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All cells of the immune system ultimately derive 
from the bone marrow (BM), and the challenge 
of maintaining a functional immune system over 
a lifetime of many decades is critically deter-
mined by BM function. Blood cell production 
is a complex and tightly regulated process that 
depends upon a small number of hematopoietic 
stem cells (HSCs) that expand and differenti-
ate in an ordered fashion; as they lose lineage 
potential, they give rise to the entire repertoire of 
mature hematopoietic cells. Mammals, includ-
ing humans, possess 2 × 104 stem cells, and 
the number of HSC replications (self-renewal 
capacity) per animal lifetime is relatively con-
served and constant across species [1]. Similar to 
other somatic cells, HSCs are not immortal, but 
undergo a finite number of replications (less than 
100 times in humans [2]) before they enter cel-
lular senescence, a status in which they are still 
alive but can no longer replicate [3,4]. Considering 
that only a small fraction of HSCs are cycling at 
any given time, and that approximately 4 × 1011 
blood cells are produced each day (calculation 
based on the adult blood volume, the number 
of each of the blood cell types per µl of blood, 
and their circulatory half-life), a massive ampli-
fication process and a delicate balance between 
apoptosis, self-renewal and differentiation are 
needed to maintain homeostasis [5].

Whether the immune system is functional or 
dysfunctional, it depends upon constant input 
of precursor cells, which then enter a differentia-
tion program. The size, diversity and turnover 

of the immune repertoire are ultimately regu-
lated through the loss of differentiated cells and 
influx of novel cells that regenerate the pool. 
In humans, peripheral proliferation of mature 
lymphocytes contributes to immune homeosta-
sis, even in the newborn [6]. However, loss of 
thymic T-cell production, likely a combination 
of declining stem-cell availability and deteriora-
tion of thymic epithelial function, profoundly 
affects the ability to avoid lymphopenia and 
sustain repertoire diversity [7].

Two major observations have given rise to the 
concept that early steps in immune homeostasis 
may be abnormal in rheumatoid arthritis (RA). 
First, hematologic manifestations, involving all 
three major blood cell lineages, are frequently 
encountered in RA patients [8]. In fact, anemia 
of chronic disease is the most common RA extra-
articular manifestation, affecting up to 25% 
of patients during the first year of disease [9]. 
Leukopenia and thrombocytopenia in RA most 
frequently result from drug toxicity or the inter-
currence of infectious processes. However, RA 
and systemic lupus erythematosus (SLE) are the 
systemic autoimmune diseases most often associ-
ated with secondary autoimmune neutropenias. 
Felty syndrome and large granular lymphocyte 
syndrome, disorders with a multifactorial patho-
genesis involving humoral-mediated as well as 
cellular-mediated mechanisms, are specifically 
associated with RA [10]. Second, patients with RA 
have premature immunosenescence, essentially 
resulting in the accumulation of dysfunctional 
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T cells with a low threshold for activation, age-
inappropriate telomeric shortening and restricted 
clonal expansion capacity. The accelerated aging 
of the RA immune system brings into question 
the intactness of immune regeneration [11–16]. 
This review will focus on whether HSCs in RA 
patients are competent, how functional compe-
tence of that cellular niche can be defined and 
how abnormalities in HSC function could relate 
to the pathogenesis of RA.

Defining ‘competent’ hematopoietic 
stem cells 

In the mid-twentieth century, Metcalf and 
Moore, and Till and McCullough introduced 
the notion that multipotent cells present in BM 
are responsible for blood cell production [17–19]. 
Subsequently, the recognition that the cell 
surface transmembrane glycoprotein CD34 is 
expressed by immature hematopoietic progeni-
tors, the validation that these cells are lineage-
negative and the development of in vivo assays 
that allowed for their functional evaluation were 
key issues in the process of identifying human 
HSCs [20].

Cells with different repopulation and self-re-
newal potentials compose the HSC pool [21,22]. 
The capacity to durably regenerate hemato poiesis 
in a lethally irradiated animal remains the gold 
standard for the field. CD34 has emerged as an 
important marker in enriching HSC popula-
tions for clinical use. For hematopoietic stem 
cell transplantation (HSCT) in an autologous 
as well as allogeneic setting, and regardless of 
the source of the HSC (umbilical cord blood 
[UCB], BM or peripheral blood [PB]) [23], 
immunophenotypic isolation and characteriza-
tion of HSCs is based on the expression of CD34 
antigen. In fact, enumeration of cells that express 
CD34 on their surface by flow cytometry is the 
most frequent method to determine stem cell 
dose in apheresis and to evaluate PB stem cell 
engraftment. However, CD34 selection renders a 
heterogeneous population, and true HSCs most 
likely represent a subgroup of these cells [22]. 
Therefore, efforts to define better markers for 
HSCs (i.e., CD133+ CD34+ cells) are ongoing 
[24,25]. Moreover, CD34- cells were also recently 
shown to be competent for hematopoietic recon-
stitution with long-term engraftment potential in 
humans [26]. The precise analysis of the human 
CD34- population (which in mice includes the 
earliest stem cells) has been hindered by the lack 
of a positive marker and a simple and reliable 
assay system for these rare cells [27]. CD34- cells 
upregulate CD34 antigen expression as they 

proliferate into committed progenitors [28]. The 
gain and loss of CD34 raises the still unan-
swered question about the functional signifi-
cance of the CD34 protein. There is evidence 
supporting the concept that CD34 negatively 
regulates cell proliferation [29]. Although CD34 
silencing does not interfere with the proliferative 
capacity of HSCs, it enhances granulocyte and 
megakaryocyte differentiation at the expense of 
the erythroid lineage [29]. Also, CD34 has signal 
transducing capacity, and through the interac-
tion with L-selectin can regulate the balance 
between adhesion/anti-adhesion [30].

Functionally, HSCs are characterized at the sin-
gle cell level by their dual capacity of self-renewal 
and multilineage differentiation. Through self-
renewal, HSCs can maintain their pool, ensuring 
the integrity of the compartment throughout life, 
while their multipotency property allows for the 
generation of mature differentiated blood cell lin-
eages. Hematopoiesis is a hierarchically organized 
process in which multi potent HSCs give rise to 
progeny (oligo-potent and lineage-restricted pro-
genitor cells) that progressively lose self-renewal 
potential while they become more restricted in 
their differentiation capacity [31,32]. Multiple 
players, amongst them cytokines, growth factors, 
transcription factors and cell-cycle regulators, are 
involved in the modulation and control of stem 
cell fate (self-renewal vs differentiation) [33].

‘Incompetent’ hematopoietic stem cells 
in RA

Diminished HSC reserve in RA 
Guided by the clinical observation that 
hematopoiesis may be suppressed in RA patients, 
Papadaki and colleagues have tested whether the 
BM stem cell compartment and/or the micro-
environment are affected by the RA inflamma-
tory process [34]. The authors evaluated patients 
with severe, active RA in whom they found low 
HSC frequency, accelerated Fas-mediated apop-
tosis of CD34+ cells, defective clonogenic poten-
tial of BM stem cells and impaired hematopoie-
sis-supporting capacity of the BM stroma. They 
implicated TNF-α production by inflammatory 
cells in the BM microenvironment in mediating 
the apoptotic depletion of patient stem cells since 
in vitro anti-TNF treatment restored stromal cell 
function. Furthermore, they showed a ‘pseudo-
normalization’ of the RA BM findings after ini-
tiation of anti-TNF therapy. In fact, anti-TNF 
restored the number of CD34+ cells, the percent-
age of Fas+ cells within the CD34 cell compart-
ment and the hematopoiesis-supporting capacity 
of patient stroma [35].
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We have recently reported that the circulat-
ing HSC frequencies in RA patients are signifi-
cantly reduced compared with demographically 
matched controls [36]. Whereas the size of the cir-
culating CD34 pool in healthy controls is strictly 
age-dependent, frequencies of CD34+ cells in 
RA patients are depressed even in those who 
are young. The HSC frequencies of 30- versus 
70-year-old RA patients are similar and compa-
rable with those of 70-year-old controls (Figure 1). 
Previously, another group showed that the CD34 
yields in PB stem cell harvests from RA patients 
with severe disease were lower than those in con-
trols [37]. We explored the possibility that loss 
of circulating HSC is a direct consequence of 
chronic inflammation and reasoned that increas-
ing disease duration or disease activity should 
predict lower levels of CD34+ cells. However, 
that is not the case; CD34 frequencies are simi-
lar in patients with early and late RA and are 
equally depressed in those with active and inac-
tive disease. The fact that even after correcting 
for age, disease duration is not a predictor of low 
HSC counts in RA raises the still unanswered 
question of whether the accelerated loss of HSCs 
starts during the preclinical phase of the disease 
[38], or even precedes it.

Another consideration is the potential ‘delete-
rious’ effect of DMARDs, in particular metho-
trexate, on HSC function. In two different 
reports [34,36], HSCs from RA patients studied 
prior to exposure to cytotoxic agents (patients 
naïve to DMARDs) had the same defects as 
treated patients. This finding can be related to 
studies showing that the mechanism by which 

folate analogs exert their hematological toxicity 
is through the depletion of relatively mature, 
nonclonogenic precursor cells, and not by kill-
ing stem cells [39,40]. Taken together, current 
evidence suggests that drug-induced damage is 
not the major factor affecting hematopoiesis in 
patients with RA.

Depletion of circulating HSCs in RA patients 
could result from multiple factors, including a 
reduced BM reserve [34,41], increased HSC attri-
tion [35,41] and a ‘pseudo-reduction’ as a result 
of relocation of HSCs to peripheral tissues [42]. 
Regardless of the cause, considering that disease 
duration, activity and severity are not predictors 
of low HSC numbers in RA patients [36], the 
loss of circulating HSCs seems to result from an 
intrinsic defect in this cell population.

In order to self-renew or differentiate, HSCs 
need to replicate; therefore, assessing the ability 
of CD34+ cells to proliferate should provide criti-
cal information about their functional integrity. 
In RA, not only is the proliferative capacity of 
HSCs impaired (reflected in the decreased num-
ber of cell cycles that RA HSCs achieve after 
hematopoietin expansion) (Figure 1), but also a 
significant percentage of HSCs (10–15%) could 
not be driven into proliferation, and a delay in the 
lineage-committed cell differentiation following 
hematopoietin stimulation is observed [36]. This 
is in agreement with previous studies showing 
that the proliferative activity of BM myeloid 
progenitors is decreased in RA patients [41]. 
Together, all of these findings support the con-
cept that a critical HSC function, the ability to 
replicate, is no longer intact in RA.
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Figure 1. Defects in HSCs in rheumatoid arthritis. (A) Reduction in pool size, (B) Impaired proliferative capacity, (C) Premature 
telomere attrition. In RA patients, the frequencies of HSCs are age-inappropriately reduced compared with demographically matched 
controls. HSC proliferation when driven with hematopoietins is impaired in RA. The lengths of telomeres, a surrogate of the 
proliferative history of a cell, show premature shortening in RA CD34+ cells. 
HSC: Hematopoietic stem cell; RA: Rheumatoid arthritis.
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Accelerated telomere loss in  
rheumatoid HSC 
Telomeric shortening is one of the best-known 
cell-intrinsic events associated with aging. 
Telomeres are guanine-rich tandem DNA repeats 
located at the ends of eukaryotic chromosomes 
that prevent the chromosome ends from being 
recognized as a DNA break. In humans, the 
telomere length is in the range of 2–15 kb. Since 
conventional DNA polymerases are not able to 
completely replicate the 3´ end of linear duplex 
DNA (end-replication problem) [4], 30–100 base 
pairs of telomere repeats are lost with every cycle 
of cell division [43].

HSCs have a finite replicative capacity, and 
telomeres shorten during HSC replicative aging; 
therefore, telomere length is a useful surrogate 
of the proliferative history of these cells [44–46]. 
Recently, it has been shown that the expression 
levels of marker proteins secreted from telom-
ere-dysfunctional BM cells of late-generation 
telo merase knockout mice increase with age in 
contrast to aged mice with long telomere reserves 
[47]. Similar biomarkers were found to be elevated 
in the blood of patients with myelo dysplastic 
syndrome and cirrhosis, chronic diseases asso-
ciated with increased rate of cell turnover and 
telomere attrition.

The immune system strongly depends on 
clonal expansion and cell division, and to homeo-
statically accomplish these purposes has evolved 
mechanisms of telomere maintenance. Among 
these, specifically in HSCs, telomerase appears 
to be the major salvage pathway. In fact, higher 
telomerase activity and shorter telomeres can be 
detected in the CD34+CD38+ cell fraction when 
compared with the CD34+CD38-/low fraction, 
which contains more primitive nonproliferating 
cells with longer telomeres. However, elevated 
levels of telomerase activity alone are unable to 
prevent proliferation-associated telomere short-
ening in HSCs [48,49]. This is illustrated in vitro 
by human telomerase reverse transcriptase 
(hTERT) overexpression studies in HSCs, which 
result in a significant upregulation of telomerase 
activity that nevertheless cannot prevent overall 
telomere shortening, nor increase the replicative 
capacity of these cells [49,50].

Telomeres with critically short length behave 
as double-stranded DNA breaks, therefore acti-
vating DNA damage responses [43,51]. Accrual 
of DNA damage, together with age-related 
changes in epigenetic regulation, particularly 
with a decline in the expression of genes involved 
in chromatin regulation and DNA repair, are 
suspected to underlie the age-dependent HSC 

functional decline [46,52–54]. In fact, telomere 
attrition through DNA damage can signal 
cell-cycle arrest, cellular senescence, apoptosis 
or genome instability, leading to impairment 
of HSC self renewal and proliferative capacity, 
and, ultimately, to tissue failure [2]. In mice, 
telomere shortening contributes to the replica-
tive exhaustion of HSCs evident upon serial 
BM transplantation [55]. In humans, the con-
nection between replicative capacity and telom-
ere dynamics has been recently studied by Pipes 
and colleagues [56], who showed that cord blood 
HSCs with longer telomeres have a replicative 
advantage in comparison with PB HSCs during 
allogeneic stem cell transplantation.

The purpose of telomere-dependent cell 
growth arrest is to act as a developmental bar-
rier, therefore suppressing cancer in vivo [51]. 
However, in cells that must sustain proliferation 
over a lifetime, such as HSCs, the consequences 
of telomeric shortening and DNA damage can 
result in a diminished capacity to maintain 
homeostasis, and can be horizontally propa-
gated to other HSCs (through self-renewal) and 
vertically conveyed to downstream progenitors 
[57]. Therefore, short telomeres of T and B cells 
could reflect the progressive telomere shorten-
ing in HSCs and/or be acquired during the pro-
cess of differentiation or activation of mature 
lymphocyte populations [58].

In RA patients, premature telomeric shorten-
ing affects CD4+ and CD8+ T cells. Notably, 
age-inappropriate loss of telomeres is most pro-
nounced in the naïve compartment, thus affect-
ing T cells that have not yet been involved in the 
chronic inflammatory process [59]. Further evi-
dence for this abnormality to precede instead of 
follow RA comes from data demonstrating that 
normal, healthy individuals who share the HLA-
DR4 haplotype, the major genetic risk factor 
for RA, are similarly affected by telomere attri-
tion [13]. Mechanistic insights as to the stage of 
hematopoietic development at which telomeres 
are prematurely lost in RA patients have derived 
from experiments examining the myeloid lineage. 
In RA, not only T cells have shortened telom-
eres; telomeric sequences are similarly shortened 
in granulocytes [12,13]. Granulocytes are a lineage 
that undergoes few constant divisions during dif-
ferentiation from HSCs, and they do not divide as 
mature cells [12,13]. In contrast, telomeric lengths 
of sperm cells from HLA-DR4+ individuals do 
not differ from those of DR4-negative ones [13]. 
Taken together, inappropriate telomeric ero-
sion in RA patients and in healthy DR4+ donors 
involves multiple blood lineages, but not gametes. 
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Recent studies have confirmed that the ‘prema-
ture’ telomeric loss can be traced back to HSCs, 
thus affecting the hematopoietic system at a 
very early stage. RA CD34+ cell telomeres are 
1600 bp shorter than those of age-matched con-
trols (Figure 1), and this feature is independent of 
disease activity [36]. Determining whether telom-
ere attrition in RA is a primary event or alterna-
tively results from a compensatory cell turnover 
in response to an increased demand, similar to 
the accelerated telomere shortening that occurs 
in recipients of HSC transplants, is elusive. In 
any case, aged HSCs could ultimately lead to the 
accumulation of prematurely aged T cells that are 
pheno typically and functionally altered and prone 
to autoreactivity (Figure 2) [11,60]. Interestingly, a 
recent study in patients with juvenile idiopathic 
arthritis (JIA) found that abnormalities in T-cell 
homeostasis were evident very early in the dis-
ease process, and did not progress over the course 
of disease, suggesting a primary defect in T-cell 
generation and/or maturation in the pathogenesis 
of JIA [61].

Potential mechanisms of accelerated 
HSC aging in RA
Hematopoietic stress can accelerate the aging of 
the hematopoietic system, and therefore impair 

its ability to maintain homeostasis [62]. In the 
case of RA, the inflammatory milieu would be 
a prime candidate. However, it is incompletely 
understood through which molecular pathways 
inflammatory cytokines can regulate cellular 
turnover. Pro-inflammatory cytokines could 
enhance proliferation of mature lymphocytes, 
thus prematurely exhausting their proliferative 
reserve. Alternatively, cytokines could directly 
influence the threshold setting of apoptosis, 
leading to enhanced cell loss and the need for 
compensatory proliferation.

The BM stroma consists of a heterogeneous 
population of cells that provide the structural 
and physiological support for hematopoietic 
cells; therefore, a dysfunctional stroma could 
result in HSC defects. The BM stromal cell 
hematopoiesis-supporting capacity in patients 
with severe, active RA was assessed by Papadaki 
and colleagues. In this study, the authors show 
that RA stromal cells produce abnormally high 
amounts of TNF-α, which reduces their capac-
ity to support the growth of autologous or alloge-
neic normal HSC. These defects can be reversed 
by anti-TNF therapy [34]. It is possible that early 
senescence can affect stromal cells, altering their 
pattern of gene expression, upregulating inflam-
matory cytokines and affecting the behavior of 

Bone marrow

• Reduced HSC pool
• Pre-aged myeloid and
  lymphoid precursors

Lymph node

• Contracted T-cell diversity
• Impaired clonal burst
• Reduction of TREC+ T cells
• Oligoclonality
• Accumulation of CD4+ CD28-,
  KIR+, NGK2D+, CX3CR1+ cells 
• Age-inappropriate telomere
  shortening

Joint

• Aged autoreactive T cells
• Autoantibody-producing
  B cells
• Pannus formation

Figure 2. Abnormal T-cell homeostasis in rheumatoid arthritis. In RA, multiple stages of T-cell generation and regeneration are 
defective.  Bone marrow stem cells are prematurely aged. The peripheral T-cell pool is remodeled, even for unprimed T cells, favoring 
autoreactivity. Senescent T cells accumulate in the joint, where they maintain chronic inflammation. 
RA: Rheumatoid arthritis.
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neighboring HSCs. This idea has found interest 
in the cancer field [63], but still needs to be tested 
in the context of RA.

Another mechanism through which the 
microenvironment regulates cell survival and 
longevity is the integrity of the DNA. Accrual of 
genomic damage is a proposed mechanism that 
mediates age-related HSC impairment. Cells 
under proliferative stress, for example HSCs, 
are equipped with powerful DNA damage 
recognition and repair machineries. The con-
cept that DNA damage limits stress-induced 
hematopoiesis by diminishing the ability of 
HSCs to proliferate and self-renew has been 
tested in DNA repair-deficient mice (Lig4Y288C, 
Csbm/m, XpdTTD and Xpa-/-) not exposed to exo-
genous genotoxic stress. In these models, there is 
an age-dependent accumulation of spontaneous 
or endogenous DNA damage in quiescent cells, 
suggesting that intracellular products (such as 
reactive oxygen species) that are able to induce 
DNA damage would be responsible for the 
damage in nonproliferating cells [57,62].

Recently, we have addressed the question of 
whether HSCs from RA patients show signs 
of advanced aging by accumulating damaged 
DNA. Freshly isolated HSCs from RA patients 
show a significantly higher degree of DNA dam-
age than matched controls [64]. Again, the ques-
tion arises as to whether this is a consequence 
of amplified hematopoietic stress or a primary 
HSC defect.

Similarities between RA & bone marrow 
failure syndromes
The concept that HSCs, like other somatic 
cells, are ultimately not immortal but are sub-
ject to telomeric loss and subsequent failure of 
their proliferative capacity, is not unique to RA 
[65,66]. Dyskeratosis congenita (DC) is a geneti-
cally heterogeneous multisystemic disorder with 
features of premature aging. Similar to patients 
with Fanconi anemia, aplastic anemia and par-
oxysmal nocturnal hemoglobinuria, DC patients 
have reduced BM hematopoiesis, contracted 
CD34 frequencies, shortened CD34 telomeric 
lengths and limited proliferative capacity of the 
hematopoietic stem cell compartment [65–68].

Telomeric erosion has also been linked to 
an increased risk for tumorigenesis, especially 
lymphomagenesis. The proposed mechanism 
is that damaged or short telomeres can be rec-
ognized as DNA double-stranded breaks, acti-
vate the DNA-repair machinery and become 
the targets of nonhomologous end-joining or 
homology-directed repair, potentially leading to 

inversions, translocations and terminal deletions 
[66]. Of note, following autologous HSCT, telo-
meric length is especially short in those patients 
who eventually developed post-transplantation 
myelodysplasia [66]. Genomic instability result-
ing from dysfunctional telomeres might be a 
hypothesis to test as a plausible explanation for 
the higher rate of lymphoproliferative diseases 
in RA patients [69].

Are HSC defects specific to RA?
Given the central role of hematopoietic processes 
in shaping the immune system, HSC biology 
may have an impact in autoimmune syndromes 
other than RA. The concept that murine SLE 
could be related to HSC defects was elegantly 
tested by Ikehara and colleagues in the early 
1990s. This group was able to induce lupus 
nephritis and idiopathic thrombocytopenic 
purpura by transplanting T-cell-depleted BM 
cells from lupus-prone mice (NZW x BXSB F1) 
to normal mice [70]. The authors suggested that 
the adoptive transfer of the autoimmune disor-
der may result from the interaction between the 
genetic makeup of the recipient and the donors’ 
lymphohematopoietic system (reviewed in [71]).

Similarly to RA, patients with SLE, even 
when the disease is in clinical remission, have 
decreased levels of circulating CD34+ HSCs and 
impaired BM reserve compared with healthy 
controls [72]. The proposed underlying mecha-
nism is an increased Fas-mediated apoptotic 
propensity of HSC, coupled with a limited 
capacity for hematopoietic renewal [72,73]. At 
least in part, the upregulation of Fas on HSCs 
and their subsequent apoptotic death is induced 
by interferon-γ and Fas ligand-producing T cells 
in the BM microenvironment [74]; a mechanism 
also relevant for patients with aplastic anemia 
[75]. In fact, in transfer experiments where 
HSCs from healthy donors were cultured in 
serum from SLE patients with leucopenia, or 
with T cells from SLE patients, HSC apoptosis 
occurred and the HSC colony-forming capacity 
was limited [76,77].

Finally, monocytes and lymphocytes from 
SLE patients have significantly shorter telomeres 
than controls [78], but the telomeric sequences in 
SLE HSCs have not yet been evaluated.

‘Incompetent’ HSCs in RA: can we 
replace them?

If the abnormalities in the immune system of 
RA patients can be traced back to the very early 
steps of hematopoiesis, then all of our efforts to 
reset the dysfunctional immune system in RA 
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will be superficial and transient, unless we can 
repair the original defect. The obvious question 
is whether HSC reconstitution could ‘heal’ the 
BM and restore all dependent functions. The 
success of BM transplantation in cancer patients 
with concurrent autoimmune disease in improv-
ing both conditions has pointed to this direction. 
Similarly, HSCT has been successfully applied 
in animal models to treat and/or avoid auto-
immunity [23]. However, infections and second-
ary malignancies, and in particular autoimmu-
nity, following HSCT, are serious side effects to 
be considered. Autoimmunity occurs during the 
vigorous phase of homeostatic expansion after 
conditioning-induced lymphopenia, and is usu-
ally organ-specific and not multisystemic. The 
mechanisms that can cause or mimic post-trans-
plant autoimmunity (homeostatic proliferation, 
transfer of autoimmunity, autoimmunity associ-
ated with conditioning regimes and infections) 
have been recently reviewed [79,80].

As a general rule, HSC transplantion can only 
work if the cellular substrate that is transplanted 
is not itself faulty. The rationale for autologous 
HSCT is based on the concept that the exist-
ing autoimmune response is totally or partially 
ablated by the preconditioning regime, and that 
the transfer of HSCs will engraft and regenerate 
a self-tolerant immune system [81]. Autologous 
transplant is currently preferred because of its 
ability to reconstitute the immune system with 
low toxicity relative to allogeneic HSCT. The 
experience with autologous HSCT in RA shows 
that only 4% of patients achieved remission 
and only 12% of the transplanted patients had 
sustained response. Up to 92% of the patients 
required re-institution of DMARDs because of 
disease relapse [23,82,83]. This clearly indicates 
that autologous HSCT cannot reintroduce 
self-tolerance in patients suffering from RA. 
Rather, it appears that dose-intensive immuno-
suppression may transiently reset the immune 
system in a few patients and, in some cases, 
improve sensitivity to other drugs [84,85]. Since 
the persistence of autoreactive cells in spite of the 
conditioning regime could be responsible for the 
relapses, graft manipulation with further CD34+ 
cell purification is being explored as an alter-
native [81]. In a pilot study, T-cell depletion by 
CD34 selection of the stem cell graft intended 
to reduce the re-infusion of autoreactive T cells 
did not provide a more durable or significant 
response [86]. With the ideal of ‘cure the dis-
ease’, other options, including HSC-based gene 
therapy to promote antigen-specific tolerance 
and intensified conditioning or post-transplant 

immunosuppressive regimes, are currently under 
investigation [87]. However, the recent recog-
nition of defective HSCs in RA predicts that 
transplantation of such cells may sustain the 
problem.

Allogeneic transplantation eradicates the host 
lympho-hematopoietic system and provides a 
new donor-derived immune system able to exert 
a graft-versus-host effect (graft versus autoim-
munity [88,89]). Considerations specific for this 
modality are the high treatment-related mortal-
ity and the limited experience in patients with 
severe autoimmune diseases (the first report of 
an allogeneic-HSCT performed in an RA patient 
dates from 2004) [90]. Moreover, RA relapses, 
occurring even after HLA-identical allogeneic 
BM transplant with complete chimerism (full 
donor engraftment), have been reported [91,92]. 
RA patients with severe therapy-resistant disease, 
including patients that relapsed after autologous 
HSCT, might be considered candidates for allo-
geneic HSCT. However, the current availability 
of several effective alternative therapies seldom 
makes it necessary to expose RA patients to the 
risks of BM transplant [84].

Experience from transplanted RA patients 
showed that T-cell reconstitution in these 
patients, particularly the CD4+ subset, is severely 
impaired, confirming that insufficient repopu-
lation of lymphocytes may be a basic defect in 
this disease [93]. These limitations can ultimately 
only be overcome if functionality of HSCs is 
restored.

Conclusion
The hematopoietic system is under enormous 
proliferative demand, as millions of cells need 
to be replaced daily. Normal aging impairs 
hematopoietic homeostasis with one of the major 
consequences being the loss of immune compe-
tence. RA patients share features of immuno-
senescence with the normal elderly, including 
T-cell diversity contraction, oligoclonal prolifer-
ation with loss of the CD28 molecule and T cell 
and granulocyte telomere attrition [7,11,12,16,59,94]. 
Recent studies in RA HSCs suggest that these 
BM cells might also be involved in the acceler-
ated aging process. As a result, RA HSCs have 
shortened telomeres and, more importantly, their 
proliferative capacity is impaired. This can ulti-
mately lead to their inability to efficiently sustain 
hematopoiesis and/or regenerate immune cells 
[36]. Moreover, dysfunctional HSCs through 
the accumulation of DNA damage can under-
lie the increased lymphoma risk of RA patients. 
Ongoing studies are looking at the mechanisms 
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that lead to HSC functional exhaustion in RA 
and at interventions that ideally could restore 
‘HSC youth’.

Future perspective
Current knowledge in the field of HSC aging 
comes from murine models, which are invalu-
able in generating hypotheses and for testing 
concepts but, unfortunately, poorly resemble 
certain aspects of HSC and telomere biology in 
humans. Also, the human lifespan extends over 
almost 10 decades, whereas mice live not much 
longer than 2 years. Interspecies translational 
research (mouse to human) and the evaluation 
of human HSCs in health and disease is the big 
challenge. Dedicated studies need to provide the 
tools to overcome technical limitations associ-
ated with studying the small populations of BM 
stem cells. The number of CD34+ cells that can 
be obtained from humans is limited. As prolifer-
ation and differentiation are intimately coupled, 
HSCs cannot be expanded without losing their 
intrinsic properties. Finally, the heterogeneity 
of cell subsets even after selecting for a CD34 
surface marker poses a challenge. However, 
the potential to unravel the biology of HSCs 

greatly impacts a number of fields in medicine. 
Regenerative medicine builds upon the under-
standing of how pluripotent cells develop into 
sophisticated organ structures. Overcoming 
the limitations introduced by the aging pro-
cess needs to include the ability to rebuild the 
hematopoietic and immune system. The prom-
ise of understanding fundamental abnormalities 
leading to autoimmune disease, such as RA, will 
drive the field forward. Here, deciphering patho-
genic events in an inflammatory joint disease 
could enormously cross-fertilize the knowledge 
base in medicine as a whole.

Executive summary

Hematopoietic stem cell defects in rheumatoid arthritis
Age-inappropriate contraction of the hematopoietic stem cell (HSC) pool.n 

Lack of correlation between clinical parameters of disease activity, severity or DMARD use, and the loss of HSCs. n 

Impaired proliferative burst following stimulation with early hematopoietins (reduced number of cell cycles performed after 4 days of n 

expansion, and 10–15% of HSCs are growth factor nonresponsive).

Delayed lineage-committed cell differentiation.n 

Premature telomeric erosion indicative of excessive proliferative stress in the bone marrow HSC pool.n 

Implications of HSC defects in rheumatoid arthritis pathogenesis
Restricted generation of mature progeny.n 

Insufficient regeneration of lymphocytes, necessitating homeostatic proliferation of peripheral T cells. n 

Premature immune senescence with increased frequency of autoreactive immune cells.n 

Accumulation of end-differentiated T cells with proinflammatory effector functions in the synovial lesions, as well as the  n 

atherosclerotic plaque.

Questions that still need to be answered
Why do rheumatoid arthritis (RA) patients prematurely lose HSCs?n 

What are the mechanisms responsible for the impaired proliferative function of RA HSCs?n 

Is the premature aging of RA HSCs associated with lineage differentiation skewing?n 

Does the modulation/attenuation of HSC defects impact RA chronicity?n 
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