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Bioprocessing of the important Chinese hamster ovary (CHO) cell lines used for the 
production of biopharmaceuticals stands at the brink of several redefining events. 
In 2011, the field entered the genomics era, which has accelerated omics-based 
phenotyping of the cell lines. In this review we describe one possible application of this 
data: the generation of computational models for predictive and descriptive analysis of 
CHO cellular metabolism. We describe relevant advances in other organisms and how 
they can be applied to CHO cells. The immediate implications of the implementation 
of these methods will be accelerated development of the next generation of CHO cell 
lines and derived biopharmaceuticals.

It is generally appreciated that cell culture 
based on Chinese hamster ovary (CHO) cells 
holds substantial economical and medical 
importance. The global market for biologics 
was US$99 billion in 2009, where 60–70% 
of the products were produced in CHO cells 
[1]. Over 40 biopharmaceuticals have been 
produced in CHO cells so far, including 
monoclonal antibodies, hormones, cytokines 
and blood-coagulation factors. It is further-
more evident that the impact of CHO cell 
culture will only increase in the immediate 
future: the US market for biologics alone has 
been climbing from US$51.3 billion in 2010 
to US$63.6 billion in 2012, and expected to 
increase at higher rates with the US Afford-
able Care Act [2]. The global market for bio-
logics is expected to rise to US$190 billion 
in 2015 [3], and the percentage of CHO-
derived products in approved new biologics 
are climbing. In 2010 and 2011 combined, 
14 out of 19 approved biopharmaceuticals 
were derived from cell culture, the majority 
of these using CHO cells as hosts [4].

Despite this impact, the development of 
CHO cell processes – although highly suc-
cessful – has been mainly driven by medium 
development and process engineering and to 
a lesser extent genomic technologies such as 
enhanced expression technologies for heter-

ologous proteins [5]. Metabolic engineering, 
such as seen in microbial cell factories [6,7], 
has been very limited, although with some 
notable exceptions (for example, see [8,9]). 
We will argue that this has been due to the 
relatively late arrival of genome sequences for 
CHO cell lines; even though the first CHO 
expressed sequence tags (EST) sequences 
were published in 2005 [10], the first CHO 
genome sequences were published in 2011 
[11,12], an entire decade after the first draft 
publication of the human genome [13], and 
two decades after the genome of the first 
eukaryote, Saccharomyces cerevisiae [14]. As 
a result, most early genome-based studies 
of CHO cells were performed by using the 
genome sequences from other mammals, for 
example, human, mouse or rat [15,16], which 
generally limits the possible experiments and 
interpretation of the results.

However, there is now ample genomic 
information available for the CHO cell lines. 
The CHO-K1 genome sequence [11] has been 
supplemented by the 2013 release of two 
draft genomes for the Chinese hamster (Cri-
cetulus griseus) [17,18] from which the CHO 
cell line was originally isolated in 1957 [19]. 
Additionally, draft sequences for a number 
of CHO cell lines including the industri-
ally relevant CHO-S and CHO DG44 have 
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Key terms

Computational framework: Modeling metabolism is 
typically done using linear programming, which allows 
optimization of fluxes to a single criterion; for example, 
maximum possible growth rate, which is a typical 
approach for microbial cultures. Alternative methods 
include quadratic programming, which allows optimization 
for two criteria. Quadratic programming methods are 
often used for modeling effects of gene deletions.

Cellular compartments: In a genome-scale metabolic 
model, cellular compartments are modeled by assigning 
reactions to a given compartment, and adding known 
and required transport reactions in and out of the 
compartment to the model. Predicting in which 
compartment a specific reaction takes place is challenging 
for enzymes with a low degree of characterization.
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been published [17]. While this still leaves a few widely 
used cell lines, for example, the CHO DXB11 cell line 
[20,21], unsequenced, and a general need for improved 
genome quality, it is clear that CHO cell research has 
reached the genomic era.

One highly promising application of genomics-
based research is the generation of genome-scale 
models of CHO cells (Figure 1).

Potential applications of metabolic models 
to CHO cell cultures
A genome-scale metabolic model (GSM) is a system-
atic correlation of the genomic information of an 
organism to a metabolic network, effectively recon-
structing the metabolic network of the cell type in 
question. Such a network is most often built from 
available generic pathway databases (e.g., Kyoto 
Encyclopedia of Genes and Genomes [KEGG] [22]) 
and specific literature for the organism being mod-
eled, combined with an annotated genome [23]. 
This underlying network is often called a genome-
scale reconstruction or genome-scale metabolic net-
work reconstruction (GENRE). Integration of the 
GENRE with a linear programming-based math-
ematical framework allows modeling of the metabolic 
fluxes of the cell, which is often predictive and nearly 
always helpful in data interpretation. The actual 
model and computational framework apply the laws 
of mass conservation and balances of metabolic fluxes 
around single metabolites to compute enzymatic rates 
for every single enzyme present in the model. These 
rates are seen as averages for the culture and are most 
often given as specific rates relative to a certain num-
ber of cells. Additional algorithms may be applied 
to predict the effect of, for example, gene deletions/
insertions, perturbations of feeding rates/nutrient 
uptake or increased production rates [24]. Pioneering 
work and additional application such as integration 
of the protein secretion network and regulatory infor-

mation has been driven forward in Escherichia coli 
[25–27]. As CHO cells are arguably more complex in 
terms of gene numbers and cellular compartments 
than E. coli, the work associated with building a 
CHO GSM is more laborious and complicated, in 
particular in terms of assigning correct genes to enzy-
matic functions, and assigning enzymatic reactions to 
the correct compartments. However, the algorithms 
and uses of these models are general, and examples 
of potential applications from E. coli are equally rel-
evant for CHO cells. In addition to this, implementa-
tion has been performed in a wide span of eukaryotic 
organisms as well, several of which with a complex-
ity and quality of annotation resembling CHO cells. 
Examples of eukaryotic models include eukaryotic 
microbes, for example, industrially relevant yeasts 
such as S. cerevisiae, Kluyveromyces lactis and Pichia 
pastoris [28–31], filamentous fungi applied for enzyme 
production, for example, Aspergillus niger [32–34], and 
also higher eukaryotes such as Arabidopsis [35], mouse 
hybridoma cells [36], and human cells [37,38]. In these 
examples, cells, arguably as complex as CHO cells, 
have had their metabolism reconstructed. Cells from 
mouse, Arabidopsis and human are evidently of simi-
lar or higher complexity than the CHO cell. Even 
eukaryotic microbes such as filamentous fungi have a 
more complex growth physiology, with multicellular 
growth compared with the relatively homogeneous 
CHO cells with a more uniform growth. While the 
current annotation of the CHO genome is far from 
the quality of annotation and gene characterization 
found for human cells or even mouse cells [39], models 
can to a large part be generated by inferring function 
by homology to organisms with better annotation, for 
example, mouse or human in the case of CHO.

The primary applications of these models can be 
divided into at least five major categories: metabolic 
engineering, model-directed discovery, interpretations 
of phenotypes, analysis of network properties and stud-
ies of evolutionary processes [40,41]. All of these appli-
cations are highly relevant and interesting for CHO 
cell culture in their omics-driven approach to cellular 
physiology (Figure 1E).
Metabolic engineering holds considerable promise 
for CHO cell culture, as GSMs have the possibility 
of predicting the effect of gene deletions, additions 
and over-/under-expression. Several phenotypic traits 
of the CHO cells are sub-optimal for prolonged cul-
ture and protein productivity. Some examples of this 
are the conversion of high glycolytic flux to lactate, 
or the formation of ammonium by conversion of 
amino acids in the medium. Both are detrimental to 
cell growth and product quality [42,43]. Accordingly, 
these processes have been subjected to metabolic 
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Glycolytic flux: In this article, glycolytic flux is defined as 
being the conversion rate of glucose through glycolysis.

CHO genomics: Sequencing of multiple CHO cell lines 
and the progenitor hamster has revealed that while 
individual cell line genomes have a similar number of 
genes as the hamster, there is a large number of structural 
variations, in particular insertions, deletions and single-
nucleotide polymorphisms. Such variation suggests that 
models should be tailorized to individual cell lines.
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engineering with varying success [8,9], but definitive 
solutions have not been found at the cell engineering 
level, and have to a large extent been addressed and 
alleviated with process and medium design (see, [44] 
for an example of lactate production). Model-driven 
engineering presents an interesting angle on these 
problems, by generating platform cell lines incapable 
of producing such by-products or producing them 
in highly reduced amounts. Other possibilities are 
found in areas addressed in microbial cell factories, 
for example, increasing the number of sugars available 
for carbon catabolism to decrease the problems with 
high glycolytic flux [45]. GSMs also provide attractive 
possibilities to model decreased by-product formation 
[46], generally applicable to any biotechnological pro-
duction process. Another tantalizing possibility is the 
extension of the significant advances in CHO culture 
medium development [5]. One could imagine that it 
would be interesting to perform model-guided sys-
temic cell line engineering to tailor the cell lines to 
a specific medium, or a certain feeding profile. The 
capabilities of GSMs to model cellular metabolism on 
a systemic scale allow the combination of, for exam-
ple, consumption rates of medium components with 
model predictions. The result of this would be further 
improvement of platform media and processes with a 
tailored cell line.
Model-directed discovery has been useful in many 
microbial systems, in particular for improving gene 
annotation and functional assignment [32,33,41]. With 
the current state of CHO genomics being in its 
infancy, the annotation of the identified genes is very 
preliminary. The state of the CHO genome annota-
tion on one hand complicates accurate model recon-
structions, due to the challenges of linking genes with 
function, but also presents opportunities. In particu-
lar, the reconstruction of CHO metabolism (GENRE) 
will suggest tentative assignment for a high percentage 
of the metabolic genes, as is seen in other eukaryotic 
microbes organisms [28,32,34], where the genes involved 
in metabolism have not been studied as extensively 
as in leading model organisms, for example, yeast or 
E.  coli [25,29]. However, even in E. coli the metabolic 
network has been applied to find and characterize can-
didate genes for a specific function [47]. This type of 
application of the metabolic network is particularly 
powerful when combined with other omics-data types 
such as metabolomics and proteomics (see below). 
Here one can, for example, integrate orphan metabo-
lites into the metabolic network and thus improve our 
understanding of CHO metabolism, or identify active 
isoenzymes for specific pathways from protein expres-
sion data coupled with tentative metabolic enzyme 
networks. As this application of the model is fairly 

independent of the computational predictive power, it 
is relevant to CHO cells no matter how accurate the 
models might become. The same holds true for the 
next application.

Interpretation of phenotypes is perhaps the most 
universally applicable use of the GSMs and GENREs. 
The network – irrespective of predictive power – pro-
vides a framework for interpretation of experimental 
data. For CHO cells, the calculation of metabolite 
consumption/production rates, growth rates and spe-
cific product formation rates has long been standard 
for cell culture medium and process design. However, 
a theoretical and computational framework for holis-
tic interpretation of the data has not previously been 
available. These reconstructed networks can aid the 
interpretation of experimental data related to growth, 
as well as multiple types of omics data [41]. Models have 
proven important in interpretation of metabolic/flux 
data [48], transcriptomics [49] and proteomics [50]. The 
approaches are listed in an excellent recent review [51], 
which also covers mammalian cell types. A related 
example from medical research is the interpretation 
of proteomic and DNA microarray data from human 
macrophages through a reconstructed metabolic 
network of the cell type [38]. In this study, a holistic 
view of the process of activation of macrophages was 
achieved, and systemic activation and inactivation of 
parts of metabolism was identified.

In many cases, models are also capable of quite per-
suasive prediction of phenotypes. Especially interest-
ing, considering the costs and time required to produce 
stable genetic changes in CHO cells, is prediction of 
phenotypes of genetic mutants [52,53].

Analysis of network properties is generally speaking 
a computational exercise, in which one analyzes the 
network structure of the GENRE to discover inherent 
features or emergent properties of the metabolic net-
work. In some cases, this analysis has become mainly 
an arithmetic exercise, applying standard network 
topology algorithms, and has generated limited bio-
logical insight. However, in some cases, deep insights 
are found. The most easily applicable example in the 
context of CHO cell and process engineering is the 
application of elementary flux modes [54] to identify 
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Reference genome: Typically a genome sequence with 
a high (e.g., >99.5%) percentage of coverage, and a 
gene annotation of high quality. It is typically used to 
provide context and mapping of sequence from closely 
related genomes with a low sequence depth. This can be 
highly advantageous for especially large genomes, where 
sequence depth is expensive, or to be able to use the same 
set of reference genes in comparisons and data analysis.

Figure 1. Model building and application in Chinese hamster ovary cells (see facing page).  (A) Initial drafting of 
a GSM requires genomic annotation supplemented with available literature and knowledge on the metabolism of 
choice. This generates a draft genome-scale metabolic network reconstruction. (B) Multiple iterations of model 
improvement and testing, supplemented with available omics and phenotypic data, generate a GSM capable 
of computation. (C) A generalized GSM for CHO cells can be tailored to specific cell lines (D) by the inclusion of 
additional omics data specific for the individual cell lines. (E) Both generalized and specialized CHO GSMs may be 
applied to engineer cell lines, interpret data and increase functional understanding of these important cell lines.  
CHO: Chinese hamster ovary; GSM: Genome-scale metabolic model; t: Time.
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the smallest possible set of essential metabolic genes in 
CHO cells, such as that achieved for individual path-
ways in E. coli [55] or S. cerevisiae [56]. Such identifica-
tion could be applied for generating cell lines with a 
trimmed metabolism, thus decreasing the variability of 
the system. This would be feasible for CHO, despite 
the presence of extra isoenzymes or alternate pathways 
in many enzymatic steps. For several enzymatic func-
tions, only one of the isoenzymes is detected at the 
protein level [57]. Alternatively, one can delete steps in 
the enzymatic pathways/elementary flux modes, where 
only one enzyme exists.

Studies of evolutionary processes have been a reoc-
curring theme in several applications of bacterial 
network, in particular the E. coli GENRE [40,41]. In 
such studies, specialized models have, for example, 
been developed to describe specific strains of E. coli, 
and compared these to identify the genetic origin of 
specific phenotypes [58]. Given the availability of the 
genomic sequence for multiple CHO cell lines with 
varying properties [17] and surely more to come, such 
an exercise would hold exciting perspectives for inter-
preting these genomes. One possible application would 
be the genetic basis for certain metabolic features in 
cell lines generated by mutagenesis, and the possibil-
ity of de novo engineering the features into a ‘clean’ 
background. This would reduce possible complications 
from decreased genetic stability in mutants subjected 
to mutagenesis [59].

With the above-mentioned being only a small per-
centage of the possible applications of such models for 
CHO cell lines, the potential is clearly large for the 
generation and application of GENREs and GSMs for 
CHO cells.

Additional available data sources for 
increased applicability of CHO models
The availability of an annotated genome for CHO cells 
is the bare minimum of information required to gener-
ate a draft model for CHO cells. Models of microbial 
systems have been published based mainly on literature 
on characterized genes (e.g., for Corynebacterium glu-
tamicum [60] or Aspergillus niger [32,61]), but this requires 
detailed legacy data for a wide selection of metabolic 
pathways. In general, most recent generation of GSMs 
is based on variations of a standardized protocol for 
metabolic network reconstruction and model validation 

published in 2010 [23], using basic genome annotation 
as a starting point for the organism of choice.

However, other types of omics data have proven 
highly valuable for model generation, validation and 
application. Here, the CHO field is maturing at an 
impressive pace, considering the quite recent publica-
tion of the first public CHO genome [11], followed by 
a wealth of other omics types being published in these 
years [62]. Here we will briefly emphasize selected stud-
ies which provide data highly applicable to CHO mod-
eling, either due to the experimental setup of the study, 
the type of the data or the perspectives these offer for 
CHO modeling.

Genomics
A well-annotated genome with a high coverage is a 
crucial component in building a GSM with predic-
tive power or a GENRE with a potential for informa-
tive data integration and interpretation. It is essential 
to be able to identify the genes of all major metabolic 
pathways in order to generate an accurate GENRE and 
following that a GSM. This requires a genome cover-
age of ideally >99% of the genes. Early EST sequenc-
ing efforts [10] identified only less than 20% of the 
genes, shown to be present in the CHO-K1 cell line 
draft genome [11]. Convenient for model construction, 
the genome sequence has been made accessible at the 
online database CHOgenome.org [63,64] as well as at 
the NCBI genbank. The coverage appears to be at 
least 99%, at least it was demonstrated that homologs 
existed for 99% of the genes in the human genome 
associated with glycosylation.
Due to the variability of the cell lines, it can be argued 
that it would be most appropriate to use the progenitor 
Chinese hamster (C. griseus) both as the source of a 
reference genome and as a scaffold for a master CHO 
GSM, from which specialized models can be generated 
for individual cell lines. This is now possible due to 
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the publication of draft genomes for C. griseus [17,18]. 
This publication showed that there are more than 
3.7  million point mutations between the progenitor 
hamster and the CHO cell lines [17] and extensive chro-
mosomal rearrangements that have occurred between 
CHO-K1 and CHO-DG44 [65] emphasizing the 
effects of the mutagenesis that occurred in the process 
of creating the various cell lines. Currently, in order to 
fully exploit these sequences, these genomes must be 
mapped against reference genomes with gene annota-
tion. Improving the gene annotation for the C. griseus 
genome and CHO-K1, which has become the de facto 
reference genome for cell lines, would be beneficial 
to model building. Current and new genomes could 
thus be aligned to these references for detection of 
mutations.

Furthermore, the state of genome assembly should 
be improved. Currently the genomes for both hamster 
and cell lines are divided into at least 4000 contigs per 
genome, which means that genes for important met-
abolic functions may be lost in the sequencing gaps. 
Such gaps can to some extent be detected and fixed in 
the network reconstruction process [23,32]. Even so, an 
appropriate solution would be to apply third genera-
tion sequencing to yield longer sequenced reads that 
can assemble the contigs to improve the coverage of 
the genomes. Such efforts are in progress in the com-
munity [Borth N, Pers. Comm.], and should have a sub-
stantial positive impact on the models, which can be 
constructed for CHO cells.

Transcriptomics
In general, it is only a low percentage of the CHO 
genes which are actually expressed under normal 
condition, for example, only approximately 50% of 
the genes involved in protein glycosylation are tran-
scriptionally active [11]. Consequently, integration of 
dynamic omics data such as transcriptomics and pro-
teomics are important for accurate prediction of gene 
deletion/silencing effects. Several studies and tools 
are now available for this, including both sequenc-
ing and DNA microarray based methods. Naturally, 
some of the first transcriptome data were gener-
ated prior to the genome sequence based on EST 
sequences from CHO and mouse used for design of 
microarrays [66,67].

Worth particular mention is a large-scale com-
parison of microarray data from more than 120 indi-
vidual CHO cultures [68]. The data can be accessed 
through the web-based CHO gene coexpression data-
base allowing easy access to the list of genes found 
to coexpress with, for example, cell specific produc-
tivity and growth rate. Such data could be used for 
model improvement and validation. For easy and 

relatively inexpensive assessment of the CHO tran-
scriptome in future experiments, a new generation of 
the Affymetrix® CHO DNA microarray (Affymetrix, 
CA, USA) has been launched with up to 26 unique 
sequences of each transcript with a total of more than 
644,000 probes [69].

RNA-sequencing is expanding for CHO culture 
as in many other fields [70]. Recently, a transcriptome 
database for CHO RNA sequencing data has been 
developed and is available at GenDBE [71,72].

In summary, transcriptomics data are abundantly 
available, and will only increase in the coming years.

Proteomics
The CHO proteome is interesting in the context of 
CHO metabolic modeling as it can provide addi-
tional functional information, in some cases expand-
ing on transcriptomic evidence. The proteome of 
CHO-K1 was thoroughly characterized by Baycin-
Hizal in 2012 [57]. Here, 6164 proteins were detected. 
Of these, only 60% were also detected at the mRNA 
level by Xu in 2011 [11]. The functional application of 
the data and the need for having models specialized 
to individual cell lines become apparent from this 
study. Statistical analysis indicated that some path-
ways such as fatty acid metabolism, amino sugar and 
nucleotide sugar metabolism, which provide impor-
tant precursors for recombinant protein synthesis, 
as well as protein processing and apoptosis, were 
enriched in CHO-K1 [57].

Given the principal application of CHO cells for 
production of secreted proteins, in this content, sec-
retome data, such as characterized from the CHO 
DG44 and CHO-S cell lines by Slade [73], are interest-
ing to incorporate. Such data can help identify secre-
tory bottlenecks or extracellular proteases as seen for 
microbial cell factories [74,75].

CHO-specific protein databases have been con-
structed based on data from the CHO-K1 genome 
[11] and the CHO transcriptome [76], and have been 
shown to increase the number of identified proteins 
by 40–50% from proteomics studies compared with 
only using protein databases based on, for example, 
the murine proteome [77].

It is generally accepted that the generation of pro-
teomics data is more technically challenging than 
transcriptome data, but the pilot studies within 
CHO cells, such as those mentioned above, show that 
there is clearly additional value to be gained from 
interrogating this data set.

Metabolomics
As mentioned in the text above, metabolomics have 
considerable value to add in the model building pro-
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cess, as this type of data can help identify metabolic 
pathways, which are experimentally shown to be 
occurring in the cells due to the presence of metabolic 
intermediates or products, but the genetic basis is not 
necessarily clear. Being able to identify and include 
these pathways can increase the predictive power of 
the model.

For such inclusion, several studies of high-quality 
[78,79] and standardized protocols [79–82] have been 
available for several years, as metabolomics are not as 
such dependent on the availability of a genome.

Two studies are of particular interest in terms of 
getting data of a sufficient quality for model integra-
tion. The first was published by Dietmair et al. [83] 
correlating intracellular and extracellular metabolite 
concentrations with growth. The second is the work of 
Chong et al. [84] where intracellular metabolite profiles 
were obtained for eight single-cell clones with high 
and low production rates of monoclonal antibodies at 
the mid-exponential phase during shake flask batch 
cultures. Such studies can give insight in metabolic 
responses, and help validate CHO metabolic models, 
in that one can examine and adapt the ability of the 
model to predict these responses.

The application of the metabolic networks to inter-
pret metabolomics data can also be exemplified in a 
2012 study by Selvarasu et al. [85], where a generalized 
metabolic network of mammalian cells was adapted 
to CHO cells to aid in metabolomics data interpreta-
tion (see further details below). The coupling of the 
network, genome-scale-modeling and metabolomics 
data allowed the identification of growth-limiting 
factors.

Overall, the CHO field is at this point uniquely 
poised to utilize the substantial amounts of available 
omics data in building high-quality models for CHO 
cells. An overview is presented in Figure 1. During any 
future model-building efforts, one should draw upon 
the current availability of computational models for 
CHO and similar systems, and incorporate this where 
appropriate.

Overview of cellular modeling efforts in 
CHO cells & beyond
So far, no dedicated effort to building a CHO GSM 
de novo has been published. The closest example is 
the adaptation of a model of mouse hybridoma cells 
[36] to CHO cells by the addition of 35 CHO-specific 
metabolic reactions and subsequent model curation 
resulting in a model comprising 1540 reactions and 
1302  metabolites [85]. This model has been further 
developed by other groups, although not published 
through a journal at this time, but is available for 
download from CHO.sf.net [86]. A similar approach 

of adapting a mouse GSM was employed by Mar-
tínez et al. [87] for examining the energy consumption 
and metabolism surrounding lactate formation and 
consumption in CHO cells.

Dedicated models have been developed for related 
cell lines in other systems, as mentioned a generic 
model for mouse cells, applied to mouse hybrid-
oma cell lines [36], and a model for the HEK-293 
cell line has been developed as well [88]. This study 
is particularly promising for CHO cell modeling, 
as the HEK-293 model was developed by reducing 
the generic model for human cellular metabolism 
[37] to a model specific for HEK-293 metabolism. 
Furthermore, this model was employed to interpret 
both transcriptomic, metabolomic and flux data to 
gain functional understanding of glucose and glu-
tamine metabolism; both key features for CHO 
metabolism [88]. A similar study has been seen for 
baby hamster kidney (BHK) cells for interpretation 
of metabolomics data [89].

These models listed above represent the full list 
of available metabolic genome-scale models with 
relevance to CHO cells. However, to the best of our 
knowledge, a model specific for CHO cells or any 
specific cell line has still not been generated.

One area, where modeling in CHO cells is 
more developed, is the kinetic modeling of protein 
N-glycosylation, in particular integrated with mass 
spectrometry on glycans. Here, very accurate predic-
tions and substantial networks have been generated 
and improved over the last two decades. The first 
mathematical model for protein N-glycosylation pro-
cess was built in 1997 by the complementary studies 
of a single-compartmental model [90] and a multi
compartmental model [91]. Later work expanded upon 
the previous work to involve glycosylation processes as 
galactosylation, fucoslation, sialylation and addition 
of N-acetyllactosamine residues [92]. This model had 
up to 7565 N-glycans and 22,871 reactions included. 
Furthermore, two glycosylation models based on dif-
ferent views of protein transport across the Golgi, 
namely Golgi maturation mechanism and vesicular 
transport mechanism, were studied and compared. 
This model was highly expanded and sophisticated 
by the same group to include interpretative power of 
N-glycan mass spectrometry data [93]. More recently, 
an optimized model considering 77 N-glycans, 
8  enzymes, 4 nucleotide transporters and 95 reac-
tions with individual rate expressions were built on 
the basis of Golgi maturation mechanism with an 
improvement of taking Golgi protein recycling into 
account [94]. On top of that, a more comprehensive 
glycosylation model that links a model that described 
the metabolism of nucleotides and nucleotide sugars 
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to the previous N-glycosylation model was developed 
by the same group [95]. These networks have been 
shown to have both high predictive and interpretative 
power, and would be unique key features to have inte-
grated in CHO GSMs, to the extent that it is possible. 
Such additions could predict effects of glycosylation 
engineering and/or the effect of different substrate 
uptake rates.

Conclusion & future perspective
With the potential of GSMs tailored to CHO cells 
as demonstrated above, it is not surprising that sev-
eral groups in the CHO community are working 
on building whole and partial reconstructions of 
CHO metabolism, including some of the authors 
of this review. These groups have this year formed 
a consortium compiling their work, and are working 
toward generating a community consensus model 
for CHO cells [Lewis NE, Pers. Comm.]. Such models 
and network reconstructions are known from sev-
eral other research communities, including Salmo-
nella Typhimurium [96], yeast [29,97] and human [37] 
metabolism.

The future arrival of the CHO GSM will probably 
raise the same discussion that followed the release of 
the first CHO genome: How well does this model 
describe each of the different CHO cell lines? Each 
of the cell lines has undergone rearrangements and 
has diverse transcriptomes and for this reason several 
parameters will need to be investigated. Future and 
current sequencing projects for individual cell lines 
should be combined with bioreactor characterization 
of the cell lines and their corresponding models to 
gain a functional understanding of the differences 
(Figure 1C–D). The next years will tell whether these 
models will be able to model the complex behavior of 
the CHO cell and open up new design targets such 
as it has been the case in microbes. Making such spe-
cialized models will be a substantial amount of work, 
but this task will be made easier, if a generic CHO 
model of high quality based on an assembled and 

annotated reference genome is generated first. From 
that, specialized models can be made in semi-auto-
mated fashion through comparative genomics. This 
would have the additional advantage that annotation 
of the genomes of the individual cell lines would not 
be required (as this is currently not available [17]), 
but could be achieved by alignment to the reference 
genome.

Should the models be able to deliver on the promise 
and potential seen in other cells, it is bound to trigger 
a second wave of CHO cell line engineering. Notably 
CRISPR-Cas9-based genome-editing systems being 
made available at non-cost prohibitive prices [98] and 
efficient high-throughput mammalian vector design 
systems [99] support the development of faster and 
cheaper genome engineering tools to accelerate future 
cell line engineering efforts in CHO.

In summary, the potential of genome-scale models 
stands to be unleashed in CHO cells within a very 
short time span. Combined with the genomes usher-
ing in the genomics era for CHO, substantial amounts 
of omics data are being generated, and the develop-
ment of efficient genetic engineering tools of CHO 
cell culture will soon move into the next generation of 
cell line development. Such advances promise better 
and cheaper development of biopharmaceuticals for 
this important group of cell factories.
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Executive summary

•	 Genome-scale metabolic models have been applied with success in many other prokaryotic and eukaryotic cell 
factories.  

•	 The Chinese hamster ovary (CHO) field now has all of the relevant information and methods needed to 
construct and apply such models.  

•	 A CHO metabolic model will have applications both in design and engineering of cells, but equally important 
also in interpretation of omics data. The potential is large.  

•	 Initial CHO models have adapted from models of mouse metabolism, but no de novo CHO models have been 
published at this time.  

•	 The community is currently constructing a consensus model for CHO metabolism.  
•	 Added value will come from generating specialized models for individual cell lines.
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