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Critical to the biopharmaceutical industrial objectives are robust, reproducible 
processes which result in consistent product quality and yields. These parameters 
support the product safety and efficacy as well as control over the process and 
supply chain. To have a consistent cell culture process, process inputs must be reliable. 
Historically cell culture media have been a source of variability through the inclusion of 
complex components such as hydrolysates and sera. Industry has shifted to chemically 
defined basal and feed media and seen reduced variability but chemically defined 
media have not eliminated process variability. This review will consequently focus on 
media variability, the subsequent outputs of lactate and ammonia production and 
product quality, and the possible routes to eliminate process inconsistency.

The overall goal of the biopharmaceutical 
industry is to manufacture safe and effica-
cious proteins with a reliable supply chain, 
such that the patient always receives the 
expected drug product. A robust cell cul-
ture production process is critical to achiev-
ing this objective. To begin, first we define a 
cell culture production process as all aspects 
involved starting from a frozen vial contain-
ing cells to the harvest of the production bio-
reactor. Between the frozen vial and the cell 
culture harvest, there are several stages. First 
the frozen vial is thawed and fresh cell culture 
medium is inoculated. After a growth period 
typically on the order of days, cells are trans-
ferred from the first stage to a second stage 
of a larger working volume. This growth 
incubation period followed by a transfer into 
a larger working volume is repeated until 
sufficient cell numbers are accumulated 
and typically four to eight growth stages are 
required. Finally the production bioreactor is 
inoculated.

Consistency in cell culture production 
processes depends on the cell line and all 
of the process inputs. Each aspect must be 
considered for its overall robustness in order 
to ensure a consistent process. Impacts on 
quantity and quality of the process and prod-

uct are often but not necessarily interrelated. 
Quantitative aspects are best expressed in 
form of volumetric productivity (Q

p
, mass 

per volume per time), whereas qualitative 
aspects are represented in the product qual-
ity (PQ) profile of the drug substance. Both 
Q

p
 and PQ are standard abbreviations used 

within the cell culture industry. The titer of a 
cell culture process (simply the product con-
centration in the harvested culture suspen-
sion) often serves as a simplified measure for 
productivity. Variability in the cell line may 
result in different metabolism, which in turn 
can negatively affect titer and PQ. Variability 
in process inputs and controls can have simi-
lar negative effects. Understanding the spe-
cifics of how each of these variables impact 
Q

p
 and PQ can ultimately lead to better 

control of both parameters. A great deal of 
process variability is inherently dependent on 
cellular metabolism as metabolism is a major 
driver for culture pH, metabolite (such as 
glucose, lactate, amino acids and ammonia) 
concentrations for example which are all crit-
ical for Q

p
 and PQ. Consequently, the vari-

ables that impact Q
p
 and PQ can be thought 

of as the variables that impact metabolism. 
A great deal of work has resulted in very 
high Q

p
 without negative effects on PQ, 
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and recent reports have demonstrated high titers up to 
10 g/l and Q

p
 in excess of 500 mg/l/d [1–5]. Innovations 

in process have been required, including a strong focus 
on cell culture media optimization.

Cell culture processes that deliver quantitative 
results with a coefficient of variation of less than 15% 
are considered well controlled. Some of the common 
analytical tools used to monitor cell culture processes 
have approximately this much inherent variation [6,7]. 
Despite these limitations, when the cell culture process 
is maintained in such a range, PQ typically falls well 
within established specifications. Process variability 
as we define in this review would include variability 
outside of the 15% window, and also may deliver PQ 
outside of specifications or at least clearly outside of 
typical variability of PQ.

To understand variability that is rooted in metab-
olism, first a basic understanding in metabolism is 
necessary. Lactate production is a key aspect of mam-
malian cell metabolism, and there are substantial dif-
ferences observed between lactate producing versus 
consuming cultures [8,9]. As metabolism is strongly 
impacted by the extracellular condition, the cell cul-
ture medium plays a key role. Historically hydrolysates 
and sera were common aspects of industrial processes. 
Recently chemically defined media have been replac-
ing these undefined components in order to specifically 
eliminate the lot-to-lot variability observed from these 
undefined and complex mixtures. Even with chemi-
cally defined media, there may still be variability in 
PQ as even small changes in some media components 
have been shown to result in altered metabolism and 
PQ. A logical conclusion would be to further increase 
control of raw materials that become part of a culture 
production process. In addition, advanced process con-
trol tools may help to further enhance culture perfor-
mance consistency and robustness against raw mate-
rial variability. Together advanced process control and 

enhanced raw material control promises significant 
improvement of consistency and robustness against 
interfering variables. In this review, we will address the 
basics of metabolism, the variability observed using 
hydrolysates and chemically defined media, the meta-
bolic effects on PQ, and also the routes to limiting cell 
culture process variability.

Fundamentals of mammalian cell 
metabolism
Glucose is the main energy source and thus a founda-
tion of most cell culture processes for industrial appli-
cations. At a high level, when glucose is consumed for 
energy production, glucose feeds down the glycolysis 
pathway and then diverges either to lactate as a waste 
product or into the tricarboxylic acid cycle. Despite 
glucose being the main carbon source for metabolism, 
some processes also include other carbohydrates, either 
added exogenously or as a contributing factor of a com-
plex media ingredient. Galactose has been added to cell 
culture processes specifically in order to impact PQ [10–
13]. Yet galactose may affect metabolic profiles and spe-
cifically lactate production or consumption in certain 
situations [14–17]. Amino acids are consumed or pro-
duced and fed into cell mass and metabolism as well by 
producing or consuming tricarboxylic acid cycle inter-
mediates such as α-ketoglutarate. When amino acids 
are consumed, ammonium may be released as a waste 
product. Ammonium may be toxic [18–20] and may 
lead to reduced galactosylation and sialylation [21–24] 
by changing intracellular pH gradients and nucleotide 
sugar levels [25]. Ultimately this may lead to decreas-
ing expression levels of sialylation-related genes [26]. 
Figure 1A depicts this high-level overview of metabo-
lism and also demonstrates via the schematic how 
the metabolic pathways relate to PQ modifications. 
Figure 1B breaks down product modifications that may 
occur by chemical and biological mechanisms. Bio-
logical mechanisms for product modifications may be 
intracellular or extracellular. From within the overall 
context presented in Figure 1, this review seeks to high-
light how metabolic pathways may lead to variation in 
the related PQ attribute.

Consistency in glucose consumption rates will dic-
tate the consistency of the process. Historically many 
processes exhibited lactate production phenotypes 
only, similar to the Warburg effect [27–30]. Lactate pro-
duction directly leads to a decreased pH. Eventually a 
process will reach the lower deadband for controlling 
pH, and base will be added. This has the secondary 
effect of increasing osmolality. Consequently varia-
tions in lactate metabolism may impact productivity 
and PQ through a direct effect of osmolality [31–33]. 
In addition, variations in pH may impact productiv-

Key terms

Volumetric productivity (QP): Refers to the mass of 
protein produced per unit volume per unit time. The 
volumetric productivity connects directly to the facility 
capacity to produce the protein of interest. The typical unit 
is mg/l/d.

Product quality (PQ): Refers to all of the modifications 
of the protein, including glycosylation and amino acid 
modifications such as deamidation. Changes to the PQ 
profile connect directly to the safety and efficacy of the 
protein of interest.

Process variability: Refers to the consistency of the 
process. For the purposes of this review, a variable process 
is defined as one where the cell culture parameters vary 
by more than 15% or the PQ is found to be outside of the 
specifications for that product.
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Figure 1. Linkages between cell culture concerns and product quality. (A) High-level overview of the central metabolic pathways 
important for cell culture. Subsequent effects on cell culture process outputs are highlighted in italics. Subsequent effects on product 
quality are underlined. (B) High-level overview of product modifications are broken down by biological and chemical modifications. 
Modifications with a biological basis are further broken down as intracellular versus extracellular modifications.
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ity [34–37] and can alter PQ as well [38]. The impact of 
changes in pH can be mitigated by controlling within 
a small pH range. Yet the benefits must be counter-
balanced with the risks of more variable osmolality 
profiles and additional carbon dioxide accumulation 
caused by standard acidic control by carbon dioxide 
delivery.

Lactate metabolism always has been of consider-
able interest. Much of the recent focus has been on 
the different extracellular and intracellular conditions 
required to favor lactate consumption as compared 
with lactate production phenotypes [3,8,9,39–44], and 
variability in lactate production has been shown to be 
linked to overfeeding [45], dissolved oxygen [46], cul-
ture temperature and pH [47,48]. Process temperature 
and DO are well-controlled parameters, but pH may 
vary substantially during fed-batch culture due to its 
relationship with pCO2 and other metabolites. At 
higher culture pH, the increased glucose uptake and 
lactate production rate are related to increased activi-
ties of glycolytic enzymes [49]. The consumption of 
many amino acids is significantly elevated at higher 
pH as well. In order to control lactate at very low lev-
els, one novel solution has been to feed glucose as part 
of high-end pH control strategy, allowing lactate to be 
consumed and very low levels of glucose maintained 
to minimize lactate production [42]. Another approach 
to dealing with lactate production has been to down-
regulate lactate dehydrogenase [50,51]. As copper levels 
have been shown to be critical to lactate metabolism 
[9,40,52] and copper is a trace metal in most media for-
mulations, it is clear that a well-established medium 
without variation in trace components is required for 
a robust process.

While it is beneficial to keep lactate at a lower level, 
increased ammonium has been observed when lactate 
depleted during fed-batch culture. As ammonium 
is critical to many PQ attributes, feeding lactate or 
pyruvate to sustain alanine production may provide 
the benefits of reducing ammonium accumulation [53].

Defining process variability & sources of 
variation
With any process, there is an expectation of established 
performance based on historical data using a suitable 
number of cultivations. Variation in an individual 
experiment away from the historical data is comprised 
of the total variability of the analytical instrumenta-
tion and the cell culture process. When analyzing the 
system, variation in cell culture data must be investi-
gated within the context of both sources of variability. 
Here we discuss these sources of variation separately 
and present an example data set for analysis.

Analytical variation
Analytical instrumentation reproducibility is easy to 
quantify, and there are several reports demonstrating 
the accuracy of standard cell counting methods and 
metabolite quantitation. Viable cell density and viabil-
ity are key process parameters to monitor as differen-
tial cell growth and cell death are definitely expected 
to result in altered metabolism and PQ. It has been 
shown that standard automated cell counters, such as 
the Cedex, have sufficient instrument-to-instrument 
variability that prevents their interchangeable use 
[6]. In fact, rigorous and daily calibration procedures 
were required in order to get agreement between cell 
counters at less than 5%. Prior to those calibrations, 
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instrument-to-instrument variation was observed at 
up to 15.8% [6]. This is a critical parameter to under-
stand as it implies that a culture measured at 10 × 106 
viable cells/ml is potentially identical to another 
culture measured at approximately 8.6 × 106 viable 
cells/ml. Ordinarily one would assume a decrease in 
cell growth in the latter culture, but instrument-to-
instrument variation cannot be ignored. Automated 
cell counters are certainly improved over manual 
counts, but difficulty with determining viability for a 
low viability sample remain [54]. New automated cell 
counters based on the Coulter principle are recently 
available with reports of excellent reproducibility 
[55,56]. For glucose quantification, Bawn and cowork-
ers compared the industrially common, membrane-
based technology in the NOVA Bioprofile® 400 with 
absorption photometric-based technology in the 
Roche Cedex Bio [7]. The report demonstrates that 
the membrane-based glucose measurements have a 
residual SD of approximately 12% while the absorp-
tion photometric-based measurements have a residual 
SD of approximately 5%. Both technologies report 
glucose concentrations that are not statistically dif-
ferent than each other. For osmolality measurements, 
the freezing point depression technique has been 
around for decades and the instruments are highly 
accurate. Osmometer manufacturers typically report 
less than 1% variation, and variability in osmolality 
measurements usually is not of concern.

Biological variation
Biological sources of variation can come from diverse 
aspects of the process. Briefly, the cell bank used, the 
seed expansion robustness and the production process 
control strategy and process design may all impact the 
production cell culture. As examples, cells cryopre-
served during stationary phase are generally accepted 
to recover after the thaw stage with inferior results 
as compared with cells frozen during exponential 
growth. Similarly a seed culture which permits cells 
to reach stationary phase may not reach the desired 
transfer cell density in the subsequent scale up stage. 
It is expected that most processes would avoid these 
problems in the process development of cell bank-
ing and seed expansion. Finally in the production 
process, changes in a simple process parameter such 
as pH would be expected to affect lactate produc-
tion, which subsequently would affect base addition 
and osmolality as discussed earlier. Some cell culture 
production processes are sensitive to osmolality [31,33]. 
Osmolality induced by base addition is then further 
complicated by the type of base used. Many cell cul-
ture processes utilize carbonate as compared with a 
hydroxide source to adjust pH. While hydroxide con-

tributes a single cation equimolar for each contribu-
tion of base, carbonate used as base contributes two 
cations as well as the corresponding bicarbonate equi-
librium to the total osmolality. Besides the osmolality 
effect, there will be an additional increase in dissolved 
carbon dioxide that may also affect growth, viability, 
metabolism [57,58] and PQ [59]. From a related stand-
point, physical differences between production lines 
in a manufacturing facility may lead to unintended 
biological variation. Consequently validation of simi-
lar production lines to demonstrate the equivalency 
is important such as recently reported by Minow and 
coworkers [60]. Some differences between production 
lines can be determined through extensive computa-
tional fluid dynamics and detailed physical charac-
terization of bioreactors, and minimizing the differ-
ences between bioreactors can aid with scalability and 
transfer of production lines [60–65]. These differences 
may lead to changes in dissolved carbon dioxide, for 
example, which in turn would affect pH and have the 
aforementioned effects on culture. Yet the combina-
tion of all of these sources of biological variation, from 
vial to production, would be expected to yield varia-
tion in peak cell density and potentially the process 
would yield different Q

p
 and PQ.

An example process
With a consistent vial to production process in place, 
the inherent cell culture process variability can be 
examined within the context of the analytical capa-
bilities. In Figure 2, normalized process data are sum-
marized from 10 production experiments performed 
in bench-scale bioreactors with example time course 
data of viable cell density, viability, pH, pCO

2
, osmo-

lality, glucose, lactate, ammonia and titer. The aver-
age data set is presented along with the time courses 
representing the average plus two standard deviations 
(SDs; referred to as the ‘high process’) and the aver-
age minus two SDs (referred to as the ‘low process’). 
Using two SDs captures 95% of the expected perfor-
mance based on the inherent reproducibility possible 
of the entire system. This example data set represents 
an instance of a consistent process. With an estab-
lished reproducible process, true process variation 
becomes easier to diagnose and ultimately identifies 
the source of the problem. In this case study, the cell 
growth and productivity fall within the aforemen-
tioned range for a nonvariable process of less than 
15% variation. Despite the consistency of this process, 
one of the largest relative differences in these data at 
harvest between high and low processes of the nine 
parameters considered is the glucose concentration. 
To determine the source of the discrepancies between 
different control experiments, one must look at the 
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sources of the data. As the analytical variation from 
measuring the glucose concentration is expected to 
be in the order of only 10%, this is only a fraction 
of the variation observed. Therefore a majority of the 
changes in measured glucose concentration must be 
directly process related.

A logical conclusion would be that differential 
growth would yield the different harvest glucose con-
centrations. When analyzing the data presented in 
Figure 2, the variation in cell growth depicted could 
be entirely captured by variation in cell counters as the 
data set was generated over time in a laboratory using 
multiple automated cell counters. Despite some vari-
ability in glucose, any actual differences in cell growth 
from the high process to the low process cannot be dis-
cerned by using an automated cell counter. All samples 
from individual experiments utilizing automated cell 

counters ideally should be analyzed on the same cell 
counter for consistency. This was the practice in gen-
erating the data in Figure 2. As a general rule, data sets 
comparing growth measured on different cell coun-
ters should be analyzed with the inherent difficulty in 
cell counting accuracy in mind. While it is possible 
that glucose consumption differentiated as a result of 
the different cell densities achieved, this cannot be 
conclusively determined.

With respect to the other process parameters pre-
sented, variation in glucose represents approximately 
50% of the osmolarity differences between the high 
and low processes presented in Figure 2. Approxi-
mately 25% of the osmolality difference is explained 
by variation in base addition resulting in a concomi-
tant sodium and osmolality increase (data not shown). 
As osmometers are very accurate, the other divergence 
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must be due to analytes other than glucose and base. 
The discrepancy in lactate and ammonium measure-
ments are not large individually but could be used 
to explain the total variation observed in osmolality 
when combined with glucose and base consump-
tion. Despite these variations, the titer and thus the 
volumetric productivity of the culture show minor 
differences.

Overall, the process depicted in Figure 2 was robust 
with respect to cell growth to the degree that can be 
discerned by the measurement technique. The ques-
tion then remains what would cause the changes 
resulting in the high process glucose concentration as 
compared with the low process glucose concentration. 
When comparing the differences at inoculation to the 
analytical capability to measure changes, the variation 
in process inputs are within the error of the measure-
ments. The process inputs depicted are therefore not 
in question. The major source of variation then would 
be expected to be biological in nature, which may 
include cell growth differences. Such an example is 
a useful tool against which to compare more extreme 
variation. In a condition where the process was 
varying to a concerning degree, a targeted question 
could then be posed as to what may induce changes 
in glucose consumption rate. As cells are sensitive to 
changes in media formulation, the sections that follow 
will focus on how mammalian cells respond to the 
extracellular environment, how the media may be dif-
ferent than the intended formulation and how inher-
ent variability in some media formulations affects 
the robust performance of the process with respect to 
productivity and PQ.

Bioreactor composition
One seemingly innocuous decision is the choice of 
bioreactor composition for the production process. 
Historically large-scale cell culture processes were 
cultivated in stainless-steel bioreactors, with stainless 
steel expected to not affect the cell culture. However, 
stainless steel is known to leach metals including iron, 
nickel and chromium [66–69]. Even extreme measures, 
such as extensive washing regimens, to eliminate trace 
metals are not sufficient as metals will still leach from 
equipment [70]. While most of the literature in this 
area pertains to cytocompatability for medical devices 
and final product formulations, cell culture produc-
tion processes are also neutral pH systems, in bio-
logically relevant buffers, with similar metal leaching 
profiles. The leaching rates of metals shown in these 
studies would result in generally low concentrations 
in cell culture media. However, given that metals are 
frequently present in trace amounts in cell culture 
media, the process must be designed to be robust to 

these potential contributions. In addition, variation in 
metal content of cell culture media has been shown 
to impact PQ and productivity. These effects are 
discussed later in the cell culture media composition 
section of this review.

Over the last decade, there has been a significant 
expansion of the disposable bioreactor market with 
an expected market share of 20% over the next few 
years [71]. Disposable bioreactors have been shown to 
be scalable up to 1000 l with similar performance to 
traditional bioreactor systems at up to 15,000 l scale 
[72]. Unfortunately disposable bioreactors have also 
been the source of several problems. Hammond and 
coworkers identified bis(2,4-di-tert-butylphenyl)phos-
phate as a toxic leachable compound from a disposable 
cell culture bag [73] which caused poor cell growth. 
Others have developed a generic growth test method-
ology prior to manufacturing use of disposable sys-
tems [74,75] and even screening up to 13 disposable bag 
types and 8 vendors [76,77]. Growth inhibition again 
by a toxic, leaching compound from the cell culture or 
media container has to be considered and eliminated. 
In addition, cholesterol-dependent cell lines required 
novel solutions in order to permit cultivation in dis-
posable bioreactors as the cholesterol has been shown 
to interact with the plastic resulting in cell growth 
inhibition [78,79]. While the bioreactor composition 
may initially seem innocuous, this is not a decision 
that can be ignored when designing a robust process. 
Differential concentration in metals or toxic organic 
compounds varying across a manufacturing campaign 
clearly has the potential to induce variability in pro-
cess performance. As the stainless-steel bioreactor is 
not the only potential source for metal contribution to 
the system, further discussion on metals is reserved for 
the section on cell culture media composition.

Variability in cell growth may result in PQ 
changes
A common focus for industrial application is identify-
ing how a process variation leads to a measured PQ 
change. In this section, we aim to simplify the process 
variation to a consideration of either overgrowth or 
undergrowth. Beginning with the overgrowth con-
dition, it is easy to consider that increased cell mass 
will occur concomitantly with decreased extracellular 
nutrients due to increased consumption of nutrients 
to create the cells. Complete consumption of amino 
acids may lead to cessation of growth even when the 
amino acids are nonessential [80]. Cessation of growth 
due to overgrowth early in a process may lead to a steep 
decrease in cell viability, which can impact PQ due to 
increased sialidase activity for example [81]. Later in 
the culture, the decreased peak cell density will ulti-
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mately lead to an overfeeding condition, potentially 
to high lactate levels [45], but certainly to high osmo-
lality. As discussed earlier, high osmolality [31–33] can 
affect glycosylation. Alternatively overgrowth can 
lead to consumption of a particular amino acid and 
subsequently the cell may substitute a different amino 
acid for the desired amino acid in a protein [82,83]. 
Sequence variants may have an effect on efficacy 
as even single amino acid changes can impact anti-
body–antigen interactions [84]. Besides amino acids, 
glucose concentration will inevitably be decreased by 
increased growth early in the process. Decreased glu-
cose concentrations may lead to changes in sialylation 
and high mannose species [85]. Complete glucose 
deprivation for extended periods has been shown to 
result in 45% nonglycosylated antibody [86]. Further-
more some processes are tailored to achieve optimized 
levels of galactosylation through feeding specific com-
ponents to specified concentrations [10,32,87]. Increased 
cellular consumption of these nutrients may decrease 
the effectiveness of these strategies.

From the perspective of undergrowth in cell cul-
ture, overfeeding certainly will occur, and nutrient 
depletion will not be a concern. However, excessive 
extracellular nutrition will be a concern. Cysteine con-
centration has been shown to directly impact trisulfide 
content of monoclonal antibodies [88] and accumula-
tion of cysteine due to undergrowth leads to increased 
trisulfides. Trisulfide bonds are disulfide bond with an 
extra sulfur introduced in the linkage. Trisulfides have 
been identified on a wide variety of antibodies [89–91]. 
Glycation, which is a nonenzymatic chemical reaction 
between glucose and the antibody, is a PQ concern 
[92,93] and is caused when glucose accumulates extra-
cellularly. Excessive nutrients also lead directly to high 
osmolality and the subsequent effect on glycosylation. 
High osmolality can induce apoptosis [58], decrease 
growth [57] and increase sialidase levels [81]. To combat 
these issues, Yuk and coworkers have specifically devel-
oped a strategy around avoiding glycation by control-
ling glucose feeding [94]. Anti-apoptotic genes includ-
ing Bcl-x

L
 have also been a major focus for research in 

order to limit this pathway’s effect on productivity and 
PQ [3,95–97].

Cell culture media composition
Cell culture media composition is a critical factor for 
cell culture process productivity and PQ. Historically 
processes were designed based on the productivity 
enhancing properties of hydrolysates or sera [98,99]. 
Hydrolysates and sera are inherently complex compo-
nents and therefore are not consistent. To handle the 
variability, screening lots becomes a necessary exercise 
[100–102] and screening different hydrolysate sources 

has been shown to effect productivity and PQ [103]. 
Recent work has investigated the nature of the com-
ponents enhancing productivity and growth [104,105]. 
Sera have largely been eliminated from current pro-
cess development workflows as an attempt to limit 
exposure to adventitious agents. But both hydroly-
sates and sera should be eliminated to enhance process 
consistency.

Due to this raw material variability, the indus-
try has shifted to chemically defined media. Several 
reports have demonstrated direct improvements in 
productivity by optimizing media [2–4,106]. Conse-
quently consistency in cell culture media is critical, 
as the media were specifically designed for the pro-
ductivity and PQ which result from that chemical 
composition. Despite removing lot-to-lot variability 
by shifting to a defined media formulation, there 
have been several reports of issues. Sodium carbonate 
was identified as an unexpected source of copper that 
affected productivity [107]. In the context of modern 
chemically defined processes which achieve very high 
cell mass and productivity, trace elements become 
even more important. Unintended metal contribu-
tions from raw material components potentially can 
also affect PQ. Changes in the copper concentration 
have been shown to affect basic variants and aggrega-
tion [108,109]. As another potential example, an increase 
in manganese concentration in media has been shown 
to affect glycosylation site occupancy and galacto-
sylation [10,11,32,87,110]. A chemically defined process 
would be designed with a specific manganese concen-
tration as the intended concentration and expected 
PQ. In these examples then, a shift in manganese or 
copper concentration may result in PQ out of specifi-
cations, similar to the example of unexpected produc-
tivity from the unintended copper. A critical aspect 
of the robust performance anticipated from chemi-
cally defined media is the routine production of the 
same desired media formulation every time. When 
ordering a proprietary media formulation from two 
different vendors, there are reports of media arriv-
ing as different colored powder clearly demonstrating 
that the chemical composition was not identical from 
the two suppliers [111]. Various factors including the 
blending and heat generated during the media pow-
der milling process have been implicated in chemi-
cally defined media variability [112]. The solubility, in 
fact, of individual amino acids has been shown to not 
be a constant from vendor to vendor or lot to lot [113].

In addition, chemically defined media has been 
linked directly to the PQ attribute of drug substance 
color. Recent reports have linked iron and vitamins 
[114,115], and even a vitamin not natively in the cell cul-
ture process [116], to terminal drug substance color. In 
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the latter case, the vitamin identified to cause the pink 
drug substance color was a light degradation product of 
another vitamin. Light degradation of media can also 
affect cell culture performance and leads to decreased 
cell growth via a mechanism likely related to degraded 
riboflavin and tryptophan [117]. As a result of these 
challenges, LC/MS [117] and fluorescent approaches 
[118] have been developed to monitor the degradation 
products.

Eliminating variability to establish process 
consistency
Cell culture media are a source of process variability, 
whether from complex or chemically defined media. 
Establishing firm control over the quality of the cell 
culture media to be used in an industrial process 
therefore is paramount to achieve process consis-
tency. Table 1 summarizes a wide variety of currently 
published methodologies used to analyze cell cul-
ture media. To a large degree, most of these methods 
involve a screening approach, either from an analytical 
chemistry or cell culture perspective. There has been 
a strong shift toward this screening approach, eas-
ily observable in the literature, with an emphasis on 
spectroscopic methods [100,101,112,119–126]. Spectroscopic 
methods enable detection of new or unexpected com-
ponents as well as the possibility of simply detecting 
difficult to quantitate differences. As a result, it has 
been possible to detect differences in hydrolysates and 
ultimately correlate to performance [100,101,120,124]. An 
alternative approach is to actively screen these com-
plex components with a use test and cell culture [102]. 
Both approaches can be summarized as identifying the 
problem in a process input and preventing the prob-
lem from entering the bioreactor. In addition, both 
approaches require implementation of an active moni-
toring program for potential problematic media ingre-
dients. Such a program requires the identification of 

the root cause of the variability a priori. Screening out 
problems ahead of time is a direct solution to establish 
process consistency and should lead to the elimination 
of some variability.

However, not all problems may be due to identi-
fied media concerns or even to the media itself. The 
next logical step is to institute superior control over 
the bioreactor process step itself. In this vein of think-
ing, spectroscopic methods have recently become very 
popular as ways to monitor cell culture [127–139] as 
replacements for more traditional methods of moni-
toring [85,140–143]. The methods are targeted at measur-
ing a wide variety of common cell culture parameters, 
including glucose, biomass and even off-gas analy-
sis, with many of these analyses capable of provid-
ing continuous at-line or online monitoring. Table 2 
summarizes the bioreactor monitoring techniques as 
well as whether the techniques were used as part of a 
feedback control methodology. Of these technologies, 
off-gas analysis used for controlling feeding regimes in 
a feedback loop is the best established [144,145]. Simi-
lar approaches have been used more recently using an 
open-loop controller and a predictive model, measur-
ing oxygen consumption and maintaining glutamine 
at appropriate levels in order to ensure process con-
sistency [146,147]. Focused-beam reflectance measure-
ment was utilized to measure biomass accumulation 
online [148]. An at-line HPLC was utilized to measure 
charge variants every few hours in one of the few direct 
measurements of PQ [149].

To date, most of the reports demonstrate pure moni-
toring approaches, as only a few methods have already 
been implemented as feedback control strategies shown 
to improve processes. As pH is routinely measured 
online as part of industrial cell culture processes, uti-
lizing pH as an approach to control glucose concen-
tration was very effective at maintaining low lactate 
concentrations [42]. Alternatively, glutamine was con-

Table 1. Summary of raw material monitoring tools and approaches.

Methodology Problem identified Control approach Ref.

Biological Lot-to-lot variability in hydrolysates Cell culture use test [101–103]

Fluorescence excitation–
emission matrix spectroscopy

Light degraded media Screen media [121]

Fluorescence spectroscopy Variation in basal medium powder 
and hydrolysates

Screen media [100]

Liquid chromatography/mass 
spectrometry

Light degraded media Screen media [117]

Near-infrared spectroscopy Variation in basal medium powder Screen media [112,120,126]

Nuclear magnetic resonance Lot-to-lot variability in hydrolysates Screen media [124]

Solubility Variation in intra- and inter-vendor 
lots

Screen suppliers [113]
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trolled through online measurement via a YSI 2700 
biochemical analyzer, resulting in decreased ammonia 
and increased cell growth [85]. If glutamine was allowed 
to deplete to less than 0.1 mM, high mannose species 
were increased and sialylation decreased, which shows 
the criticality of the control method in this process. 
Tsang and coworkers developed an optimized feed-
back control strategy based on online sampling every 
3 h and measurement of various metabolites leading to 
improved productivities [142]. A similar approach was 
presented by Lu and colleagues with glucose controlled 
at a targeted level as well as the demonstration of feed-
back control based upon online capacitance in paral-
lel [1]. While the report shows that glucose monitor-
ing was the superior target, the metabolite monitoring 
occurs every few hours. Automated flow cytometry has 
been implemented to monitor viable cell density, cell 
size and cell cycle [150] and also to control fed batch 
operation [151].

Spectroscopic methods for measuring metabolites 
hold additional promise over these automatically 
sampled systems requiring withdrawal of culture 
from the bioreactor. The spectroscopic methods are 
noninvasive and capable of measuring far more ana-
lytes at a far more frequent rate. Continuous moni-
toring of cell culture greatly increases the knowledge 

base as to the direct metabolic kinetics as compared 
with traditional daily sampling. Daily sampling can 
completely obfuscate meaningful dynamics. The 
shift toward continuous monitoring of cell culture 
is a step in the right direction. Implementation of 
such technologies in manufacturing settings requires 
the combined applied knowledge base of analytical 
chemistry, biochemistry and engineering. However, 
advanced monitoring still is only a step. To truly 
establish consistent processes, these spectroscopic 
methods could be used in feedback loops to control 
the process at a desired set point [152]. Some initial 
work has recently demonstrated that glucose could be 
controlled in a feedback loop using a nonlinear model 
predictive controller and Raman spectroscopy as the 
measurement technique [153], which demonstrates the 
future potential applications.

Conclusion & future perspective
With all of the positive attributes of systems such as 
near-infrared and Raman spectroscopy, several of the 
reports discuss relatively large measurement errors of 
over 10% of the targeted analyte which may make a 
continuous feedback control strategy challenging. Yet 
it is clear that these spectroscopic methods provide a 
great deal of data more than a traditional autosampler 

Table 2. Summary of bioreactor monitoring tools and parameters measured.

Methodology Feedback control 
implemented

Parameters measured Ref.

At-line HPLC No Charge variants [149]

Automated flow cytometry Yes VCD, TCD, viability, cell size [151]

 No VCD, TCD, viability, cell size, cell 
cycle

[150]

Dielectric spectroscopy Yes VCD [1]

 No VCD, cell size [129,133]

Focused beam reflectance 
measurement

No Biomass concentration [148]

Glucose fed based on pH Yes pH [42]

Near-infrared spectroscopy No Glucose, lactate, glutamine, 
ammonium, osmolality, VCD, PCV

[128,131,132,134]

Off-gas Yes Oxygen, carbon dioxide [144–147]

 No Oxygen, carbon dioxide [135,139]

Online metabolite sampling Yes Glucose, lactate, ammonium, 
glutamate, glutamine

[1,85,142]

 No Glucose, lactate, VCD, viability [140,141]

Raman spectroscopy Yes Glucose, lactate, glutamine, 
ammonium, VCD

[153]

 No Glucose, lactate, glutamine, 
glutamate, ammonium, VCD, TCD

[127,137,138]

PCV: Packed cell volume; TCD: Total cell density; VCD: Viable cell density.
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connected to a metabolite analyzer could provide. 
The power of more frequent online sensing combined 
with further improvements in chemometrics and the 
appropriately designed control strategy should ulti-
mately lead to better controlled cell culture processes. 
From a simplified perspective, it is quite clear that 
pH control is best achieved through online pH mea-
surement as compared with offline, infrequent pH 
sampling. The parallel to that simplified example in 
most current industrial processes is the fixed nutri-
ent feeding schedules that cannot account for varia-
tions in performance as only offline, infrequent cell 
growth and analyte data are available. Whereas the 
current standard is fixed nutrient feeding schedules, 
the future contains dynamic feeding schedules deter-
mined by advanced control loops dictated by spectro-
scopic sensors contained within the bioreactor. This 
idealized future assumes that feedback control using 
spectroscopic techniques will eventually reach the 
level of true process analytical technology. To achieve 
this goal, the chemometric field must continue to 
advance such that individual analyte measurements 
become more reliable and the controllers that depend 
on chemometric measurements can be more effec-
tive. For proper implementation of such advanced 
control loops, soft sensors are likely to be involved. 
Luttman and colleagues have recently described the 
current status of soft sensors and made additional 
recommendations including the expectation that 
these sensors simplify industrial standard operating 
procedures [154].

Once the industry fully understands the compet-
ing factors that result in the variable measurements, 
the path forward will clearly be to harness that infor-
mation for true process control generating consistent 
batches in terms of yield and PQ. Processes designed 
with these capabilities in mind are speculated to be 
dynamic as the process would be adjusted potentially 
to account for cell growth, metabolism and potentially 
even PQ. Such a vision will only come to fruition from 
an extensive amount of process development knowl-
edge. Implementing that process knowledge into a 
control strategy, combined with detailed nearly con-
tinuous or continuous online trending of both cells 
and metabolism, is the desired future state. Processes 
which include induction steps critical to productivity 
or PQ would in particular obtain additional control 
through the use of a dynamic process strategy. The 
induction could be specifically targeted at the appro-
priate time based on the increased trending capabili-
ties. When that process is validated at a manufactur-
ing site, then the manufacturer will have complete 
control over both PQ and Q

p
 in those batches.
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Executive summary

Background
•	 Mammalian cell culture processes may be variable in both productivity (Qp) and product quality (PQ).
•	 Control of the supply chain and the safety of the product require process consistency.
•	 Cellular metabolism can affect PQ as changes in metabolic waste products such as lactate and ammonia can 

ultimately result in altered PQ.
Defining process variability
•	 Acceptable process variation is defined as less than 15% in a measured cell culture parameter.
•	 There are external sources of variation, such as analytical technique variation and instrument-to-instrument 

variation, which may contribute substantially to the total measured cell culture variation in a process.
Sources of variation
•	 The physical bioreactor composition may affect process outcomes, whether due to the contribution of metals 

leaching from stainless steel vessels or toxic organic molecules leaching from disposable single-use vessels.
•	 Product modifications may change from a variety of sources, including amino acid and glucose depletion as 

well as amino acid and glucose accumulation.
•	 Shifting to chemically defined media from complex media additives has not completely eliminated sources of 

variation in cell culture. Variation in drug substance color has been a recent point of interest in the literature.
Eliminating variability to establish process consistency
•	 Spectroscopic tools have been applied to screen raw materials as well as to monitor cell culture performance. 

These tools have been used to even predict cell culture performance from raw material screens.
•	 Spectroscopic tools can monitor the bioreactor more frequently than automated sampling devices to 

more traditional analyzers. However, feedback control in order to truly generate process consistency using 
spectroscopic tools still requires additional investment in order to achieve such a goal.
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