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SUMMARY Tolerogenic strategies that specifically target diabetogenic immune cells 
in the absence of complications of immunosuppression are the desired treatment for the 
prevention or even reversal of Type  1 diabetes (T1D). Antigen (Ag)-based therapies must 
not only suppress disease-initiating diabetogenic T  cells that are already activated, but, 
more importantly, prevent activation of naive auto-Ag-specific T  cells that may become 
autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. 
Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to 
the design of effective Ag-specific therapies. Animal models of T1D have been successfully 
employed to identify potential diabetogenic Ags, and have further facilitated translation 
of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight 
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 � Targeting of peripheral tolerance pathways in vivo can induce immunological tolerance to prevent and 
treat Type 1 diabetes.

 � Immune tolerance can be induced in an antigen (Ag)-specific manner and suppress autoimmunity 
without the use of broad-based immunosuppressive agents. 

 � Tolerance can be achieved by inducing or targeting tolerogenic dendritic cells, modulation of 
costimulatory and coinhibitory molecules on autoreactive T cells and induction and/or expansion of 
Treg cells. 

 � Tolerance is seen in nonobese diabetic mice, despite the many inherited defects in central and peripheral 
tolerance, suggesting that tolerance-based therapies may be efficacious in human patients with 
homologous defects that predispose them to being susceptible to autoimmunity.

 � The use of high-affinity mimotopes and altered peptide ligand forms of target auto-Ags can increase the 
efficacy of treatment by increasing MHC presentation and MHC–T-cell interactions.

 � Targeted delivery of Ags on inert particles, such as polystyrene or poly(lactic-co-glycolic) acid 
nanospheres, DEC205 fusion antibodies or tetramer complexes, can increase the efficacy of tolerance 
induction and can be readily translated in a clinical setting.
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important advances using animal models in Ag-specific T1D immunotherapies, and the 
application of the preclinical findings to human subjects. We provide an up-to-date overview 
of the strengths and weaknesses of various tolerance-inducing strategies, including infusion 
of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert 
particle-based tolerogenic approaches, and various other strategies that target distinct 
tolerance-inducing pathways.

Type 1 diabetes (T1D) is a chronic autoim-
mune disease mediated by selective destruc-
tion of pancreatic b cells by CD4+ and CD8+ 
T lymphocytes [1–3]. Much of our knowledge of 
T1D disease pathogenesis and regulation derives 
from studies of the spontaneous murine model 
of T1D, the nonobese diabetic (NOD) mouse 
[4,5]. Additionally, T cells specific for many of the 
diabetogenic antigens (Ags) targeted in NOD 
mice have also been found in the islets and the 
circulation of T1D patients. The major auto-Ags 
include: GAD65, insulin, proinsulin, HSP60, 
IA-2, ZnT8 and IGRP, and are, therefore, poten-
tial primary therapeutic targets [1,6–12]. Follow-
ing initial immune-mediated pancreatic damage, 
release of islet Ags results in epitope spreading, 
which leads to tissue infiltration of an increas-
ingly diverse population of autoreactive T cells 
[13,14]. Thus, effective attenuation of islet-specific 
autoreactive T cells during the early prediabetic 
stage of T1D is considered an ideal therapeutic 
option.

Existing therapies for T1D consist mainly 
of insulin replacement therapy and protective 
therapies, which attempt to regulate the immune 
responses in nonspecific ways and/or promote 
b-cell protection/regeneration, neither of which 
address the underlying autoimmune pathogen-
esis [15,16]. The side effects and unsustainable 
efficacy of general immunosuppression call for 
improved therapies that specifically block the 
deleterious effects of self-reactive immune cells, 
while leaving the remainder of the immune sys-
tem intact. This review focuses on Ag-specific 
tolerance strategies for the prevention and treat-
ment of T1D and provides an overview, ranging 
from animal models of the disease to attempt 
to translate tolerance strategies, to treatment of 
T1D patients. The following approaches will be 
discussed in this article: soluble Ag-based ther-
apies, DNA vaccines, cell-mediated tolerance, 
nanoparticle-facilitated tolerance and tetramer-
based treatments (Figure 1).

Tolerance induced by soluble Ags
NOD mice and a T-cell receptor transgenic 
strain derived from it, BDC2.5, which bears 

a highly diabetogenic CD4+ T-cell clone spe-
cific for a pancreatic b-cell auto-Ags, have been 
used extensively for the study of peptide-based 
immunotherapies. Several natural b-cell auto-
Ags and their mimotopes, identified through 
scanning of a synthetic combinatorial peptide 
library, have been delivered as soluble Ags to 
these murine models in attempts to induce 
tolerance. Reduced incidence of T1D or even 
complete prevention of disease onset have been 
reported in a number of studies following deliv-
ery of these soluble Ags via different routes of 
administration, including intravenous, oral, 
intranasal and subcutaneous administration 
[17]. Major findings of these studies are sum-
marized in the following sections according to 
the auto-Ag used.

�� GAD
GAD is the rate-limiting enzyme that converts 
glutamic acid into g-aminobutyric acid. Humans 
express the GAD65 isoform, while mice express 
the GAD67 isoform [18,19]. GAD is a putative 
auto-Ag that is targeted during the initiating 
stages of T1D pathogenesis as suggested by 
both human epidemiological studies and murine 
models [7,8,17,20–22]. Intraperitoneal delivery of 
GAD65-derived peptides to young NOD mice 
at the time when islet-reactive T cells were first 
detected protects the recipients from disease 
development [23–25]. Protection correlates with 
milder insulitis and reduction of IFN-g secret-
ing GAD65- and insulin B-chain-specific CD4+ 
T cells. Expansion of circulating Tregs detected 
in GAD65 peptide-tolerized mice is thought 
to contribute to the disease amelioration [26,27]. 
Intravenous delivery of recombinant GAD65 to 
NOD mice results in complete protection from 
the disease [7,28]. Intranasal administration of 
three GAD65 peptides that were fused to a car-
rier protein into young NOD mice prevents T1D 
and inhibits spontaneous Th1 autoimmunity, 
but fails to establish tolerance when delivered 
at a later stage of the disease [29]. Additionally, 
oral administration of diabetogenic auto-Ags is 
also capable of suppressing the initiation of T1D 
via induction of T-cell anergy and activation of 
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Tregs, dependent on the Ag dose [30,31]. Some 
of these approaches induce GAD-specific Th2 
responses, while suppressing Th1 responses. Pre-
clinical and clinical Phase I/II/III trials using 
recombinant human GAD with or without adju-
vants obtained safety evidence for this approach. 
Only short-term preservation of insulin secretion 
and fasting C-peptide levels were observed in 
treated patients [32–38].

�� insulin & proinsulin
Insulin, as one of the first T1D auto-Ags 
described, is enzymatically processed from 
proinsulin [39,40]. Recombinant insulin and its 
peptides are found to effectively prevent T1D 
in young NOD mice when delivered via differ-
ent routes, including intraperitoneal, intrave-
nous, oral and intranasal administration [41–46]. 
Efficacy is dependent on the combination of 

peptides used, treatment timing and route of 
delivery. Certain combinations favor tolerance 
induction whereas others precipitate the dis-
ease. Oral delivery of a soluble form of insulin 
to a transgenic mouse model (RIP-LCMV) that 
expresses the viral nucleoprotein of lympho-
cytic choriomeningitis virus (LCMV) under 
the control of a rat insulin promoter in b cells, 
was effective in preventing the development of 
overt diabetes in more than half of the prophy-
lactically treated mice infected with LCMV as 
a viral trigger [47]. However, such treatment was 
ineffective in the prevention of rapid-onset dia-
betes when using the RIP-GP transgenic mice 
that express the LCMV glycoprotein. Preven-
tion of diabetes in this model was mediated by 
Tregs, a mechanism that will be discussed in the 
following sections in more detail, via bystander 
suppression, rather than by selective deletion of 
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Figure 1. interventions inducing antigen-specific immune tolerance in Type 1 diabetics. 
An overview of the putative mechanisms and cellular targets underlying the diverse antigen-specific 
immune regulatory strategies that have been employed for the treatment of Type 1 diabetes. 
Treatments (dashed arrows) targeting a number of these key immune pathways (solid arrows) are 
being evaluated in clinical settings, including promotion of tolerogenic APCs, inhibition of effector 
T cells, skewing of T-helper subsets and induction of Tregs through boosting of regulatory pathways.  
Ag: Antigen; APC: Antigen-presenting cell; DC: Dendritic cell; PLGA: Poly(lactic-co-glycolic acid); 
pMHC: Peptide–MHC complexes; Tanergic: Anergic T cell; Tapoptotic: Apoptotic T cell.
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insulin-specific effector cells [31]. Intraperito-
neal administration of proinsulin fragments to 
postnatal day 18 NOD mice delays incidence 
and time of onset of T1D [48]. However, initia-
tion of treatment with proinsulin after develop-
ment of insulitis accelerates clinical onset of the 
disease, suggesting that proinsulin may be one 
of the initiating autoantigenic epitopes in the 
pathogenesis of T1D, but may become subdomi-
nant following epitope spreading [49]. Addition-
ally, prophylactic delivery of a segment of leader 
sequence in preproinsulin is also capable of 
inducing tolerance when administered subcuta-
neously to adult NOD mice in association with 
the appearance of IL-4- and IL-10-producing 
Tregs [50]. Clinical trials using insulin prophy-
lactically or therapeutically to treat T1D failed 
to delay b-cell destruction or delay disease devel-
opment, but ameliorated insulin-specific T-cell 
responses [51–56]. 

�� Hsp60
Hsp-specific T-cell responses are detected in 
the majority of T1D patients [57,58]. Intranasal 
delivery of Hsp65 to young NOD mice induced 
elevated levels of IL-4, -10 and -13, an induc-
tion of Ag-specific skewing from a Th1 to Th2 
response, in addition to a significant decrease in 
disease incidence [59–61]. Clinical trials using a 
mutated form of Hsp60 resulted in transiently 
stabilized C-peptide production and b-cell func-
tion [62,63]. The mechanisms by which Hsp60 
affords protection remains elusive.

�� Mimotopes
When natural epitopes from islet b cells are 
weakly agonistic for autoreactive T cells, mimo-
topes, peptides that mimic the stimulatory activ-
ity of the natural epitopes, can be used to induce 
tolerance. A recent study demonstrated that sub-
cutaneous delivery of a strong agonistic insulin 
mimotope for the BDC2.5 T cells to NOD mice 
at a subimmunogenic dose effectively induced 
Foxp3+ Tregs, resulting in complete prevention 
of T1D [64]. Similarly, intravenous administra-
tion of a panel of b-cell mimotope peptides 
to BDC2.5 mice results in protection from 
T1D [65]. These data suggest that high-affinity 
peptide analogs of autoimmune epitopes might 
be useful therapeutic modulators. 

�� Challenges to clinical translation
Although soluble peptide immunotherapies 
are eff icacious in animal models of T1D, 

translation of tolerance therapies to the clinic 
remains underdeveloped for a number of reasons 
[7,8,35,48,51,53,54,66–69]. First, human diabetogenic 
auto-Ags that are critical for T1D progression 
are less defined; thus, identification of epitopes 
recognized by pathogenic T cells in humans 
with diverse genetic backgrounds remains chal-
lenging. Second, clonal deletion of autoreactive 
T cells induced by large doses of soluble Ags is 
highly Ag specific, and, therefore, may be unable 
to induce long-term immune tolerance in the 
background of progressive epitope spreading. 
Thus, Treg expansion is a preferred alternative 
as it can regulate autoimmunity independent of 
Ag specificity; although maintaining sufficient 
amounts of Treg to counterbalance the increas-
ing frequency of activated autoreactive T cells 
remains challenging [14,17,70–72].

Tolerance induced by genetic vaccination
Genetic vaccination offers an alternative to 
re-establishing peripheral tolerance in an Ag-
specific manner. Compared with the soluble 
Ag therapy, gene transfer enables greater flex-
ibility in the manipulation of T-cell responses 
reflected in the relatively low production cost of 
plasmid DNA, circumvention of recombinant 
protein purification and the advantage of target-
ing the encoded protein to desired cellular com-
partments by tagging specific signal sequences. 
Studies using recombinant DNA therapy to 
manipulate b-cell autoimmunity have largely 
been restricted to animal models of T1D with 
limited advances in the clinical setting [73]. Two 
approaches have been attempted for the delivery 
of genetic materials: direct injection of plasmid 
DNA and viral vector-packaged transgenes.

Plasmid DNA
Plasmid DNA vaccination is considered safe as it 
rarely integrates into the host genome. However, 
limitations include the low transfection effi-
ciency, the nonspecific cellular targeting, lack of 
control and sustainment of the expression level 
of the encoded protein product [74–76]. Delivery 
of plasmid DNA encoding a number of b-cell 
auto-Ags, including GAD65, insulin B chain, 
proinsulin and Hsp60 have been shown to be 
effective at inhibiting T1D onset/progression in 
mouse models of T1D [25,77–85].

The efficiency of plasmid DNA-mediated 
Ag-specific tolerance depends on the context 
in which the encoded auto-Ag is expressed. For 
example, prevention of diabetes in NOD mice 
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that are intramuscularly injected with plasmid 
DNA encoding a secreted form of GAD65 
stabilized by the Fc portion of IgG is mark-
edly more efficient than in the mice receiving 
an intracellular form of native GAD65. b-cell 
auto-Ag-encoding DNA is less efficient at sup-
pressing disease progression at advanced stages 
of T1D [79,86]. Coupling anti-inf lammatory 
cytokines with specific auto-Ags has been 
explored to enhance the therapeutic outcomes 
[77,78,86,87]. Coinjection of plasmid DNA encod-
ing GAD65-IgFc and IL-10 enhances accu-
mulation of GAD65-specific Tregs that secrete 
anti-inflammatory cytokines [77,78]. Inclusion 
of a CTLA-4 ligand in the auto-Ag plasmid 
DNA inoculum also enhances b-cell-specific 
Treg differentiation, resulting in prevention 
of T1D in young NODs [88]. Regarding the 
route of plasmid DNA, intramuscular injection 
of plasmid DNA preferentially induces a Th1 
response, which precipitates the disease, whereas 
intraepidermal injection results in induction of 
an IL-4-secreting Th2 response [89–91]. However, 
intramuscular administration of plasmid DNA 
encoding the insulin B chain has been shown 
to reduce the incidence of diabetes in more 
than 50% of treated mice in the RIP-LCMV 
model through induction of Tregs, which secrete 
IL-4 and tolerize autoreactive CD8+ T cells in 
the draining lymph nodes [85]. Similarly, other 
mucosal routes of delivery, such as the intrana-
sal and oral route, have also been explored to 
amplify the regulatory activities of T-cell subsets 
using plasmid DNA [83,84,87,88,92,93]. 

Translationally, short-term b-cell function 
and improved glycemic control was sustained 
for over 12 months in diabetic patients receiv-
ing weekly intramuscular injections of plasmid 
DNA encoding full-length human proinsulin 
compared with the placebo controls [94]. Impor-
tantly, the plasmid DNA vaccine was well tol-
erated and efficacy correlated with diminished 
anti-insulin antibody.

�� viral vector-mediated tolerance induction
DNA delivery using replication-defective viral 
vectors has greater transduction efficiency than 
naked plasmid DNA inducing robust expression 
of encoded auto-Ags in many tissues. However, 
virus-specific immunity is the main concern. 
Viral vectors that have been extensively used 
to treat diseases caused by infectious patho-
gens or tumors have also been explored in T1D 
prevention [95]. Recombinant adeno-associated 

virus (rAAV) vectors devoid of all viral genes 
have become the preferred gene transfer vehicle 
[96,97]. Intramuscular delivery of rAAV vectors 
expressing b-cell auto-Ags, such as proinsulin 
and GAD65, in conjunction with IL-10 has 
been shown to prevent diabetes in NOD mice 
via Treg induction [98–103]. Direct expression 
of islet b-cell Ags in the pancreas may induce 
immunoregulation that is not achievable via 
systemic delivery. For instance, local pancreatic 
intraductal delivery of the serotype 6 rAAV vec-
tor encoding a model Ag, green fluorescent pro-
tein (GFP), effectively transduced the majority 
of b cells, but there was dramatically reduced 
transgene expression in nonpancreatic tissues 
despite the fact that the core zone of the islets 
was not transduced [104]. Significantly, rAAV 
transduction has no negative impact on b-cell 
function [104–107].

Cell-based tolerance
Recent studies have highlighted the efficacy of 
cell-based tolerogenic treatments in preclini-
cal models of T1D. This includes infusion of 
Tregs or dendritic cells (DCs) with a tolerogenic 
phenotype. 

�� Tregs
Tregs play a central role in protecting against 
T1D. Autoimmunity is suggested to result from 
an imbalance or loss of function in Tregs [108]. 
Direct supplementation of Ag-specific Tregs 
can confer long-term protection against T1D 
[109–111]. Compared with polyclonal populations, 
Ag-specific Tregs display enhanced homing to 
the pancreatic lymph nodes and pancreas, and 
increased secretion of regulatory cytokines such 
as IL-10 [26,112]. Ag-specific Tregs can mediate 
suppression of both Ag-specific and nonspecific 
T cells found in the target tissue via bystander 
suppression [26]. Recent advances in the isolation 
and in vitro expansion of human Tregs have led 
to initial clinical testing of Tregs for treatment 
of human disease [113,114]. The therapeutic use 
of Tregs is complicated by the fact that Tregs 
may revert back to an effector phenotype in vivo 
[115], suggesting that Tregs are inherently unsta-
ble and could possibly contribute to pathogenic 
immune responses [115]. Additionally, T1D is 
associated with several immune defects, includ-
ing genes that impact Treg function such as 
IL-2. Reduced expression of IL-2 can limit Treg 
survival and alter the Treg:effector T-cell ratio 
in favor of promotion of T1D [116]. Additional 
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studies are needed to address the stability and 
Ag specificity of Tregs before they can be tested 
for therapy of T1D.

�� Dendritic cells
DCs possess the ability to regulate the induc-
tion of T-cell activation, anergy and regula-
tion. Several studies have shown that transfer of 
tolerogenic DCs or DCs that have been cultured 
in vitro under tolerogenic-promoting conditions 
can prevent or protect against the onset of T1D 
[117–121]. Bone marrow DCs pulsed with apoptotic 
cells expressing islet cell auto-Ags in vitro display 
a tolerogenic phenotype via downregulation of 
CD40 and CD86, and reduced production of 
IL-6 and TNF-a [122]. IL-10-/TGF-b-treated 
DCs that have been pulsed with insulin can 
reduce insulin-specific CD4+ T-cell responses 
in human diabetics [123]. 

�� Delivery of Ag via apoptotic cells 
During natural cell turnover, apoptotic cells 
release immunosuppressive cytokines and alter 
surface protein expression [124,125]. This pro-
motes the tolerogenic uptake and processing of 
cells by macrophages and other phagocytic cells 
and prevents pathogenic immune response to 
self-Ags [124,125]. Splenocytes (SPs) pulsed with 
autoantigenic peptide(s) and fixed with ethyl-
ene carbodiimide (ECDI; Ag-ECDI-SP) induce 
potent and Ag-specific tolerance and have been 
shown to be an effective therapy in spontaneous 
transfer and humanized mouse models of T1D 
[67,126,127]. Ag-ECDI-SP can act directly on acti-
vated T cells via MHC-II/T-cell receptor signal-
ing to induce T-cell anergy [128,129]. However, 
tolerance induction primarily occurs indirectly 
via modulation of responses in DCs and Tregs 
after the uptake and representation of Ag-ECDI-
SP by host antigen-presenting cells [67,126,127,130]. 
Protection against the onset of T1D using simi-
lar mechanisms can also be seen in NOD mice 
infused with UVB-treated NIT-1 cells (b-cell 
line that expresses islet auto-Ags) or the admin-
istration of DCs pulsed with islet cell apoptotic 
bodies expressing b-cell Ags [122,131]. 

�� Genetically modified cell-based therapies
Recent cell-based therapies have utilized genetic 
modifications to enhance therapeutic benefit. 
Mucosal administration of Lactococcus lactis 
that has been genetically modified to secrete 
both whole proinsulin and IL-10 induces remis-
sion of new-onset diabetes in combination with 

low-dose anti-CD3 [132]. Treatment resulted in 
the expansion of Tregs in the pancreatic lymph 
nodes and pancreas. Unlike treatment with 
anti-CD3 alone, L. lactis treatment induced 
Ag-specific tolerance without altering immune 
responses to pathogenic foreign Ags. Lentiviral 
T-cell receptor gene transfer into polyclonal 
Tregs followed by Ag-specific restimulation 
in vitro can give rise to large numbers of Ag-
specific Tregs [133]. Islet-specific Tregs that were 
retrovirally transduced to ecotopically express 
Foxp3 reversed hyperglycemia in new-onset 
diabetics [112]. Ectopic expression of Foxp3 may 
stabilize Tregs and limit reversion of Tregs to 
effector cells in vivo.

Targeting tolerance pathways in vivo
While cell-based approaches show potential for 
the treatment of T1D, many challenges remain 
for clinical translation. Tregs can be difficult to 
isolate, purify and expand, and their instability 
in vivo poses efficacy and safety concerns. It is 
also costly to produce large numbers of Tregs 
under good manufacturing practice (GMP) 
for clinical use. For these reasons, therapies 
that target components of the tolerogenic path-
ways in vivo or utilize biopolymer platforms, 
such as biodegradable poly(lactic-co-glycolic 
acid) (PLGA) nanoparticles, to deliver Ag 
and/or immunomodulatory drugs may be more 
translatable. 

�� Polymer-based delivery of tolerogenic 
signals 
To overcome obstacles posed by cell-based 
therapy, inert polystyrene beads or US FDA-
approved biodegradable PLGA nanoparticles 
are being explored as substitutes for cellular 
vehicles. Treatment with nanoparticles con-
taining short antisense primary transcripts of 
the costimulatory molecules CD40, CD80 and 
CD86 can downregulate targeted receptors and 
induce a tolerogenic phenotype in DC popula-
tions in vivo, and prevent and reverse T1D in 
the NOD mice [134]. Similar to Ag-ECDI-SP 
therapy, our preliminary work shows that PLGA 
nanoparticles that are ECDI coupled with a pep-
tide, protect NOD/scid mice from transfer of 
T1D with activated BDC2.5 T cells [Miller SD 

et al., Manuscript in Preparation]. BDC2.5 T cells 
isolated from treated mice have reduced pro-
duction of IFN-g and TNF-a [Miller SD et al., 

Manuscript in Preparation]. Ongoing studies are 
determining the exact mechanisms underlying 
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particle-based tolerance induction. Ag-coupled 
nanoparticles are taken up by marginal zone 
macrophages and other phagocytic cells via 
scavenger receptors, such as MARCO, in a non-
inflammatory manner and induce a tolerogenic 
phenotype in DCs resulting in the induction of 
Tregs and other tolerogenic pathways to sup-
press the ongoing autoimmune response [134,135]. 
PLGA particles are easy to manufacture under 
GMP conditions. Current studies are testing 
whether the particles can be modified to target 
relevant cell types in vivo and if encapsulation of 
inhibitory cytokines, such as IL-10, can enhance 
their tolerogenic potency.

�� Tetramer & peptide MHC-based therapy
Peptide–MHC complexes (pMHC) have been 
shown to bind cognate T-cell receptors and 
modulate T-cell responses. The generation and 
use of multimeric pMHCs, such as tetramers, 
are powerful tools used to address T-cell dynam-
ics, distribution and allow phenotypic character-
ization of Ag-specific T cells [136,137]. The use of 
pMHC multimers has also been applied for the 
prediction and treatment of T1D [138,139]. Treat-
ment with pMHC dimers prevented autoim-
munity in two transfer models of T1D by induc-
ing IL-10-dependent Tregs [140,141]. More recent 
studies show IGRP-specific tetramers coupled 
with saporin toxin can be used therapeutically 
to target and specifically delete autoreactive 
T cells in vivo, delaying the onset of T1D [142]. 
Administration of pMHCs coated onto nano-
particles engages T cells in an Ag-specific man-
ner in the absence of costimulatory signals to 
induce anergy or apoptosis in naive T cells and 
induces a regulatory phenotype in diabetogenic 
memory T cells [143]. Treatment with pMHC-
nanoparticles containing IGRP Ags prevented 
T1D in NOD mice and reversed hyperglycemia 
in new-onset disease by killing auto-Ag-bearing 
antigen-presenting cells in an IFN-g-, IDO- and 
perforin-dependent manner [143].

�� Targeted Ag delivery to DCs in vivo
An alternative to administration of Ag-pulsed 
DCs is selective delivery of diabetogenic Ags 
to DCs in vivo using anti-DEC-205. DEC-205 
is a surface receptor mediating endocytosis of 
captured Ags to late endosomal compartments 
of tolerogenic DCs [144,145]. Ag delivery via 
DEC-205 to specialized MHC class II-containing 
vesicles enhances Ag presentation to T cells pro-
moting tolerance via clonal deletion and Treg 

induction [145–147]. Treatment with recombinant 
fusion anti-DEC 205 Ab-containing mimotope 
sequences for a diabetogenic CD8+ T-cell clone 
AI4 results in inducing clonal deletion [148]. 
Administration of a recombinant fusion anti-
DEC 205 antibody containing sequences for a 
pathogenic mimotope peptide 1040–1063 or 
proinsulin can protect against the onset of hyper-
glycemia in the BDC2.5 transfer model and 
spontaneous disease in NOD mice, respectively 
[149]. Tolerance using the BDC2.5 mimotope and 
proinsulin was not achieved by clonal deletion 
but by the induction of Ag-specific Tregs [149].

Conclusion
The greatest advantage of Ag-specific tolerance 
induction for the treatment of T1D is the specific 
targeting of pathogenic autoimmune responses 
without the safety concerns and hazards asso-
ciated with nonspecific immunomodulators. 
Treatments with soluble diabetogenic Ags or 
peptides have shown some potential in preclini-
cal models; however, most have had limited suc-
cess in human disease. Failure to induce toler-
ance via soluble Ags may be due to several factors 
including: suboptimal dosage, route of admin-
istration and timing of treatment during the 
progression of disease; the immune responses 
to peptides versus intact Ag that may differ due 
to alternate Ag processing and presentation; 
and/or different pathogenic contributions of 
autoantigens in animals models compared with 
human disease. The identification and use of 
highly diabetogenic or high-affinity molecular 
mimotopes important for human pathology 
is crucial to increasing the efficacy of soluble 
and antigen-based treatments in clinical trials. 
Mechanistically, cell-based treatments impact 
on similar pathways to promote tolerance via 
transfer or in vivo induction of Tregs, modu-
lation of costimulatory molecules such PD-L1 
and production of inhibitory cytokines such 
as IL-10. Both Treg and dendritic cell-based 
protocols have recently been approved by the 
steering committee of the NIH TrialNet con-
sortium and are currently being tested in clini-
cal trials [201,202]. Additionally, the targeting of 
tolerogenic pathways via noncellular platforms 
such as PLGA nanoparticles or antibodies capa-
ble of delivering Ags to target cell populations 
in vivo are being actively explored. Continued 
development of clinically viable tolerance-based 
therapies will eventually allow for the safe and 
effective Ag-specific treatment of autoimmunity.
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Future perspective
Tolerogenic strategies that specifically target 
diabetogenic T cells in the absence of compli-
cations of immunosuppression are ideal for the 
prevention or even the reversal of T1D. Such 
Ag-based therapies for the treatment of T1D 
must not only suppress disease-initiating T cells 
that are already activated, but as importantly, 
naive autoreactive T cells that may be recruited 
to further precipitate the disease through epit-
ope spreading against auto-Ags liberated from 
damaged islet cells. However, the lack of a 
complete understanding of the underlying 
immune mechanisms and failure to identify a 
comprehensive panel of specific auto-Ags and 
T-cell epitopes preclude a more rational design 
of effective Ag-specific therapies. Early-phase 
clinical trials support the use of Ag-coupled 
cells or biodegradable nanoparticles as a tool for 
Ag-specific tolerance induction. This approach 
will hopefully have broad therapeutic utility 
in the near future. Ag-ECDI-PBL therapy has 
showed promising results in early clinical trials 
for multiple sclerosis [150]. Tolerance induction 

using cell-based therapies employing Ag-ECDI-
PBL may be hampered by cost and complex-
ity issues. The use of biodegradable PLGA 
nanoparticles provides a more stable tolerogenic 
carrier vehicle that can be readily customized 
and easily manufactured under GMP condi-
tions. Although effective clinical translation 
of the Ag-specific treatments developed using 
animal models remains challenging, prelimi-
nary clinical studies have yielded promising 
results, providing hope for the availability of a 
more effective tolerogenic therapy for T1D in 
the near future.
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