also elevated in RA clinical trials involving the anti-
IL-6-receptor monoclonal antibody tocilizumab, the 
latter also resulting in suppression of JAK/STAT path-
way activation [14–16,45]. However, when taken together, 
the results of these Phase  IIA and IIB trials with 
CP-690,550 in RA patients showed that CP-690,550 
produced meaningful positive clinical responses. 

The results of follow-up studies performed by 
Cohen et al. [74] have sustained the results previously 
reported with combination therapy of CP-690,550 
and MTX [73]. In addition, Cohen’s study concluded 
that dose-adjusting of CP-690,550 was not required 
to produce an optimal clinical response and that in 
RA patients CP-690,550/MTX combination therapy 
was safe and well-tolerated [74]. 

Most recently, monotherapy with CP-690,550 also 
proved to be effective in improving the pain, func-
tion and overall health in RA patients over a 6-week 
clinical trial period [75]. Furthermore, CP-690,550 
and MTX orally administered to a group of Japanese 
RA patients who had previously exhibited an inad-
equate response to MTX alone produced meaningful 
ACR20, ACR50 and ACR70 responses after 12 weeks 
at CP690,550 concentrations ranging from 3 to 10 mg 
b.i.d. [76]. 

Finally, a clinical trial was designed to evaluate 
whether monotherapy with CP-690,550 suppressed 
joint damage using magnetic resonance imaging and 
longitudinal radiographs of RA patients with mod-
erate-to-severe disease who were MTX-naive. This 
study was also developed to determine the effect of 
CP-690,550 on several clinical assessment outcomes 
measurements, including, ACR20, ACR50, ACR70 
responses and disease activity score-28 (DAS-28) 
scores over a 12-month period [201]. Thus, the results 
of NCT01164579 is likely to reveal the extent to which 
monotherapy with CP-690,550 can suppress the pro-
gression of joint damage in RA patients [201].

Preclinical studies with CEP-33779

CEP-33779 is a 1,2,4-triazolo[1,5-a]pyridine deriva-
tive that was shown to be a highly selective, orally 
active inhibitor of JAK2 [101]. CEP-33779 was origi-
nally developed for intervention in immune-medi-
ated organ rejection [201]. Following this development, 
CEP-33779 was later evaluated for its efficacy and 
toxicity in the CIA and collagen antibody-induced 
arthritis mouse model [77]. In this study, CEP-33779 
reduced paw edema and the clinical score of arthritis 
severity in CIA and collagen antibody-induced arthri-
tis as well as the local paw levels of IL-12, IFN-g and 
TNF-a and the serum levels of IL-12 and IL-2. The 
reduced levels of these proinflammatory cytokines 
correlated with lower numbers of splenic-derived col-
lagen II-specific Th1 cells. The administration of CEP-
33779 b.i.d. at dosages ranging from 10 to 100 mg/kg 
over a period of 4 to 8 weeks reduced cartilage matrix 
changes associated with murine arthritis, subchon-
dral bone osteolysis, pannus formation and synovial 
inflammation. The improvements in synovial joint 
pathology correlated with reduced levels of activated 
STAT3 in the arthritic paws. There were no changes 
in body weight or anticollagen II antibodies associated 
with administration of CEP-33779. These preclinical 
results provide the impetus for the further assess-
ment of the effects of CEP-33779 on biomarkers of 
human cellular and humoral immunity in vitro. It is 
anticipated that CEP-33779 will ultimately be tested 
in human RA clinical trials.

Clinical studies with INCB018424 
INCB018424 (ruxolitinib) is an inhibitor of both JAK1 
and JAK2 [78]. INCB018424 was originally designed to 
potentially be employed as an oral therapy for myelo-
fibrosis, a form of the BCR-ABL-negative myelopro-
liferative neoplasm [79] as well as the treatment of 
psoriasis [78]. Shi et  al. administered INCB018424 
phosphate to a group of healthy volunteers where the 
drug was found to be generally safe and well-toler-
ated [80]. In that study, INCB018424 exhibited good 
oral bioavailability and dose-proportional systemic 
pharmacokinetics and pharmacodynamics with low 
oral dose clearance and a small volume of distribu-
tion. Studies on the whole blood of normal volunteers 
administered INCB018424 showed that inhibition of 
phosphorylated STAT3 had occurred, which corre-
lated with INCB018424 plasma levels. 

A series of clinical trials involving INCB018424 
have also been conducted with patients having either 
mild-to-moderate psoriasis [202] or active RA [81]. A 
topical form of INCB018424 was employed in the 
psoriasis trial. In the short 28‑day RA trial involv-
ing 12  patients, Williams et  al. reported that 83% 
achieved the ACR20 response (placebo: 75%), 58% 

achieved ACR50 (placebo: 0%) and 33% achieved an 
ACR70 response (placebo: 0%) which correlated with 
lower DAS-28 scores [81]. The results of pharmacoki-
netic studies showed that INCB018424 inhibited JAK1 
and JAK2 and reduced plasma IL-6 and CD40 levels. 
The results of ex vivo studies on blood cells from RA 
patients showed that INCB018424 inhibited IL-6-
mediated STAT3 activation.  

Preclinical & clinical studies with INCB028050
Ongoing studies have now shown that CP-690,550 is 
not JAK-isoform-specific at identical concentrations 
as was previously suspected [63], where CP-690,550 
was shown to inhibit JAK1, JAK2 and JAK3 [82,83]. 
By contrast, INCB018424 was designed to be a rela-
tively specific inhibitor of the JAK1/JAK2 isoforms 
[79] and a JAK inhibitor with similar properties called 
INCB028050 was developed to determine the extent 
to which INCB028050 could be employed as a differ-
ential inhibitor of JAK1, JAK2 and JAK3 [84,85]. In that 
regard, INCB028050 had no effect on Ba/F3-TEL-JAK3 
cell proliferation [84] where proliferation of Ba/F3-TEL-
JAK3 is dependent on the activity of JAK3. Thus, it is 
likely that INCB028050 does not inhibit JAK3. This 
finding is particularly critical in the development of 
JAK1-specific inhibitors because JAK1 can interact 
with JAK3 [45].

Recent evidence also indicated that INCB028050 
inhibited IL-6 and IL-23-mediated cell signaling at 
concentrations of <50 nM [85]. Furthermore, the effi-
cacy, tolerability and amelioration of arthritis by orally 
administered INCB028050 was demonstrated in mul-
tiple murine models of arthritis where INCB028050 
reduced the amount of Th1- and Th17-associated 
cytokines without altering biomarkers of humoral 
immunity or causing significant adverse effects. 
INCB028050 appeared to inhibit JAK1 (IC50: 5.9 nM) 
and JAK2 (IC50: 5.7 nM) equally. INCB028050 only 
exhibited moderate selectivity towards TYK2 (IC50: 
53  nM). INCB028050 had virtually no inhibitory 
activity against c-Met kinase (IC50: >104 nM) and Chk2 
kinase (IC50: 103 nM). 

There are two ongoing clinical trials in RA patients 
involving INCB020850 [203] or LY3009104 [204], the 

latter reportedly having JAK-inhibitory properties 
similar to INCB020850. NCT00902486 is a random-
ized, double-blind, placebo-controlled, dose-ranging, 
parallel-group study in active RA patients who have 
inadequately responded to DMARD therapy, includ-
ing DMARBDs [203]. The study will be performed over 
a 6-month period with the primary end point being 
the ACR20 response criteria at 3 months. Safety, toler-
ability and AEs will also be monitored. NCT01185353 
is a safety and efficacy study for 12 to 24 weeks of 
LY3009104 in patients with active RA on a background 
of MTX [204]. 

Preclinical studies with CYT387
CYT387 belongs to the phenylaminopyridine class 
of JAK inhibitors [86]. CYT387 was reported to block 
cellular activities dependent on JAK2 with an IC50 in 
the range of 100 to 500 nM and with limited cytotox-
icity [87]. The results of recent studies also indicated 
that CYT387 blocked JAK1, JAK2 and TYK2 in the 
low nanomolar concentration range while causing 
growth suppression and inducing apoptosis in JAK2-
dependent hemopoietic cell lines [88]. Most recently, 
Monaghan et al. showed that CYT387 inhibited IL-6-
induced activation of STAT3, reduced the phosphory-
lation of AKT and induced apoptosis following stimu-
lation of human myeloma cell lines with IL-6 or IGF-1 
[89]. At the time that this review was submitted there 
were no active RA clinical trials employing CYT387 
listed in the ClinicalTrials.gov database.

Conclusion 
Although the successful treatment of RA was signifi-
cantly advanced by the development of DMARBDs, 
the long-term effects of their use in this chronic dis-
ease remain unclear. Because several of the commonly 
employed DMARBDs possessing clinical efficacy for 
RA, including those that target soluble TNF or mem-
brane-bound TNF receptors and those that interfere 
with IL-6/IL-6 receptor interaction, also inhibit JAK/
STAT signaling, it was conjectured that small-molecule 
inhibitors that directly inactivate specific JAK isoforms 
would also reduce not only the clinical symptoms of 
RA, but also suppress the upregulation of many of the 

Table 1. Summary of the JAK inhibitors being developed for rheumatoid arthritis.

JAK inhibitor JAK specificity Clinical response(s) Ref. 

CP-690,550 Mostly JAK3 Positive ACR20 response ↓ pain, ↑ function, positive ACR20, ACR50 and ACR70 
response

[73,75,76]

INCB018424 JAK1 and JAK2 Positive ACR50 and ACR70 response ↓ DAS-28, ↓ plasma IL-6 and CD40 levels [81]

INCB028050 Mostly JAK1 and JAK2 Ongoing – no published data [203]

ACR: American College of Rheumatology; DAS: Disease activity score.
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Executive summary

History of development of JAK inhibitors in rheumatoid arthritis
■■ Targeted drug development has been applied to the treatment of rheumatoid arthritis (RA), including the development of drugs 
designed to block the action of TNF-a and IL-6 by inhibiting the activation of the JAK/STAT pathway.

■■ Novel small-molecule inhibitors have been developed to specifically inhibit the activity of JAK1, JAK2 and JAK3.

Development & preclinical studies of CP-690,550
■■ Novel JAK small-molecule inhibitor CP-690,550 ameliorated the severity of arthritis in animal models of RA.
■■ CP-690,550 suppressed the level of several biomarkers of immune-mediated inflammation such as IL-17 and IL-22 as well as 
inhibiting cell proliferation in well-defined in vitro test systems.

Preclinical studies with CEP-33779
■■ Novel JAK2 small-molecule inhibitor CEP-33779 ameliorated the severity of arthritis in animal models of RA.

RA clinical trials with CP-690,550
■■ JAK small-molecule inhibitor, CP-690,550, is being evaluated as a monotherapy or in combination with methotrexate.
■■ Preliminary results in RA clinical trials with CP-690,550 indicated that this JAK inhibitor was safe, well-tolerated and caused few 
serious adverse events.

■■ Orally administered JAK small-molecule inhibitor CP-690,550 produced a positive clinical response in RA patients as measured by 
the ACR20, ACR50 and ACR70 response criteria.

Clinical studies with INCB018424
■■ The JAK small-molecule inhibitor INCB018424 is being evaluated as a monotherapy or in combination with methotrexate in RA 
clinical trials. 

Clinical studies with INCB028050
■■ The JAK small-molecule inhibitor INCB028050 is being evaluated in active RA patients who have an inadequate response to full 
therapy including disease-modifying antirheumatic biological agents.

Preclinical studies with CYT387
■■ The JAK2 inhibitor CYT387 inhibited IL-6-induced activation of STAT3, reduced phosphorylation of AKT and induced apoptosis in 
a myeloma cell line stimulated with IL-6 or IGF-1.

proinflammatory cytokines that are criti-
cal in driving RA disease progression. 

Future perspective
The commercial development of vari-
ous JAK-specific inhibitors was spurred 
on by their success in ameliorating the 
severity of arthritis in rodent models of 
human RA. Several of these JAK inhibi-
tors, including CP-690,550, INCB018424 
and INCB020850 are now being evalu-
ated in RA clinical trials (Table 1). The 
preliminary results from these clinical 
trials have indicated that JAK inhibitors 
with or without concomitant use of MTX 
improve RA clinical responses as mea-
sured by the ACR20, ACR50 and ACR70 
criteria.
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