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Environmental factors have long been suspected to affect the pathogenesis and incidence 
of inflammatory diseases. Epidemiological research has demonstrated that sunlight, or 
rather ultraviolet radiation exposure, is one such environmental factor that can affect 
inflammatory diseases. Increased exposure levels of ultraviolet radiation have been shown 
to decrease the incidence of autoimmune diseases – including rheumatoid arthritis, Type 1 
diabetes, multiple sclerosis and colitis. The immunomodulatory effects of ultraviolet 
radiation are mimicked by administration of vitamin D, suggesting that photosynthesized 
vitamin D is the mediator involved in the biological effects of sunlight. Vitamin D has a 
variety of roles in the body, including regulation of the immune system predominantly 
affecting Th1 immunity, increasing T-cell apoptosis, reducing immune-cell infiltration, 
decreasing cytokine/chemokine production and suppressing proinflammatory 
transcription-factor activation and protein expression. Our group has provided evidence 
suggesting that vitamin D directly inhibits the activity of poly (ADP-ribose) polymerase, a 
multifunctional nuclear enzyme that also has a central role in regulating inflammation. 
Poly (ADP-ribose) polymerase inhibition also affects Th1 immunity in similar ways to 
vitamin D regulating transcription-factor activation, decreasing immune-cell infiltration and 
suppressing proinflammatory protein expression. Hence, inhibition of poly (ADP-ribose) 
polymerase by vitamin D may represent a novel mechanism for sunlight-mediated 
immunomodulation. 

Sunlight
The apparent immunosuppressive/anti-inflam-
matory effect of ultraviolet radiation (UVR) has
indicated that sunlight exposure may influence
inflammation and the incidence of inflammatory
diseases, such as rheumatoid arthritis (RA) [1],
Type 1 diabetes [2], eczema/dermatitis [3], multiple
sclerosis [2] and asthma [4]. It has been demon-
strated that the incidence of RA, multiple sclerosis
and Type 1 diabetes is affected to some degree by
latitudinal gradient in the Northern Hemisphere,
particularly in Western Europe and North Amer-
ica, with the prevalence of these disorders increas-
ing at higher latitudes [5]. For example, the
prevalence of RA in Europe increases from 0.3%
in Italy to nearly 0.8% in Finland [1,6]. Seasonal
influences have been observed on both disease
incidence and clinical course, again suggesting
UVR is an environmental player in the inflamma-
tory process. UVR-mediated immunosuppression
is related to a downregulation of cellular immu-
nity, particularly affecting helper T cells, affecting
a shift from Th1- to Th2-mediated processes [7]. 

Th1 immunity is considered proinflamma-
tory and associated with increased production of
the cytokines interferon-γ (IFN-γ), tumor
necrosis factor-α (TNF-α), interleukins (IL)-1,
6 and 12, chemokines macrophage inflamma-
tory protein (MIP)-1α, MIP-2 and eotaxin, and

reactive oxygen and nitrogen species, such as
nitric oxide, superoxide and peroxynitrite [8,9].
Th1 immunity occurs in diseases of autoimmu-
nity, such as RA [10,11], Type 1 diabetes [12,13]

and multiple sclerosis [14], as well as in inflam-
matory diseases, such as colitis [15–17], septic
shock [18] and adult respiratory distress syn-
drome [19]. Th2 immunity is associated with
increased IL-4 and IL-10, which have anti-
inflammatory effects and protect against inflam-
matory diseases, such as Type 1 diabetes [20].
Th2 immunity mediates immediate-type hyper-
sensitivity to allergens [21], suggesting that UVR
would exacerbate such reactions; however, no
evidence of this has been observed and, in fact,
studies have shown UVR to be beneficial for
eczema and asthma [3,4]. The underlying mecha-
nism for the immunomodulatory actions of UVR
may be through photosynthesized vitamin D.

Vitamin D
Vitamin D is a seco-steroid, which can be chemi-
cally and enzymatically modified [22]. Seco-steroids
are defined as those steroids in which one of the
rings has been broken; in the case of vitamin D, by
ultraviolet B radiation (sunlight). Vitamin D is
metabolized sequentially in the liver and the kid-
ney to its active form, calcitriol. Provitamin D is a
four-member ring steroid with a side chain that
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identifies it as either ergosterol or 7-dehydrocho-
lesterol [23]. During irradiation of provitamin D
with UV radiation, the molecule absorbs a quan-
tum of energy that allows ring opening, yielding a
derivative known as previtamin D, which can
undergo a thermo isomerization or photo isomeri-
zation to yield vitamin D. Once vitamin D is pro-
duced in the skin or absorbed from the diet it
requires enzymatic conversion to form
1,25-hydroxyvitamin D3 (1,25[OH]2D), which,
physiologically, is the most active form. This con-
version was initially thought only to occur in the
liver and kidney, but there is evidence now that a
multitude of tissues have 1-hydroxylase activity,
including the skin and immune cells, such as mac-
rophages, T cells and dendritic cells, both of which
can convert vitamin D to 1,25(OH)2D [24].

The identification of vitamin D as an
immunomodulator stems from three separate
observations. First, vitamin D supplementation
was shown to be anti-inflammatory and able to
protect against numerous inflammatory diseases,
including RA [25,26], Type 1 diabetes [27–29],
inflammatory bowel disease [30,31], transplant
rejection [32] and multiple sclerosis [33,34]. Second,
vitamin D deficiency aggravates inflammatory
and autoimmune diseases, including RA [35,36],
Type 1 diabetes [37], inflammatory bowel disease
[38] and multiple sclerosis [39]. Third, the
vitamin D receptor (VDR) was discovered in the
cells of the immune system, and it was also found
that cells of the immune system, such as activated
dendritic cells, can produce vitamin D [40]. 

The VDR was found on CD4+ and CD8+

T cells as well as macrophages, with receptor
numbers increasing following immune-cell activa-
tion [41,42]. The VDR is a member of the steroid
hormone receptor family, and upon ligand bind-
ing the VDR dimerizes with the retinoic X recep-
tors, binds to DNA-response elements in
promoters of vitamin D-responsive genes and
modulates cell- and tissue-specific gene expression
[43]. The degree of stimulation of vitamin D-
responsive gene expression is influenced by the
presence of an ensemble of coactivating or
corepressing proteins, such as vitamin D receptor
interacting proteins (DRIP). The genes affected
by vitamin D activating the VDR are wide rang-
ing, including those involved in the regulation of
the cell cycle and proliferation, genoprotection,
cell differentiation, vitamin D and calcium
metabolism, and immunmodulation (reviewed in
[44]). Vitamin D has nongenomic affects via mem-
brane receptors associated with phosphate uptake,
and has additional direct effects on enzymes,

modulating their activity [45]. VDRs are also associ-
ated with the caveolae, where they are coupled to
various second messenger systems, including phos-
pholipase C, protein kinase C, G-protein-coupled
receptors or phosphotidyl-inositol-3-kinase [46].

Vitamin D & immunomodulation
Vitamin D has been shown to be immuno-
suppressive/anti-inflammatory in a variety of
cell types affecting immune cells directly, as
well as other cell types regulating a variety of
pro-inflammatory genes and proteins.

Vitamin D inhibits T-cell proliferation, partic-
ularly cells of the Th1 subset [47–49], as well as
inducing CD4+ T-cell apoptosis by increasing
activation-induced T-cell death [50]. There are
many proposed mechanisms by which vitamin D
increases CD4+ T-cell apoptosis. Identified
mechanisms of vitamin D-induced T-cell apop-
tosis include: increased arginase expression with
subsequent depletion of cellular arginine, causing
inducible nitric oxide synthase (iNOS) to pro-
duce increased amounts of peroxynitrite, which is
toxic to the T cell [33]; deprivation of T-cell sur-
vival signals [51]; and increased calpain-2 expres-
sion, which may convert T-cell receptor (TCR)-
mediated calcium fluxes into death-inducing sig-
nals, as calpain-2 is a calcium-dependent protease
implicated in triggering activation-induced T-cell
death [52] and activation of caspase-3 and other
cellular components of the apoptosis process [51].
Finally, vitamin D has been shown to inhibit the
multifunctional nuclear enzyme poly (ADP-
ribose) polymerase (PARP) [45], which has been
linked to T-cell apoptosis in an animal model of
Type 1 diabetes [53].

1,25(OH)2D regulates T-cell cytokine pro-
duction inhibiting pro-inflammatory cytokines,
as evidenced by reduced levels of IL-2, -8 and
-12 and IFN-γ, while increasing levels of IL-4,
-5 and -10 production [54,55], which, along with
inhibition of Th1-cell proliferation, further
shifts the T-cell response towards Th2 domi-
nance. 1,25(OH)2D inhibits the expression of
IL-6, an important factor that stimulates Th17
cells, which are a critical part of the autoim-
mune reaction [56]. Recently, vitamin D has
been shown to inhibit chemokine synthesis and
monocyte trafficking both in Type 1 diabetes
[57] and experimental autoimmune  encephalo-
myelitis (EAE) [33]. Effects on transcription-fac-
tor activation affecting nuclear factor of
activated T cells (NFAT), nuclear factor
(NF)-κB and activator protein (AP)-1 may
mediate the effects of vitamin D on cytokine
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and chemokine expression and release. NFAT is
a family of transcription factors that are pivotal
for T-cell function, regulating a variety of
immune processes, including T-cell prolifera-
tion and differentiation affecting IL-2, -3, -4
and -5, IFN-γ, TNF-α and MIP-1α expression
[58], and has been identified as a target for immu-
nosuppression [59]. 1,25(OH)2D has been shown
to suppress NFAT activation, and this may be a
pivotal effect of vitamin D in terms of immuno-
suppression [60]. 1,25(OH)2D has been shown to
suppress chemokine expression in mesangial cells
exposed to high glucose by preventing NF-κB
translocation to the nucleus and reducing
NF-κB binding [61]. The activation of NF-κB in
dendritic cells is also inhibited by vitamin D
[62–65], with c-Rel and RelB, protein members of
the NF-κB family, being reduced in dendritic
cells exposed to vitamin D in a VDR-dependent
manner [62–65]. Inhibition of NF-κB in dendritic
cells affects both their function and their matu-
ration [66], explaining many of the immunomod-
ulatory actions of vitamin D. 1,25(OH)2D also
inhibits TNF-mediated activation of NF-κB and
AP-1 in human monocytes [67]. 

The effect of vitamin D on transcription-fac-
tor activation may explain the inhibitory effects
of this hormone on proinflammatory proteins.
Vitamin D suppresses nitric oxide formation
both in macrophages and keratinocytes [68,69] –
in macrophages, this is mediated by inhibiting
the induction of the inducible isoform of nitric
oxide synthase [68]. This effect, coupled with an
inhibitory action on the T-cell expression of
FasL [70], reduces the ability of the immune sys-
tem to damage cells such as β-cells in diabetes.
1,25(OH)2D inhibits cytokine-mediated expres-
sion of adhesion molecules, such as intercellular
adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule (VCAM) (but not E-selectin)
[71]. Therefore, vitamin D is capable of suppress-
ing inflammatory cell infiltration by reducing
adhesion-molecule expression and chemokine
production. This may well result in an inhibi-
tion of the production of reactive nitrogen and
oxygen species at the site of inflammation,
thereby reducing cellular damage and further
inflammation.

Vitamin D affects B cells by inhibiting anti-
body secretion and autoantibody production.
1,25(OH)2D inhibits the differentiation of
monocytes into dendritic cells [72], interfering
with the T-cell stimulatory activity, and addi-
tionally blocking dendritic cell differentiation
and subsequent IL-12 secretion [72], while pro-

moting IL-10 secretion [73,74]. Vitamin D
directly affects macrophages, modulating their
ability to produce and release inflammatory
cytokines and chemokines and decreasing their
antigen-presenting activity by reducing the
expression of major histocompatibility complex
(MHC)-II molecules [75].

Overall, the most evident effects of vitamin D
on the immune system are: 

• Control of Th1 immunity

• Reduction of immune cell infiltration

• Inhibition of further inflammatory processes 

Poly (ADP-ribose) polymerase 
Poly (ADP-ribose) polymerase (PARP) is an
enzyme abundantly present in the nucleus that
modifies proteins by nucleotide polymerization
[76]. The classic trigger for PARP activation is the
presence of DNA single-strand breaks, which
can be induced by a variety of environmental
stimuli and free radical/oxidants, most notably
hydroxyl radical and peroxynitrite [8]. In
response to DNA damage, PARP becomes acti-
vated and, using nicotinamide adenine dinucle-
otide (NAD+) as a substrate, catalyzes the
building of homopolymers of adenosine diphos-
phate ribose units [77]. NAD+ levels regulate an
array of vital cellular processes: NAD+ serves as a
cofactor for glycolysis and the tricarboxylic acid
cycle, thus providing ATP for most cellular proc-
esses. NAD+ also serves as the precursor for
NADP, which acts as a cofactor for the ‘pentose
shunt’ for bioreductive synthetic pathways, and
is involved in the maintenance of reduced glu-
tathione pools [77]. Therefore, over-activation of
PARP in pathophysiological conditions was
shown to lead to catastrophic falls in cellular
NAD levels and, subsequently, ATP levels, lead-
ing to cell dysfunction and death via necrosis.
Additional research has indicated that PARP
plays a role in many more cellular processes than
previously thought, regulating cell death through
apoptosis [78] as well as necrosis [79], gene tran-
scription by affecting activation of transcription
factors [80–82] and the activity of a variety of
enzymes through ADP-ribosylation (Figure 1) [83]. 

PARP activation has been shown to occur in a
wide variety of disease states including
reperfusion injury and diabetic cardiovascular
dysfunction [77]. PARP also plays a pivotal role
in the pathogenesis of inflammatory diseases,
such as colitis [84,85], diabetes [53,86], adult respi-
ratory distress syndrome [19,87], septic shock [88]

and autoimmune arthritis [11,89].
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Poly (ADP-ribose) polymerase 
& inflammation
There are two pathways involved in the anti-
inflammatory effects of PARP inhibition. The first
pathway may be related to inhibition of necrotic
and apoptotic cell death. Under basal conditions,
PARP activity is relatively low and involved in
repairing the DNA damage accumulated during
normal cell function [90]. However, under condi-
tions of oxidant stress, such as during inflamma-
tion, there are an increased number of DNA
single-strand breaks, which the N-terminal
domain of PARP recognizes, mediating a confor-
mational change activating the C-terminal catalytic

domain [90]. Activated PARP cleaves its substrate
NAD+ into ADP-ribose and nicotinamide, cova-
lently attaching the ADP-ribose to various pro-
teins, including an automodification to itself [90].
PARP then continues to attach ADP-ribose groups
to the initial group, creating a branched nucleic
acid-like homopolymer, poly (ADP) ribose [90].
The consequent reduction of cellular NAD levels
and its effect on cell energetics decreases high-
energy phosphate levels (ATP) and has deleterious
consequences on a wide variety of cellular func-
tions that can be substantially delayed from the
time of oxidant exposure [90]. The severe energetic
crisis resulting from PARP overactivation leads to

Figure 1. Schematic overview of poly (ADP-ribose) polymerase-mediated regulation of inflammation. 
 

Inflammation-induced oxidant/free radical formation followed by DNA single-strand breaks activates PARP, leading to further inflammatory 
processes. PARP overactivation leads to cell necrosis, with release of cellular contents into extracellular spaces increasing inflammation. PARP 
regulates transcription-factor activation (NF-κB, AP-1 and NFAT), leading to inflammatory-cell activation (shift of Th1/Th2 balance), infiltration 
(MIP-1α, ICAM and VCAM) and cellular damage (iNOS and COX-2), all contributing to further inflammation. 
1,25(OH)2D: 1,25-hydroxyvitamin D3; AIF: Apoptosis-inducing factor; AP-1: Activator protein-1; ICAM: Intercellular adhesion molecule; 
iNOS: Inducible nitric oxide synthase; NFAT: Nuclear factor of activated T cells; NF-κB: Nuclear factor-κB; NO: Nitric oxide; NOS: Nitric oxide 
synthase; PAR: Poly (ADP-ribose); PARG: Poly (ADP-ribose) glycohydrolase; PARP: Poly (ADP-ribose) polymerase; VCAM: Vascular cell 
adhesion molecule.
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the triggering of the necrosis pathway of cell death
[90]. Following the initial inflammatory oxidant
insult and PARP activation resulting in necrosis,
the release of the cellular contents into the extra-
cellular space further triggers the inflammatory
process. Inhibition of PARP in a variety of disease
models has been shown to decrease the level of
prenecrotic and necrotic cell responses induced by
cytotoxic free radicals and oxidants produced dur-
ing inflammation that, with the reduced spillage of
cellular contents into the area, will further reduce
inflammatory processes. More recently, PARP has
been shown to regulate apoptosis through the
release of apoptosis-inducing factor (AIF) [91], a
pro-apoptotic flavoprotein residing in the mito-
chondrial intermembrane, which, once activated,
relocates to the nucleus, causing chromatin con-
densation and large-scale DNA fragmentation [92].
The poly (ADP-ribose) (PAR) polymer is an iden-
tified signal to the mitochondria to release AIF [78],
leading to induction of apoptosis.

The second group of mechanisms is related to
the regulation of gene transcription by PARP and
the subsequent impact on inflammatory and
immune responses. Earlier theories of why PARP
inhibition was protective in experimental models
of disease focused on its effects on intracellular
energetics, the resultant cellular dysfunction and
cell death. However, over the last decade, in vivo
investigations have revealed protective effects of
PARP inhibition that are not associated with overt
oxidant stress. These effects, observed in a wide
variety of inflammatory conditions, relate to an
effect of PARP on the expression, activation and
nuclear translocation of key proinflammatory
genes and proteins. Inhibition of PARP, either
pharmacologically or through genetic absence,
suppresses the activation of MAP kinase [93], the
AP-1 complex [80] and NF-κB [94,95], which sub-
sequently interferes with the expression of pro-
inflammatory genes. Proinflammatory genes that
have been affected by PARP inhibition include:

enzymes (e.g., iNOS) [96], cyclooxygenase
(COX)-2 [97], matrix metalloproteinases [77],
adhesion molecules ICAM-1, E-selectin and
VCAM [97–99], cell-surface proteins (such as
integrins [CD11a]) [97,100], chemokines (e.g.,
MIP-1α and MIP-2) [11,19,94,101] and cytokines
(e.g., IL-1β, IL-6 and TNF-α) [11,81,94,102]. PARP
has been shown to poly(ADP-ribosyl)ate the T-
cell transcription factor NFAT [103], which, as
mentioned earlier, is pivotal in T-cell function, has
been identified as a target for immunosuppressive
therapies, and may play a crucial role in the anti-
inflammatory effects of PARP inhibitors on
immune cells affecting proliferation, infiltration
and cytokine/chemokine production [58,59,104].

The combination of PARP inhibitors blocking
both cell necrosis/apoptosis and inflammatory
gene expression reduces neutrophil infiltration,
proinflammatory cytokine levels and further gen-
eration of oxidant species in animal models of
inflammatory disease. The overall effect of PARP
inhibition in inflammatory diseases is to reduce
Th1 immunity.

Vitamin D & poly (ADP-ribose) 
polymerase
Vitamin D and PARP inhibitors share similari-
ties both in the diseases that they can protect
against (Table 1) and in their immunomodulatory
effects (Table 2), which formulated a hypothesis
that vitamin D in some way inhibits PARP. In
2007, we reported that vitamin D had a novel
pharmacological effect as a PARP inhibitor and
demonstrated that it was the active form of
vitamin D, 1,25(OH)2D, that is responsible for
this action, with the monohydroxylated forms of
vitamin D and the parent compound having lit-
tle or no PARP-inhibitory activity [45]. The
inhibitory effect of 1,25(OH)2D on PARP was
shown to be a direct effect on the enzyme, as the
inhibition was observed in a cell-free assay that
utilized the isolated human PARP enzyme [45].

Table 1. Protective effects of sunlight, vitamin D and poly (ADP-ribose) inhibition against human 
disease states.

Disease Sunlight Vitamin D PARP inhibitors

Rheumatoid arthritis + [2,5,6] + [26,111] + [11,89,112]

Type I diabetes + [2,5,113,114] + [27,28,57,115] + [53,86]

Multiple sclerosis + [2,5,22,114] + [33,51,107,116] + [14,117,118]

Colitis – + [30,31,47] + [84,119,120]

Endotoxic shock – + [121] + [18,101,120,122–126]

Cardiovascular disease + [22,127] + [127,128] + [77]

Cancer + [129,130] + [22,43,131,132] + [133,134]

+: Protective effect; –:No protective effect; PARP: Poly (ADP-ribose) polymerase.



174

REVIEW – Mabley & Szabo 

Future Rheumatol. (2008)  3(2) future science groupfuture science group

The cellular implications for vitamin D inhibit-
ing PARP, particularly of immunomodulatory
processes, are summarized in Figure 1. 

The literature on the immunomodulatory
effects of vitamin D has indicated a possible role
for the VDR, with VDR-knockout animals hav-
ing increased susceptibility to immunological con-
ditions, such as colitis [30]. However, VDR
knockout has either no effect [105] or reduces the
incidence of Type 1 diabetes [106] and reduces the
incidence of multiple sclerosis [107] in experimental
models. These observations appear to both contra-
dict and support vitamin D exerting anti-inflam-
matory effects through a direct inhibition of
PARP. Activation of PARP has proved central in
both Type 1 diabetes [53] and multiple sclerosis
[108], and the absence of the VDR having no effect
or reducing disease incidence [105,107] suggests that
the basal effect of vitamin D is either unaffected,
or the lack of VDR-binding vitamin D increases

free vitamin D levels, allowing an increased PARP
inhibitory effect suppressing the inflammatory
process. However, whereas there are discrepancies
in the VDR-knockout models and the effect on
inflammatory conditions, no such discrepancy is
observed with vitamin D deficiency, which has
been shown to exacerbate both inflammatory and
autoimmune conditions [35–39]. The proinflamma-
tory effects of vitamin D deficiency may be related
to the lack of endogenous PARP inhibition by
vitamin D, as well as its other well-documented
immunomodualtory activities. 

The data from the VDR-knockout animal
having increased incidence of colitis [30] may not
contradict the hypothesis that vitamin D directly
inhibiting PARP activity partially mediates the
immunomodulatory effects. The VDR itself may
play an important role in regulating PARP activ-
ity, as PARP interacts with nuclear hormone
receptors including those for steroids (estrogen),

Table 2. Immunomodulatory effects of vitamin D and poly (ADP-ribose) polymerase.

Immunomodulatory action Vitamin D PARP inhibition

Immune cell infiltration Decrease [33] Decrease [19,94,101,135]

T-cell proliferation Inhibit [136] Inhibit [137]

T-cell apoptosis Increase [33,50,54] Increase [53]

Th1 cytokines IL-1↓ [55,138]

IL-2↓ [41,138]

IL-6↓ [55]

IL-8↓ [55]

IL-12↓ [54,72,139,140]

TNF-α↓ [55,138]

IFN-γ↓ [41,138]

IL-1↓ [18,19,135,141]

IL-2→
IL-6↓ [19,98]

IL-12↓ [19,142]

TNF-α ↓ [135]

IFN-γ↓ [53,143]

Th2 cytokines IL-4↑ [41,144]

IL-5↑ [138] ↓ [41]

IL-10↑ [54,138]

IL-4→
IL-5↓ [145]

IL-10↑ [11] ↓ [142]

Chemokines MCP-1↑  [27,146]

MIP-1α↓ [30]

MIP-1β↓ [27,33,57]

MIP-2→
Eotaxin↓ [33]

MCP-1→ 
MIP-1α↓ [19,101]

MIP-1β→
MIP-2↓ [11,19,101]

Eotaxin↓ [147]

Transcription factors NF-κB↓ [61,67,148]

AP-1↓ [67]

NFAT↓ [60,149]

NF-κB↓ [81,94]

AP-1↓ [80,119]

NFAT↓ [103]

Proinflammatory protein expression iNOS↓ [68]

COX-2↓ [150]

ICAM↓ [71]

VCAM↓ [71]

E-selectin→
MHC II↓ [54,75]

iNOS↓ [96,151]

COX-2↓ [97]

ICAM↓ [97–99, 152]

VCAM↓ [98,99]

E-selectin↓ [98,99]

MHC II↓ [143]

AP-1: Activator protein-1; COX: Cyclooxygenase; ICAM: Intercellular adhesion molecule; IFN: Interferon; IL: Interleukin; iNOS: Inducible nitric oxide 
synthase; MCP: Monocyte chemoattractant protein; MHC: Major histocompatibility complex; MIP: Macrophage inflammatory protein; 
NFAT: Nuclear factor of activated T cells; NF-kB: Nuclear factor-kB; PARP: Poly (ADP-ribose) polymerase; TNF: Tumor necrosis factor; VCAM: Vascular 
cell adhesion molecule.
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retinoids, thyroid hormone and vitamin D [109].
This interaction was proposed as a way of
PARP influencing nuclear receptor signaling
[109]. However, there remains the possibility
that the reverse may be true – that interaction
between nuclear receptors and PARP regulates
PARP activity. In 2005 we demonstrated that gen-
der differences in endotoxin-induced inflamma-
tion were related to PARP activation [110]; in this
case, estrogen did not have an effect on PARP
activity directly, but, when associated with estro-
gen receptor-α (ERα), could bind to the PARP
protein. Therefore, when estrogen activates ERα
and translocates to the nucleus, it forms a complex
with PARP, preventing it from recognizing DNA
strand breaks and hence becoming activated,

protecting the cells [110]. Although it is yet to be
investigated, a similar cellular action involving the
VDR may exist. The VDR, together with the
retinoic receptor following activation by
vitamin D, may translocate to the nucleus, and
similarly to ERα, form a complex with PARP and
prevent its activation.

Conclusion
In summary, vitamin D has a wide range of effects
on the function of various cells and tissues. One of
these effects is the inhibition of the multi-
functional nuclear enzyme PARP. The data over-
viewed in this paper are consistent with the view
that vitamin D-mediated inhibition of PARP
(Figure 1) may be one of the mechanisms by which

Executive summary

Sunlight

• Ultraviolet radiation (UVR) exposure influences the incidence of inflammatory diseases.
• The incidence of inflammatory diseases is affected by latitudinal gradient and seasonal changes.
• UVR causes a shift from Th1- to Th2-mediated processes.

Vitamin D

• 1,25-hydroxyvitamin D3 (1,25[OH]2D) is the active form of vitamin D.
• 1,25(OH)2D interacts with the vitamin D receptor (VDR), causing translocation to the nucleus to exert genomic effects.
• VDR on caveolae can activate phospholipase C, protein kinase C, G-protein-coupled receptors or phosphotidyl-inositol-3-kinase.
• VDR is found on many cell types, including immune cells.
• VDR activation results in genomic effects regulating the cell cycle and proliferation, genoprotection, cell differentiation, vitamin D 

and calcium metabolism and immune system activation.

Vitamin D & immunomodulation

• Vitamin D is immunosuppressive, affecting Th1 immunity by inhibiting T-cell proliferation and stimulating T-cell apoptosis.
• Vitamin D shifts the T-cell response from Th1 towards Th2, inhibiting Th1 cytokine/chemokine production (IFN-γ, TNF-α, IL-2, 

IL-12 and MIP-1α), while stimulating Th2 cytokine production (IL-5 and IL-10).
• Vitamin D inhibits transcription-factor activation (NF-κB and AP-1) and suppresses proinflammatory protein expression (iNOS, 

ICAM and VCAM).

Poly (ADP-ribose) polymerase

• Poly (ADP-ribose) polymerase (PARP) is a DNA-repair enzyme.
• PARP activation mediates cell death by both necrosis and apoptosis.
• PARP regulates gene transcription, protein expression and enzyme activity.
• PARP activation has been observed in a variety of disease states, including cardiovascular disease and inflammatory conditions.

Poly (ADP-ribose) polymerase & inflammation

• PARP activation leads to necrosis and release of cellular contents into the extracellular space, further triggering the 
inflammatory process.

• PARP inhibition protects against many inflammatory diseases.
• PARP inhibition suppresses transcription-factor (NF-κB and AP-1) activation affecting pronflammatory protein expression and 

production (IL-1, TNF-α, MIP-1α, iNOS, COX, ICAM and VCAM).

Vitamin D & poly (ADP-ribose) polymerase

• Vitamin D directly inhibits PARP.
• Vitamin D and PARP inhibitors share similarities in the diseases that they can protect against (rheumatoid arthritis, multiple 

sclerosis, Type I diabetes, colitis, cardiovascular disease and cancer) and their immunomodulatory effects (inhibition of Th1 
immunity).

• Inhibition of PARP by 1,25(OH)2D may mediate the immunomodulatory effects observed with both UVR exposure and vitamin D 
supplementation.
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sunlight exposure (UVR) and vitamin D supple-
mentation may exert immunomodulatory effects.
Whether vitamin D also affects some of the other
known actions of PARP (including regulation of
cellular apoptosis/necrosis, DNA repair processes,
cell proliferation and differentiation, vascular
effects, effects on inflammatory cell migration,
modulation of kinase pathways, and so on)
remains to be elucidated in future studies. Inhibi-
tion of PARP through dietary vitamin D supple-
mentation may prove effective in protecting
against a wide variety of disease states.

Future perspective
Over the next 5–10 years we anticipate that there
will be continued elucidation of the mechanisms
involved in vitamin D-mediated immuno-
modulation, and the subsequent determination of
the extent to which PARP inhibition regulates
these effects. Additional mechanisms by which
vitamins regulate cell function will continue to be
identified, providing increased understanding in
how our diet impacts our health status. The link

between diet and disease susceptibility is already
very strong, and the future development of spe-
cialized diets to reduce disease incidence in spe-
cific populations identified through genetics or
global location will impact the epidemiology of
inflammatory diseases. Finally, enzymes such as
PARP are proving to be multifunctional cellular
regulators, in addition to their primary functions
as catalysts for chemical reactions. Revealing the
multifunctional nature of individual enzymes in
the future will allow for increased understanding
of cellular regulation, in addition to providing
new therapeutic targets for inflammatory diseases. 
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