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The biopharmaceutical market is driven by the steady increase in demand for 
therapeutic proteins produced in mammalian cells. Glutamine is a main nitrogen 
source and also a main energy source with glucose in mammalian cell cultures for 
therapeutic protein production. As a result of glutamine metabolism and the natural 
decomposition of glutamine, ammonia, which is known to negatively affect cell 
growth, protein production and sialylation of recombinant glycoprotein, is necessarily 
accumulated in a culture medium. This review highlights the current strategies and 
achievements in overcoming the negative effect of ammonia through the glutamine 
substitution by less ammoniagenic substrates, such as glutamate, pyruvate and 
α-ketoglutarate.

Since the first approval of the human tissue 
plasminogen activator (tPA) produced in 
mammalian cells in 1987, the biopharmaceu-
tical market has dramatically increased. The 
annual global market of biopharmaceuticals 
was estimated at US$ 199.7 billion in 2013 
and was predicted to reach US$ 497.9 billion 
in 2020 [99].

Although a variety of alternative expres-
sion systems, including those using micro-
organisms and insect cells, are available, 
Chinese hamster ovary (CHO) cells are the 
most widely used for the commercial pro-
duction of therapeutic proteins because 
the CHO-derived glycoprotein quality is 
compatible with humans and has the desired 
post-translational modification including 
glycosylation [1,2]. Currently, six of the top 
eight therapeutic proteins are manufactured 
in CHO cells [100].

To meet the increasing needs of the bio-
pharmaceutical market, more than a 100-
fold yield improvement of product titers in 
CHO cells has been achieved over the past 
two decades, largely due to the development 
of the cell culture medium as well as the 
optimization of feeding strategies [3,4]. Nev-
ertheless, the demands of the ever-increasing 
highly competitive market, particularly for 

biosimilars, still require a higher production 
yield and quality of therapeutic proteins in 
CHO cells.

Glutamine, which plays important roles 
in the metabolism of cell growth and cell 
survival, is a major nitrogen source and also 
an energy source in mammalian cell cul-
tures [5,6]. However, ammonia is necessarily 
accumulated as a result of glutamine metab-
olism and natural decomposition of gluta-
mine [7]. Accumulation of ammonia during 
CHO cell cultures is a concern because of its 
negative effect on cell growth and glycopro-
tein production [8,9]. Ammonia is also known 
to negatively affect product quality 
including glycosylation patterns. Ammonia 
concentration as low as 2 mM was found to 
significantly reduce the terminal sialylation 
of the glycoproteins [10,11]. The reduction of 
ammonia accumulation in CHO cell cultures 
to achieve improved therapeutic proteins has 
been an ongoing challenge in mammalian 
cell culture technology.

In this review, we summarize the current 
strategies and achievements in overcom-
ing the negative effect of ammonia with an 
emphasis on the glutamine substitution by 
less ammoniagenic substrates for improved 
therapeutic proteins.
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Figure 1. The glutamine metabolism pathway. 
Glutamine substitutes used in mammalian cell cultures 
are shaded.
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Ammonia accumulation in culture medium
Mammalian cells utilize glutamine as a nitrogen 
source and as a key anaplerotic source for biosynthesis. 
Therefore, glutamine, together with glucose, is a main 
energy source for mammalian cell cultures [12–14]. Glu-
tamine is the most abundant amino acid in the cell cul-
ture medium (2–8 mM) [15,16]. Glutamine, however, is 
consumed rapidly in mammalian cell cultures because 
of its diverse metabolic functions within the cells [17].

As shown in Figure 1, glutamine is catabolized 
mainly in the mitochondrial matrix with the initial 
removal of the amido group of glutamine to yield glu-
tamate. This reaction is regulated by glutaminase and 
releases an ammonia molecule. The amido group is 
also utilized as an amino group donor for purine and 
pyrimidine biosynthesis and activated sugar formation, 
but to a much lower extent [18]. Next, the α-amino 
group is removed by glutamate dehydrogenase, leading 
to α-ketoglutarate. This reaction also releases a second 
ammonia molecule. After that, the α-ketoglutarate 
enters the citric acid cycle to generate energy and 
produce numerous intermediates for biosynthesis [19,20].

Glutamine is naturally decomposed in the cell 
culture medium because it is unstable in an aque-
ous solution state. Glutamine is degraded irreversibly 
into the pyrrolidonecarboxylic acid and ammonia in 
cell culture conditions. In addition, this reaction is 
highly dependent on the culture environment, such 
as temperature and pH [7]. Pyrrolidonecarboxylic acid 

at a high concentration (20 mM) is not toxic to the 
cells [21], but ammonia concentration at a low con-
centration (4.3 mM) can have negative effects on cell 
growth and glycoprotein production.

Negative effects of ammonia on cell growth 
& glycoprotein production
Ammonia, which is necessarily accumulated as a result 
of glutamine metabolism and natural decomposition 
of glutamine, is a toxic by-product accumulated during 
mammalian cell cultures [9,22,23]. Negative effects of 
elevated ammonia in mammalian cell cultures separate 
into three categories: cell growth, protein production 
and glycosylation, as summarized in Table 1.

The inhibitory effect of ammonia on cell growth 
is well documented in several mammalian cell cul-
tures. Ammonia had an inhibitory effect on specific 
growth rate in hybridoma [24], monkey epithelial cell 
line (BSC-1) [25] and baby hamster kidney cell line 
(BHK21) cultures [26]. When ammonia was added to 
the culture of recombinant CHO (rCHO) cells pro-
ducing the Fc-fusion protein, ammonia inhibited spe-
cific growth rate and decreased cell viability in a dose-
dependent manner (Figure 2A & 2B). The maximum 
viable cell concentration obtained in the culture with 
20 mM ammonia addition was approximately 65% of 
that obtained in the control culture. The inhibitory 
effect of ammonia on specific growth rate and maxi-
mum cell concentration was also observed in many 
other CHO cell lines, though the degree of growth 
inhibition by ammonia appears to depend on rCHO 
cell lines and culture conditions [11,27,28].

The detrimental effect of ammonia on protein 
production has also been well documented in several 
mammalian cell cultures. In human fibroblast cul-
tures, 4 mM ammonia addition decreased the inter-
feron-beta (IFN-β) production from 2600 units/ml 
to 50 units/ml [29]. In hybridoma cell cultures, 5 mM 
ammonia addition decreased antibody production 
from 56 μg/ml to 1 μg/ml [30]. In rCHO cell cultures, 
7.5 mM ammonia addition decreased tPA production 
from 85 ng/ml to 45 ng/ml [31]. As shown in Figure 2C, 
ammonia decreased Fc-fusion protein production in 
rCHO cell cultures in a dose-dependent manner. The 
maximum Fc-fusion protein concentration obtained 
in the culture with 20 mM ammonia addition was 
approximately 61% of that obtained in the control 
culture. As shown in Figure 2D, the specific productiv-
ity (q

p
), which was calculated based on the data col-

lected during the exponential phase of growth, was not 
affected significantly by ammonia addition (p > 0.05). 
In contrast, the time integral of viable cell concentra-
tion during the culture decreased in a dose-dependent 
manner. Thus, the decreased maximum Fc-fusion 

Key terms

Therapeutic protein: Protein-based therapeutics has 
advantages such as highly specific functions, reduction of 
the side effects and no immune response.

Product quality: Product quality of glycoproteins is 
determined by several factors such as glycosylation, 
aggregation, fragmentation and disulfide bond formation.
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protein concentration by ammonia addition was 
mainly due to the reduced cell growth. Many reports 
have shown that ammonia addition in the range of 4 
mM to 10 mM did not significantly affect q

p
 in hybrid-

oma [24,32] and rCHO cell cultures [33], which supports 
the idea that decreased protein production in mamma-
lian cell cultures by ammonia addition is mainly due to 
reduced cell growth.

Decreased cell growth and cell viability in the cul-
tures with ammonia addition are thought to be due to 
ammonia-induced apoptotic cell death [34,35]. Ammo-
nia addition in the range of five to 10 mM induced 
apoptosis in C6 glioma cell cultures [36], BHK cells 
cultures [37] and gastric surface mucous cell cul-
tures [35]. Ammonia addition in mammalian cell cul-
tures may generate the signals that trigger the sequence 
of events leading to apoptosis [38,39]. Disturbance of 
intracellular pH caused by ammonia addition induced 
the complex interplay of nitric oxide, protein kinase 
C and nuclear factor-kappa B leading to apoptosis in 
C6 glioma cell cultures [36]. Ammonia addition also 
induced the release of cytochrome c into the cytosolic 
fraction, thereby activating the caspase cascade in 
gastric surface mucous cell cultures [35,40].

Ammonia-induced apoptosis in CHO cells has not 
been investigated extensively. When ammonia for-
mation was reduced by substitution of glutamine by 
a dipeptide composed of alanine and glutamine in a 

culture medium, the apoptosis of rCHO cells express-
ing anti-CD20 chimeric antibody was reduced [34]. To 
determine the effect of ammonia addition on apopto-
sis of rCHO cells, the expression levels of cleaved cas-
pase-3 and 7 of rCHO cells in the cultures with and 
without the addition of 10 mM ammonia shown in 
Figure 2 were analyzed by Western blot analysis. As 
shown in Figure 3, the addition of 10 mM ammonia to 
the cultures increased the expression levels of cleaved 
caspase-3 and 7 which are important markers of apop-
tosis on the late culture period, which confirms that 
ammonia addition induces apoptosis of CHO cells.

Recently, ammonia derived from glutamine has been 
identified as an autophagy-stimulating factor [41,42]. 
Autophagy, which is known as a programed cell death 
type 2, plays an important role in the maintenance of 
intracellular homeostasis via regulation of the cellular 
response to a variable metabolic stress [43,44]. As shown 
in Figure 3, addition of 10 mM ammonia to the cul-
tures induced conversion of LC3–1 to LC3–2 form, 
which is an autophagy marker. Thus, ammonia addi-
tion induced apoptosis as well as autophagy in rCHO 
cell cultures.

The detrimental effect of ammonia on the glycosyl-
ation of recombinant protein has also been reported in 
rCHO cell cultures [10,45]. Glycosylation is one of the 
most critical factors in determining protein quality and 
can affect the efficacy, biological activity, solubility and 

Table 1. Ammonia toxicity on cell growth, product concentration and glycosylation in mammalian cell cultures.

Category Host Product Ammonia 
addition (mM)

Effect Ref.

Growth BSC-1 – 2 30% reduction of growth rate [25]

 BHK21 – 3 75% reduction of growth rate [26]

 Hybridoma IgG 6.7 50% reduction of growth rate [24]

 CHO – 8 50% reduction of specific growth 
rate

[27]

 CHO EPO 20 25% reduction of final cell yield [11]

Product concentration Human fibroblast IFN-β 4 2600 units/ml → 50 units/ml [29]

 Hybridoma Antibody 5 56 μg/ml → 1 μg/ml [30]

 CHO tPA 7.5 85 ng/ml → 45 ng/ml [31]

Glycosylation CHO mPL-I 3 and 9 Inhibition of N-linked glycosylation [45]

 CHO G-CSF 10 Reduction of sialylation [10]

 CHO TNFR-IgG 13 Reduction of terminal 
galactosylation and sialylation

[59]

 CHO EPO 10 Reduction of sialylation [10]

 CHO EPO 30 Reduction of sialylation [59] 

CHO tPA 10 Reduction of α2,3-ST, β1,4-GT and 
CMP-SAT

[65]

BSC: Monkey epithelial cell line; CHO: Chinese hamster ovary; CMP-SAT: Cytidine monophosphate-sialic acid transporter; EPO: Erythropoietin; 
G-CSF: Granulocyte colony-stimulating factor; mPL: Mouse placental lactogen-1; tPA: Tissue plasminogen activator; TNFR: Tumor necrosis factor receptor.
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Figure 2. Culture profiles of (A) cell growth; (B) viability; (C) Fc-fusion protein concentration and (D) specific 
productivity, qp. rCHO cells producing an Fc-fusion protein were inoculated at 2.0 × 105 cells/ml in SFM4CHO 
(HyClone, Logan, UT) supplemented with 4 mM glutamine (HyClone) and 300 nM methotrexate (Sigma-Aldrich, 
MO, USA). Cultures were performed in SFM4CHO with 4 mM glutamine without ammonia (open square), with 5 
mM ammonia (open circle), with 10 mM ammonia (gray circle) and with 20 mM ammonia addition (closed circle) in 
125 ml Erlenmeyer flasks with a working volume of 50 ml. The flasks were incubated on a climo-shaker at 110 rpm, 
in 5% CO2/air mixture and 85% humidified at 37°C. The error bars represent the standard deviations calculated 
from two independent experiments.
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in vivo half-life of the therapeutic glycoproteins [46,47]. 
Glycosylation is affected by numerous culture param-
eters such as temperature [48,49], dissolved oxygen [50], 
culture pH [49,51], culture mode [52–54] and chemi-
cal supplements [55–57]. Among them, accumulated 
ammonia is known to negatively affect the glycosyl-
ation profiles of therapeutic glycoprotein, which results 
in decreased in vivo efficacy [58].

N-glycosylation of mouse placental lactogen-1 
(mPL-1) expressed by CHO cells was inhibited by 
increasing concentrations of ammonia (three and 
9 mM). In addition, inhibition of glycosylation by 
ammonia was dependent on the extracellular pH [45]. 
O-glycosylation of granulocyte colony-stimulating fac-
tor (G-CSF) produced from CHO cells was inhibited 
by ammonia concentrations ranging from 0 to 10 mM. 
In particular, the sialic acid in the α2,6 linkage of 
N-acetylgalactosamine was reduced by the addition 

of ammonia concentrations as low as 2 mM [10]. The 
inhibitory effect of ammonia addition on galactosyl-
ation and sialylation of tumor necrosis factor-immu-
noglobulin G (TNFR-IgG) produced from CHO cells 
was observed [59]. The amount of the galactosylation 
and sialylation on TNFR-IgG correlated in a dose 
dependent manner with the ammonia concentration. 
As the ammonia concentration increased from 1 to 
15 mM, terminal galactosylation and sialylation of 
TNFR-IgG were decreased by over 40%. An inhibi-
tory effect of ammonia addition on the glycosylation 
of erythropoietin (EPO) produced from CHO cells 
was also observed [11,60]. The effect of added ammo-
nia on EPO glycosylation was related to a decrease 
in sialylation of all glycans and a decrease in the pro-
portion of the O-linked glycan. Accordingly, the det-
rimental effect of ammonia on the glycosylation of 
recombinant protein has been well received in rCHO 
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Figure 3. Western blots of cleaved caspase-3/7 and LC3 
during cultures in SFM4CHO with or without 10 mM 
ammonia addition. The antibodies used for analysis 
were anti-cleaved caspase-3, anti-cleaved caspase-7, 
anti-LC3 (all from Cell Signaling Technology, MA, USA), 
and anti-β-actin (Sigma-Aldrich). β-actin was used as 
a loading control. Culture conditions are described in 
Figure 2.
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cell cultures. Nevertheless, the cellular mechanism of 
detrimental effects of ammonia on the glycosylation of 
recombinant proteins in CHO cell cultures has not yet 
been clearly understood.

Ammonia increases the intracellular pH of endo-
plasmic reticulum and Golgi compartments [9,61]. In 
aqueous solution, ammonia is linked in a pH-depen-
dent equilibrium because the protonation and deprot-
onation reactions of ammonia are performed very fast 
in intracellular organelles [9]. Ammonia in the culture 
media induces acidification of the cytoplasm and alka-
linization of the interior of the organelles, including 
mitochondria, as a result of the ammonia diffusion 
cycle between the organelles and cytoplasm [62].

Increased intracellular pH disturbs the balance 
of the nucleotide sugar pools, and thereby reduces 
cell growth and inhibits the glycosylation by affect-
ing the activities of the enzymes involved in the 
glycosylation [63,64]. Increased intracellular pH 
inhibited glycosyltransferase activity, such as α2,6-
sialyltransferase [10], α2,3-sialyltransferase (α2,3-ST) 
and β1,4-galactosyltransferase (β1,4-GT) [59], whereas 
it increased glycosidase activity such as galactosidase [59] 
and sialidase [57].

Ammonia affects the glycosylation-related gene 
expression level as well as enzyme activities. Among 12 
glycosylation-related genes evaluated by quantitative 
real time PCR, α2,3-sialyltransferase, the expression 
levels of β1,4-galactosyltransferase and CMP-sialic 
acid transporter (CMP-SAT ) decreased in the cultures 
with ammonia addition [65]. With available genomic 
sequences of CHO cells [66], the effect of elevated 
ammonia on the glycosylation related genes is better 
understood. There are approximately 300 genes asso-
ciated with glycosylation including glycan synthesis, 
nucleotide sugar transport and degradation in CHO 
cells [66]. Recently, the changes in mRNA expression 
levels of 52 N-glycosylation related genes, which were 
categorized as nucleotide sugar synthesis, nucleotide 
sugar transporter, N-glycan chain extension, galacto-
sylation, sialylation, fucosylation and N-glycan deg-
radation, in CHO cells that produce the Fc-fusion 
protein with addition of 10 mM ammonia to the cul-
tures were determined using a NanoString nCounter 
analysis system [67]. Among them, thirteen genes (gale, 
nans, gpi, man2a1, b4galt5, b4galt7, st3gal2, st3gal5, 
glb1, hexa, hexb, neu1 and neu3) were upregulated over 
1.5-fold in the culture with ammonia addition. In par-
ticular, the mRNA expression level of neu1 and neu3, 
which are the genes involved in the sialylation degra-
dation, is upregulated over twofold. Likewise, the pro-
tein expression levels of neu1 and neu3 also increased 
in the cultures with ammonia addition. Furthermore, 
transient transfection of neu-1 or neu3-targeted siRNAs 

significantly improved the sialic acid content of the Fc-
fusion protein in the culture with ammonia addition. 
Thus, ammonia reduced the glycosylation, particularly 
sialylation, by affecting both glycosylation-related gene 
expression levels and enzymatic activities.

Glutamine substitution by lesser ammonia 
producing substrates
In order to reduce the accumulation of ammonia dur-
ing cultures, various strategies have been attempted. 
Among them, substitution of glutamine by less ammo-
niagenic substrates or stable dipeptides is probably the 
easiest one to be implemented from the point of view of 
the bioprocess. A number of articles dealing with glu-
tamine substitution for a reduction of ammonia accu-
mulation in mammalian cell cultures are summarized 
in Table 2.

Since ammonia is accumulated as a result of glu-
tamine metabolism and natural decomposition of 
glutamine, substitution of glutamine by less ammo-
niagenic substrates such as glutamate, α-ketoglutarate, 
tricarboxylic acid (TCA) cycle intermediates shown in 
Figure 1 dramatically reduces ammonia accumulation 
in mammalian cell cultures.

In 1958, glutamate was first used as a substitute for 
glutamine in HeLa cell cultures for poliovirus pro-
duction [68]. Glutamate with alanine supplementation 
replaced glutamine in mouse L-929 cell cultures [69]. 
Glutamine was also replaced by either glutamate or 
α-ketoglutarate in McCoy cell cultures, which resulted 
in approximately a 70% reduction of ammonia accu-
mulation [70]. Glutamine substitution by glutamate sig-
nificantly decreased ammonia accumulation in murine 
hybridoma cell cultures as well. However, cell growth 
and monoclonal antibody production were reduced by 
approximately 30% by glutamine substitution [71]. In 
human embryonic kidney 293 (HEK293) cell cultures 
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for recombinant adenovirus production, glutamine 
substitution by glutamate significantly reduced ammo-
nia accumulation and resulted in a 1.8-fold increase in 
adenovirus volumetric productivity [72].

Glutamine substitution by less ammoniagenic sub-
strates has been also applied to rCHO cell cultures for 
recombinant protein production. Glutamine was suc-
cessfully replaced by glutamate in an rCHO cell cul-
ture for tPA production [73]. Glutamine substitution by 
glutamate along with glucose substitution by galactose 
significantly reduced undesirable ammonia and lactate 
production and increased the cell density and tPA pro-
duction in batch cultures [73]. It also decreased forma-
tion of by-products and increased culture duration 
and tPA production in fed-batch cultures [74]. Dual 
substitution of glutamine and glucose by galactose and 
glutamate, respectively, further improved cell growth 

and tPA production in continuous cultures, while 
reducing ammonia and lactate concentrations [75].

Glutamate was successfully used as a glutamine 
substitute in rCHO cell culture for recombinant IgG 
(rIgG) production [33]. Ammonia concentration in 
a glutamate-based medium did not exceed 2 mM, 
which is only one third of that in a glutamine-based 
medium. In addition, a 1.7-fold increase in rIgG titer 
and q

p
, along with favorable galactosylation of rIgG, 

was achieved by substitution of glutamine by gluta-
mate. Glutamine substitution by glutamate resulted 
in a 10% increase in the proportion of galactosylated 
glycans, GlF and G2F.

Glutamate is metabolized to α-ketoglutarate, which 
is a key intermediate for replenishing and circulat-
ing the TCA cycle while producing ammonia. Thus, 
substitution of glutamate by TCA cycle intermediates 

Table 2. Glutamine substitution strategies for reduction of ammonia accumulation in mammalian cell cultures.

Host Product Glutamine 
substitution by

Effect Ref.

HeLa Poliovirus Glutamate Maximal yield of poliovirus production [68]

HeLa – Glutamate Growth improvement [69]

Vero, McCoy, BHK – Either glutamate and 
alpha-ketoglutarate

70% reduction of ammonia accumulation [70]

Hybridoma IgG1 Glutamate Reduction of ammonia accumulation (<0.5 mM) [71]

CHO tPA Glutamate Reduction of ammonia and lactate, increase of 
tPA production rate

[73]

CHO tPA Glutamate Higher cell concentration, lower production of 
byproducts

[75]

CHO tPA Glutamate Reduction of ammonia and lactate, increase of 
tPA production rate

[74]

HEK293 Adenovirus Glutamate Reduction of ammonia accumulation about 
tenfold, 1.8-fold increase of volumetric 
productivity

[72]

CHO rIgG Glutamate Reduction of ammonia accumulation (<2 mM), 
1.7-fold increase of qp and rIgG titer, increase of 
galactosylation

[33]

CHO Fc-fusion protein α-ketoglutarate Reduction of ammonia accumulation (<3 mM), 
2.7-fold increase of qp and 1.3-fold increase of 
titer, increase of sialylation

[76]

CHO, BHK, MDCK Influenza vaccine Pyruvate Reduction of ammonia (<0.4 mM) and lactate 
(<18.6 mM) accumulation

[77]

Hybridoma IgG Ala-Gln or Gly-Gln Reduction of ammonia accumulation (<3.5 mM), 
14% increase of cell yield

[81]

CHO tPA GlutaMAXTM-1 
(dipeptide of Ala-
Gln)

Improvement of galactosylation [82]

CHO IgG Ala-Gln Reduction of ammonia about twofold, twofold 
increase of IgG titer

[34]

BHK: Baby hamster kidney; CHO: Chinese hamster ovary; HeLa: Human epithelial carcinoma; MDCK: Madin-Darby canine kidney; tPA: Tissue plasminogen activator.
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is expected to further reduce the ammonia accumula-
tion during the cultures. When TCA cycle interme-
diates (citric acid, succinic acid and α-ketoglutarate), 
along with glutamate were used as a substitute for glu-
tamine with two different rCHO cell lines producing 
Fc-fusion protein, α-ketoglutarate produced the best 
production performance [76]. The replacement of gluta-
mine by α-ketoglutarate reduced cell growth. However, 
it increased culture longevity and q

p
, which resulted in 

a 1.3-fold increase in the maximum product concentra-
tion. Furthermore, the sialic acid content of Fc-fusion 
protein in an α-ketoglutarate-based medium was 
higher than that in a glutamine-based medium, most 
likely due to the lower ammonia concentration. The 
final ammonia concentration in the α-ketoglutarate-
based medium was less than one fourth of that in 
the glutamine-based medium. As shown in Figure 4, 
α-ketoglutarate also replaced the glutamine success-
fully in rCHO cell cultures for antibody production. 
The replacement of glutamine by α-ketoglutarate 
resulted in a better performance for cell viability, 
culture duration and antibody production.

For industrial use of α-ketoglutarate as a glu-
tamine substitute, a relatively long lag phase with 
α-ketoglutarate can be a concern. The lag phase can be 
shortened significantly using cells adapted to grow in an 
α-ketoglutarate medium [76]. Alternatively, a low level of 
glutamine may be supplemented in an α-ketoglutarate 
based medium to reduce the lag phase of cell growth. 
In batch cultures of rCHO cells for Fc-fusion protein 
production, supplementation of 0.5 mM glutamine 
in an α-ketoglutarate based medium improved cell 
growth and the final Fc-fusion protein concentration 
(Figure 5A & 5B), though it slightly increased ammonia 
concentration (Figure 5C). In addition, α-ketoglutarate 
is affordable for large-scale cultures, though it is a little 
more expensive than glutamine.

Pyruvate, which is an important metabolite for energy 
generation in mammalian cell cultures, also replaced 
glutamine successfully. Substitution of glutamine by 
pyruvate provided a significant reduction of ammo-
nia as well as lactate without suppression of growth in 
MDCK, BHK21 and CHO cell cultures for influenza 
vaccine production [77]. In particular, MDCK cells grew 
well without ammonia and lactate accumulation even at 
very low concentrations of pyruvate (1 mM).

To overcome the chemical decomposition of glu-
tamine in the medium, glutamine can be replaced by 
stable derivatives such as dipeptides. In dipeptides, the 
α–amino group of glutamine is chemically bound, and 
thus dipeptides are more resistant to the natural decom-
position by intra or extracellular peptidase in aqueous 
solution state than glutamine [9,22]. Furthermore, the 
solubility of dipeptides can be higher than that of 

glutamine [34,78]. However, the high cost for chemical 
synthesis of dipeptide can be a concern for use in large-
scale cultures [22,34]. A cost-effective production pro-
cess of dipeptides using microbial fermentation made 
the use of dipeptides more affordable [79,80].

Dipeptides, such as alanyl-glutamine (Ala-Gln) and 
glycyl-glutamine (Gly-Gln), were used as a substitute 
of glutamine in murine hybridoma cell cultures [81]. 
The final cell density in a Gly-Gln supplemented 
medium was 14% higher than in glutamine only. The 
accumulation of ammonia and lactate was significantly 
decreased by substituting glutamine for dipeptides. 
However, monoclonal antibody production was simi-
lar among glutamine, Ala-Gln and Gly-Gln supple-
mented medium. The dipeptide Ala-Gln, was used 
as a glutamine substitution in CHO cell cultures for 
tPA production [82]. Ala-Gln supplementation reduced 
ammonia accumulation and enhanced galactosylation 
of tPA. Ala-Gln was also used as a glutamine substitute 
in CHO cell cultures for monoclonal antibody produc-
tion [34]. Although Ala-Gln suppressed cell growth, 
aglutamine substitution by Ala-Gln increased mono-
clonal antibody productivity and decreased apoptotic 
cell death.

Other strategies to reduce ammonia 
formation
Glutamine and glucose concentrations in typical cell 
culture media are much higher than concentrations 
required by cells for energy metabolism and growth. 
The excessive level of glutamine and glucose increases 
an unnecessary consumption rate of these nutrients 
and result in the accumulation of toxic waste products, 
such as ammonia and lactate, during the cultures [83]. 
The excessive accumulation of ammonia due to unnec-
essarily metabolized glutamine in mammalian cell 
cultures can be reduced by controlled addition of 
glutamine and/or glutamine replacement [84,85].

Ammonia formation was reduced by approximately 
40% in MDCK cell cultures by controlling the gluta-
mine and glucose concentration below 1.0 mM [24]. In 
batch and continuous cultures of BHK cells, ammonia 

Key terms

By-products: Lactate and ammonia, which are two 
major toxic by-products produced from glucose and 
glutamine, respectively, are necessarily accumulated during 
mammalian cell cultures.

Fed-batch culture: Operational technique in cell culture 
where depleting nutrients are fed to the bioreactor.

Continuous culture: Operational technique in cell culture 
where fresh medium is continuously fed to the bioreactor 
and culture supernatant is continuously removed from the 
bioreactor.
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Figure 4. Culture profiles of (A) cell growth;  
(B) viability; and (C) antibody concentration. Cultures 
were performed in SFM4CHO with 4 mM glutamine 
(closed circle), with 4 mM α-ketoglutarate (open circle) 
and without any supplements (gray circle). Culture 
conditions are described in Figure 2.
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formation was significantly reduced by maintaining 
the glutamine concentration at less than 1.0 mM [86]. 
In HEK293 cell cultures for adenovirus production, 
glutamine concentration was maintained at a level as 
low as 0.1 mM with a concentrated feed medium using 
online sampling coupled with automatic feedback con-
trol of glutamine [83]. As a result, virus titers in low-
glutamine fed-batch cultures with significant reduc-
tion of ammonia accumulation were approximately 

tenfold higher than those in a normal batch culture. 
The feedback algorithm was also used to maintain 
the glutamine level at 0.3 mM in fed-batch cultures 
of rCHO cells for interferon gamma (IFN-γ) produc-
tion [85]. As expected, this low glutamine fed-batch 
strategy reduced ammonia and lactate accumulation 
and enabled up to a tenfold increase in IFN-γ yield, 
while maintaining both the N-glycosylation macro- 
and microheterogeneity of IFN-γ. However, a very low 
glutamine concentration (< 0.1 mM) decreased the 
sialylation and increased the heterogeneity of IFN-γ.

To reduce the ammonia formation in fed-batch 
cultures for tPA production, a glutamine-contain-
ing dipeptide, pyruvate, glutamate and wheat gluten 
hydrolysate was used as a substitute for glutamine in a 
two-step feed glutamine replacement process where the 
cells were initially cultivated in a glutamine containing 
medium to establish cell growth followed by feeding 
with a glutamine substitute [84]. This feed glutamine 
replacement process not only reduced the ammonia 
concentration by over 45% but also almost doubled 
the tPA titer without compromising the tPA quality, 
including glycosylation patterns.

To reduce ammonia formation during the cultures, 
cells that can grow in a glutamine-free medium or pro-
duce less ammonia can be selected by high through-
put screening and adaptation. CHO-K1 cells that can 
grow in the glutamine-free medium were selected using 
fluorescence-activated cell sorting FACS or magnetic 
activated cell sorting [87]. The selected cells showed 
similar or even better growth and viability profiles 
compared with parental CHO-K1 cells. Likewise, the 
same strategy was successfully applied to rCHO cells 
producing an erythropoietin-Fc fusion protein (CHO-
EPO-Fc) [88]. The produced EPO-Fcs had comparable 
quality to those produced by the parental CHO-EPO-
Fc in glutamine containing medium, with only minor 
effects on EPO antennarity.

Genetic manipulation of the metabolic pathway in 
mammalian cells can reduce ammonia formation. Glu-
tamine synthetase (GS) which catalyzes the conversion 
of glutamine and ammonia to form glutamine is the 
most widely engineered target in mammalian cells [89,90]. 
Transformed cells with the GS gene can grow in gluta-
mate instead of a glutamine supplemented medium with 
a significant reduction of ammonia accumulation.

Murine hybridoma cells transfected with the GS 
gene grew in the glutamine-free culture medium 
without cell growth reduction, while not producing 
ammonia [91,92]. The CHO-K1 cell line transformed 
with GS was also constructed and, then the GS gene 
was amplified with methionine sulfoximine, which is 
a GS inhibitor. The specific ammonia production rate 
of the resulting CHO cells was about one-fourth of 
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Figure 5. Culture profiles of (A) cell growth; (B) 
Fc-fusion protein concentration; and (C) ammonia 
concentration. Cultures were performed in SFM4CHO 
with 4 mM glutamine (closed circle), with 4 mM 
α-ketoglutarate (open circle), with 0.5 mM glutamine 
+ 4 mM α-ketoglutarate (closed square), with 1 mM 
glutamine + 4 mM α-ketoglutarate (open square) and 
with 2 mM glutamine + 4 mM α-ketoglutarate (gray 
square). Culture conditions are described in Figure 2.
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that of parental CHO-K1 cells [93]. Co-expression of 
GS and recombinant protein was attempted in CHO 
cells [94]. GS expression allowed the cells to grow bet-
ter in a glutamate based medium without reduction of 
growth and viability. Moreover, the accumulation of 
ammonia dramatically decreased from 2.1 to 0.7 mM 
in glutamate based medium and the expression of 
recombinant protein increased by approximately 18%.

Other genetic manipulation targets are carbamoyl 
phosphatate synthetase I (CPS I) and ornithine trans-
carbamoylase (OTC), which are involved in the urea 
cycle. The urea cycle is an enzyme system for the 
elimination of ammonia via conversion of ammonia 
to urea [95]. CPS I and OTC, which are the first and 
second steps in the urea cycle, were introduced into 
CHO cells to reduce the ammonia accumulation dur-
ing the cultures [96]. The resulting co-engineered cells 
showed decreased ammonia accumulation and a better 
cell growth compared with parental cells. CPS I and 
OTC were also introduced into rCHO cells producing 
tPA (OTC-tPA-CHO). The biological activity of tPA 
produced from OTC-tPA-CHO cells was higher than 
that of any reporting CHO cells [96].

Strategies using an ion exchange resin [97], electro-
dialylsis [98] and hydrophobic membrane [71] are also 
possible to reduce ammonia accumulation during the 
cultures, but they are not covered in this review.

Conclusion & future perspective
For production of glycoprotein in mammalian cell 
cultures, ammonia accumulation resulting from glu-
tamine catabolism and natural decomposition is a 
concern because of its negative effects on cell growth, 
protein production and glycosylation. Among various 
strategies for reduction of ammonia, glutamine substi-
tution by fewer ammonia producing substrates such as 
glutamate, pyruvate and α-ketoglutarate is quite effec-
tive and can be easily implemented in the bioprocess. 
Excessive accumulation of ammonia due to unneces-
sarily metabolized glutamine can also be reduced by 
controlled addition of nutrients such as glutamine 
and glucose in fed-batch cultures. Alternatively, with 
increasing information on the ammonia effects on cells 
at the molecular level, it would be possible to genetically 
engineer cells to produce less ammonia and/or to be 
more robust in regard to cell growth and glycoprotein 
production at elevated ammonia concentrations.
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