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In 1971, Anatol Morell and Gilbert Ash-
well discovered that the removal of sialic 
acids from circulating glycoproteins signifi-
cantly reduced their serum half-life [1]. The 
asialoglycoprotein receptor responsible for 
this phenomenon was identified in the liver 
3  years later [2]. The interaction between 
the asialoglycoproteins and the receptor was 
then believed to be the physiological mecha-
nism for the removal and degradation of 
serum glycoproteins. However, in knockout 
mice that lack the receptor, no phenotypic 
abnormalities was observed and no accu-
mulated plasma glycoproteins was detected 
[3], suggesting that the biological purpose 
of asialoglycoprotein receptor remains to be 
elucidated. A recent study suggested that the 
actual endogenous ligands of the asialoglyco-
protein receptor might be the glycoprotein 
components involved in blood coagulation 
and thrombosis [4]. Nonetheless, it is clear 
that the asialoglycoprotein receptor medi-
ates the capture and endocytosis of a variety 
of exogenously administered glycoprotein 
therapeutics. Removal of sialic acid from 
some glycoprotein drugs can reduce their 
in vivo half-life from a few hours to minutes 
(see references in [5]). In order to maintain 
optimal efficacy, less sialylated glycoforms of 
the recombinant drugs have to be discarded 
during purification. Therefore, substantial 
research has been devoted to the improve-
ment of protein sialylation in mammalian 
cells, especially Chinese hamster ovary 
(CHO) cells as they are the main workhorse 
of the biopharmaceutical industry.

N-glycosylation of recombinant therapeu-
tics produced by CHO cells presents two 

major challenges to the biotech industry: het-
erogeneity and batch-to-batch consistency of 
the glycans. Many factors such as the genetic 
background of the cell line and culture con-
ditions can affect the glycosylation patterns 
of biologics produced by CHO cells [6]. It 
has been estimated that at least 600 genes 
are involved in the complex process of pro-
tein glycosylation [7]. Factors that directly 
or indirectly affect these genes will subse-
quently affect the glycosylation of the recom-
binant products. Therefore, it is not an easy 
task to identify a single method to improve 
sialylation in CHO cells.

Many approaches have been introduced 
to improve sialylation in CHO cells. They 
include a feeding strategy which involves 
feeding the cells with nucleotide sugar pre-
cursors such as N-acetylmannosamine 
(ManNAc) to increase intracellular sialic 
acid pools [8]. However, this method would 
be too costly and therefore impractical for 
large-scale productions. The use of antisense 
RNA targeting cytosolic sialidase Neu2 was 
reported to produce recombinant DNase 
with increased sialic acid content [9]. Stable 
expression of siRNA targeting Neu2 was 
shown to improve sialic acid content of gly-
coproteins [5]. Research into improving the 
sialylation in CHO cells stably expressing 
different glycoproteins by the overexpression 
of glycogenes has resulted in fairly convincing 
results [10–13]. It is important to note that the 
so-called ‘wild-type’ CHO cells are geneti-
cally heterogeneous and individual cells may 
exhibit variations in many attributes includ-
ing glycosylation [14]. We previously showed 
that randomly picked single clones from sta-
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bly transfected ‘wild-type’ CHO-K1 cells expressed 
human EPO with varying extents of sialylation [15]. 
Therefore, the glycosylation capability of each stably 
transfected clone can be different from other clones 
and the results observed in the overexpression studies 
[10–13] may not be generalized to other CHO lines.

We used a transient transfection approach to study 
the impact of 31 N-glycosylation-related genes on 
sialylation. We showed that none of the glycosyltrans-
ferases or the nucleotide sugar transporters tested was 
able to improve EPO sialylation in CHO-K1 cells [16]. 
The results suggested that under our experimental con-
ditions the endogenous expression levels of all 31 genes 
were sufficient for CHO-K1 cells to glycosylate recom-
binant EPO. However, it should be pointed out that 
human EPO contains only three N-glycans and one 
O-glycan. It would be interesting to determine if any 
of the 31 genes would become a ‘bottle neck’ if the 
cells were producing a protein with additional N-gly-
cans sites, such as the novel erythropoiesis stimulating 
protein. It remains to be determined whether a simi-
lar transient transfection study might yield a different 
outcome if novel erythropoiesis stimulating protein is 
used as the model glycoprotein.

The accurate assessment of the degree of sialylation 
of a recombinant protein represents another challeng-
ing task. Different methods have been used to analyze 
the content of sialic acid of glycoproteins. The thiobar-
bituric acid assay has been traditionally used to quan-
tify sialic acid [17]. This method however requires puri-
fied glycoprotein samples. A high-throughput method 
proposed recently offers rapid quantification of glyco-
protein sialic acid content in crude supernatant samples 
[18]. This process offers 10-fold higher sensitivity than 
other sialic acid quantification kits and can be carried 
out in microplate format within 15 min. Purification of 
glycoprotein is a time-consuming process and certain 
glycoforms of the protein can be partially lost during 
the procedure. Therefore, it raises the concern of the 
accuracy of the sialylation assays. To establish a rapid 
platform to analyze the glycosylation patterns of a 
recombinant protein without the need for purification, 
we have adapted the EPO/isoelectric focusing (IEF) 
method to study sialylation patterns of EPO. Recom-
binant human EPO expressed in CHO cells is first sep-
arated on an IEF gel into different bands/glycoforms 
based on their charge difference. EPO molecules with 

different number of sialic acid residues are separated 
by the gel and then detected by an anti-EPO antibody 
using a typical immunoblotting assay. This assay offers 
a semi-quantitative estimation of all the recombinant 
EPO in the conditioned medium [15]. The IEF strat-
egy can also be used to screen for better-sialylated 
clones in the early stages of clone selection. To obtain 
detailed structural information on glycans, EPO fused 
to the Fc region of human IgG1 (EPO-Fc) has been 
produced in CHO cells. The Protein A-based purifica-
tion procedure ensures the full recovery of the all the 
glycoforms of EPO-Fc for sialylation assessment. The 
N-glycans attached to the EPO-Fc were analyzed using 
more powerful analytical methods such as high pH 
anion exchange chromatography with pulsed ampero-
metric detection (HPAEC-PAD), MALDI-TOF MS 
and LC–MS.

The CHO Lec mutants isolated for resistance to 
plant lectins by Stanley and colleagues have brought 
us in-depth knowledge of the glycosylation pathway 
in mammalian cells (reviewed in [19]). However, the 
potential use of these glycosylation mutants in the pro-
duction of recombinant therapeutics with desired gly-
coforms is hampered by difficulties in adapting the Lec 
mutants to serum-free suspension culture. In order to 
isolate CHO glycosylation mutants with the potential 
to be host cells in biomanufacturing, we have isolated 
a panel of glycosylation mutants from CHO-K1 cells. 
Cytotoxic lectin RCA-I was one of the lectins used to 
isolate CHO mutants. RCA-I was selected because it 
was reported to be specific for terminal β1,4-linked 
galactose and thus would allow us to isolate a panel 
of CHO glycosylation mutants with genetic defects 
in the N-glycosylation pathway upstream of galactose 
addition. Unexpectedly, genetic analysis of more than 
100 RCA-I-resistant CHO mutants showed that they 
are all the same type of mutants with different genetic 
mutations in the Mgat1 gene [15], similar to Stanley’s 
Lec1 mutant. This gene codes for GnT I. Without 
functional GnT I, the cells fail to transfer N-acetyl-
glucosamine to Man

5
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2
 glycan. A plausible 

explanation for having only GnT I-deficient mutants 
surviving RCA-I selection is that the lectin is not spe-
cific for terminal β1,4-linked galactose but possibly 
binds many glycan structures except for Man
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[20]. All these CHO mutants with dysfunctional GnT 
I have been named CHO-gmt4 cells. Different from 
Lec1 cells, CHO-gmt4 cells can be easily adapted to 
serum-free suspension cultures.

An important finding in this work was that the res-
toration of functional GnT I in these CHO-gmt4 cells 
led to an increase in the sialylation of recombinant 
EPO both in transient expression as well as in stably 
transfected clones [15]. The overexpression of GnT I 

“…under our experimental conditions the 
endogenous expression levels of all 31 genes 

were sufficient for CHO-K1 cells to glycosylate 
recombinant EPO.”
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in wild-type CHO cells did not yield an equivalent 
increase in sialylation of EPO. Quantitative analysis of 
the N-glycans released from recombinant EPO-Fc pro-
duced by GnT I-rescued CHO-gmt4 revealed a ∼20% 
increase in sialic acid content compared with that pro-
duced by wild-type CHO-K1 cells. This increased 
in sialylation was attributed to increased N-glycan 
branching in CHO-gmt4. The molecular mechanism 
for this phenomenon remains unknown [15,21].

To further enhance the industrial applicability of 
CHO-gmt4 cells, the dihydrofolate reductase gene 
in CHO-gmt4 cells was inactivated using zinc-finger 
nucleases to allow for the amplification of the EPO 
transgene with methotrexate. We found that several 
methotrexate-amplified clones maintained the ability 
to produce highly sialylated EPO. One of these clones 
was cultured in a perfusion bioreactor that was used 
in an existing industrial EPO-production bioprocess. 
The EPO produced by the mutant line again main-
tained superior sialylation compared with the commer-
cially used EPO producing CHO clone cultured under 
the same conditions [21]. HPAEC-PAD and MALDI-
TOF MS analyses showed that the EPO produced 
by the GnT I-rescued CHO-gmt4 cells contained 
higher amount of tri- and tetra-antennary glycans [21]. 
These results demonstrated the industrial potential 

of CHO-gmt4 mutant as a production cell line for 
producing highly sialylated glycoprotein therapeutics.

Less sialylated glycoforms of recombinant protein 
drugs are required to be removed during the purifi-
cation steps by the regulatory authorities to ensure 
therapeutic efficacy. Enhancing sialylation for the 
recombinant biologics will significantly simplify the 
purification process and reduce the cost of drug pro-
duction. Different strategies have been previously 
employed to improve sialylation of recombinant pro-
teins in CHO cells. Through the use of CHO-gmt4 
cells we offer a novel strategy to improve the sialylation 
of recombinant EPO. We aim to analyze the sialylation 
profiles of other glycoproteins using the same cells. 
CHO-gmt4 cells represent an attractive cell line to 
produce highly sialylated recombinant therapeutics.
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