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Glioblastoma Image Analysis using 
Convolutional Neural Networks to 
Accurately Classify Gene Methylation 
and Predict Drug Effectiveness

Glioblastoma multiforme is a deadly brain cancer with a median patient survival time of 18-24 months. A single biopsy cannot provide 
complete assessment of the tumor’s microenvironment, making personalized care limited. 50% of the patients do not respond to the 
anti-cancer drug Temozolomide (TMZ) because of the over-expression of MGMT gene. Epigenetic silencing of the MGMT gene by 
methylation results in decreased MGMT expression, increased sensitivity to TMZ, and longer survival. The purpose of this research is 
to use artificial intelligence (AI) to design a low-cost platform to determine the MGMT’s methylation status and suggest non-invasive 
treatment plan.

An AI platform is developed that uses a U-Net architecture for tumor identification in the brain MRI scans, and a ResNet-50 architecture 
for methylation prediction using MRI scans from the TCIA (The Cancer Imaging Archive) along with genetic data from TCGA (The 
Cancer Genome Atlas). The foundational software is written using Python, math libraries and TensorFlow.

Image segmentation of 5000 patient brain MRI scans using a U-Net model revealed an accuracy of 90% for tumor segmentation. 
ResNet50 image classifier model was used for MGMT methylation status prediction. The web- platform quickly uploads the MRI scans 
and provides MGMT status in few seconds. The platform allows oncologists to recommend personalized treatment plans, eliminating 
huge time/cost investments of invasive biopsies. Patients with Positive/methylated MGMT will be receptive to chemotherapy with 
TMZ. Patients with unmethylated MGMT will not be sensitive to TMZ and would need additional MGMT modulation with miRNAs.
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Introduction 
Glioblastoma multiforme is a very lethal form of 
brain cancer with no known cure. The prognosis 
remains poor with a 5% average survival rate, 
despite aggressive treatments. For high grade 
gliomas, treatment combines surgical resection, 
postoperative radiation, and chemotherapy 
using temozolomide (TMZ), an alkylating 
agent [1-3]. Although radiation therapy 
and chemotherapy with TMZ contribute to 
lengthen the survival and improve quality of life, 
the survival advantages are still palliative due to 
TMZ resistance as primary reason for GBM 
treatment failure [4-6], as 50% of TMZ treated 
patients do not respond to TMZ [7-9]. The 
methylation status of the O6-methylguanine-
DNA methyltransferase (MGMT) gene 
promoter region impacts sensitivity to 
temozolomide by repairing the main cytotoxic 
lethal base pairs, which are composed of the 
alkylating agent TMZ, and hence, is linked to 
reliably predicting effectiveness of TMZ [9, 10].

MGMT is an enzyme involved in DNA 
dealkylation and mediation of DNA damage, 
and is overexpressed in 60% of glioblastomas 
[1,11]. MGMT encodes for a DNA repair 
enzyme that provides resistance to alkylating 
chemotherapies such as temozolomide (TMZ). 

Because MGMT transcription can be silenced by 
promoter methylation in tumor cells, MGMT 
promoter methylation in patient tumors causes 
decreased MGMT protein expression, thereby 
abrogating the DNA repair activity necessary for 
TMZ resistance [2] (mechanism explained in 
the Figure 1). Thus, patients with a methylated 
MGMT promoter have improved survival and 
better response to radiation with concurrent 
temozolomide-based therapy. Hence, 
methylation of the O‐6‐methylguanine‐DNA 
methyltransferase (MGMT) gene promoter has 
emerged as a strong prognostic factor for newly 
diagnosed glioblastoma [2] Figure 1.

MGMT is not a true enzyme since this active 
enzyme is not regenerated after it is alkylated 
(hence MGMT is also known as suicide enzyme).

The picture below shows survival rate for low 
risk and high-risk patients in 4 cases:

1) The survival improvement for patients with 
radio therapy (RT) using temozolomide. 

2) Standard radiotherapy without temozolomide 

3) Impact of RT+TMZ in case of unmethylated 
MGMT.

4) Impact of RT+TMZ in case of methylated 
MGMT [4] on the survival rate for low-risk 
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and high-risk patients is shown below in Figure 
2. Radiotherapy and TMZ combined confers 
a clear overall survival benefit to patients 
with methylated MGMT relative to standard 
radiotherapy [12] Figure 2.

Additionally, MGMT can be epigenetically 
repressed in multiple ways, most commonly 
due to methylation of its promoter region, or by 
over-expression of several microRNAs [7].

MicroRNAs are small noncoding RNAs that 
target specific sequences of mRNAs, thereby 
regulating gene expression, causing translational 
repression or mRNA degradation [7].

This is summarized in the following Table 1:

Problem statement: Current methods for 
tumor detection and MGMT gene methylation 
identification to recommend effective TMZ 
dosages to glioblastoma patients are extremely 
invasive and time- and cost- intensive. 
Current methods use invasive biopsies and 
expensive procedures like genetic testing that 
add to the financial burden and unnecessary 
time lag between patient testing and therapy 
recommendation [13-17].

Proposal: The combination of brain MRI 
scans, genetic data, and deep learning models 
can be used to detect microscopic changes in 
brain tumors and predict MGMT methylation 
status in a time- and cost- effective manner. In 
the current study, the author develops an AI 

platform, that will facilitate efficient diagnoses 
by executing the following real-time analysis:

1. Perform tumor segmentation on the patients’ 
brain MRI scans which are uploaded by 
clinicians. The background on this step includes 
algorithms that train a deep learning U-Net 
model on the BraTS dataset (Brain Tumor 
Segmentation) and then training a U-Net 
architecture on a TCIA database to perform 
tumor segmentation (predict tumor areas). Note 
that the TCIA database was used in this study as 
retrospective data for patient MRI scans.

2. Label patient scans with tumors clearly 
identified with known MGMT methylation 
status. This data was obtained retrospectively 
from TCGA datasets.

3. Train a convolutional neural network using the 
ResNet-50 model and the combined TCGA 
and TCIA data to predict MGMT methylation 
status and overall survival for patients with 
methylated and unmethylated MGMT.

4. Recommend therapeutic options 
(Radiotherapy (RT) + Chemotherapy with 
TMZ or only RT depending on MGMT 
methylation status).

5. Perform computation modeling using miRNA 
databases and MGMT interaction to find 
miRNAs that can regulate MGMT expression, 
leading to improved TMZ sensitivity for 
patients with unmethylated MGMT.

Figure 1. Chemosensitivity of MGMT: Enhanced due to epigenetic silencing of the DNA-repair gene MGMT [10 O6-alkyl-guanine is a major 
carcinogenic lesion in DNA. Above shows that the DNA adduct is removed by the repair protein MGMT (O6-alkylguanine DNA alkyl transferase).
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Figure 2. MGMT and Overall survival [12].

Table 1. This is summarized in the following table.
 Methylated MGMT Unmethylated MGMT

What is it CH3 or methyl group gets added No CH3 or methyl addition
Why it happens Environmental factors, genetic mutations  

Anti-cancer drug temozolomide 
(TMZ) Works (glioma cells sensitive to TMZ) Does not work (glioma cells 

resistant to TMZ)
Therapeutics for Glioma Radiotherapy (RT) + TMZ Radiotherapy only

Consequences Improved patient survival Reduced patient survival
Options for enhanced and 

improved treatment Radiotherapy + TMZ (Temozolomide) miRNA-based MGMT modulation to enhance 
sensitivity to TMZ

Essentially, miRNAs downregulate MGMT 
gene expression in GBM cells through 
binding to the 3’-UTR of MGMT mRNA, 
thereby affecting protein translation [18]. 
MiRNA transfection thus leads to significant 
improvement in responsiveness to TMZ, 
causing GBM cell death [18] Figure 3.

The overall architectural overview for this 
methodology is shown below in Figure 4:

Methods and Materials
Step 1: Download patient images from TCIA, 
shown below in Figure 5. 4,959 Brain Scans 
(475,458 image frames) for 259 patients were 
downloaded from TCIA with all 4 modalities 
(T1, T2, FLAIR, T1Gd). Only T1 image scans 
were used to keep uniformity, as all patients did 
not have T2/FLAIR/T1Gd.

Figure 5: Subset of 4,959 images downloaded 
from The Cancer Imaging Archive (TCIA)

Step 2: preprocessing of images: raw 
downloaded images needed to be processed into 
usable formats. Skull removal using BET (brain 
extraction tool) was performed, as well as noisy 
image analysis and axis correction. Figure 6.

Final Pre-processed Images Figure 7:

Step 3: Tumor segmentation using the U-Net 
Convolutional Neural Network Architecture

Training U-Net on the BraTS dataset (Images 
downloaded from medicaldecathalon.com). 
The BraTS (Brain Tumor Segmentation) 
dataset provides evaluation of state-of-the-art 
methods for the segmentation of intrinsically 
heterogeneous (in appearance, shape, and 
histology) brain tumors, namely gliomas [13]. 
A U-Net architecture was trained on the BraTS 
dataset to create a pixel-wise segmentation map 
that would predict the tumor region in a brain 
MRI scan. A U-Net Convolutional Neural 
Network contains an encoder path, which 
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Figure 3. miRNA based MGMT regulation.

Figure 4. The workflow analysis approach used in this research.

Figure 5. Subset of 4,959 images downloaded from The Cancer Imaging Archive (TCIA)
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Figure 6. pre-processing using s/w tools

Figure 7. Subset of pre-processed images after skull removal, noisy image removal, and T2/FLAIR/T1Gd modality removal
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reduces image dimensionality to capture the 
context of the image, and a decoder path, which 
enables precise localization using transposed 
convolutions and up-sampling [20-21]  
Figure 8.

Parameters used were as following:

The Sorenson-Dice coefficient was used to 
predict accuracy: the Sorensen–Dice coefficient 
is a statistic used for comparing the similarity of 
two samples, Figure 9 defined as

Dice (P,T) = 2|𝑃 ∩ 𝑇|/ |𝑃|+|𝑇|, where P is 
algorithmic pr/edictions € {0,1} and T is 
consensus truth € {0,1}
True Negative also called Spec (P,T) = 
|𝑃0∩𝑇0||𝑇0|
True Positive also called Sensitivity (P,T) = 
|𝑃1∩𝑇1||𝑇1|
Ref: IEEE, The multimodal BraTS benchmark [13]
The algorithm compares the UNet based 
predicted tumor location to the actual tumor 
location in the BraTS dataset.

Figure 8. U-Net architecture showing the encoder and decoder path with input image, convolutional layers, max pooling, and final 
convolution calculated for the output image.

Figure 9. Sorenson-Dice coefficient.
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Step 4: Genomics (methylation data) was 
retrieved from the TCGA website [3] and filtered 
by TCGA-GBM, DNA methylation, and 
methylation β value. The methylation consisted 
of 423 unique patients for all 450 methylation 
data files available on TCGA. Methylation sites 
(cg02941816, cg12434587, and cg12981137), 
located in the minimal promoter and enhancer 
regions, shown to have maximal methylation 
activity and affect MGMT expression, were 
extracted. Methylation values for these 3 
mentioned sites were taken, and a patient 
was considered to have a positive MGMT 
methylation status if the maximum of the three 
was greater than 0.2 (i.e. a methylation beta value 
of minimum 0.2 was a positive methylation 
site). In general, the methylation value for each 
site is expressed as a β value, representing a 
continuous measurement from 0 (completely 
unmethylated) to 1 (completely methylated). 
Following the merge of the preprocessed T1 
modality MRIs from the TCIA dataset with the 
methylation labels, the final patient count was: 

The resulting methylation data was mapped 
to patient IDs and T1 images. The data was 
then used to train a second CNN to predict a 
patient’s methylation status using a ResNet-50 
architecture Figure 10.

In general, in a deep convolutional neural 
network, several layers are stacked and trained 

with labeled data. The network then learns 
features at various levels of abstraction (high/
medium/low level). In residual learning, instead 
of trying to learn features directly, it tries to 
learn from a residual. ResNet-50 does this by 
using shortcut connections (directly connecting 
input of nth layer to some (n + x)th layer [14]. 
It has been proven that training this form of 
networks is easier than training simple deep 
convolutional neural networks and the problem 
of “deterioration of training accuracy” is addressed 
to ensure a certain performance level [14].

The ResNet-50 classification model has 5 stages 
each with a Convolution and Identity block. Each 
convolution and identity block has 3 convolutional 
layers. Each image frame was first input in a CNN 
layer, and multiple residual convolutional layers were 
used to detect edges/shapes/corners that represent 
the tumor in the image. Batch normalization and 
average pooling layers were added to improve 
speed, and performance. Final dense layers were 
added with 2 nodes for classification (methylation 
positive or methylation negative).

Training set (80%) and Validation set (20%)

The area under the receiver operator characteristic 
curve (ROC), accuracy, and precision were all 
calculated.

Step 5: For patients with “unmethylated 
MGMT,” computational modeling was done 

Figure 10. ResNet-50 CNN Architecture for state-of-the-art image classification.
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to find miRNAs and binding strength with 
MGMT. Binding sites for miRNAs in the 
3’ UTR of MGMT were predicted using the 
tools TargetScan and miRTarbase. In addition, 
stronger miRNA-mediated repression of mRNA 
was observed with multiple binding sites for the 
same miRNA on 3’UTR. Table 2.

Results 
Methylation status prediction accuracy

ResNet-50: Image Format: DICOM (Digital 
Imaging and Communications)

Initial Number of Patients: 259 (all modalities 
T1/T2/FLAIR), 475,458 images

Images with methylation status TRUE: 38,043; 
FALSE: 44,659

Number of epochs: 50

Training and Validation data split: 80%/20% 

(Figure 11 & Figure 12)

The ROC Curve has an area under the curve of 
0.93, demonstrating a high prediction accuracy 
for the validation set. The True Positive Rate 
(TPR), defined as the correctly predicted number 
of methylated patients out of the total number of 

methylated patients, was 92.5%. The accuracy, 
defined as the correctly predicted number of 
patients out of the total number of patients 
(video-level accuracy), was 95%. Methylation 
results per frame were aggregated on a video level 
using a simple majority rules rule to get accuracy, 
true positive rate, and true negative rate numbers.

Overall survival: Kaplan Meier curve, drawn 
using Xenabrowser, demonstrates higher 
survival for patients with methylated MGMT 
vs unmethylated MGMT (drawn for a subset of 
the total dataset of patients) [15] Figure 13.

miRNA-MGMT mRNA analysis: In reference 
to Table 2, high absolute values of Minimum 
Free Energy and GSC (Geometric Share 
Complementarity Score) demonstrate the 
stability of the miR181d and miR603 binding. 
Thus, miR603 and miR181d can silence MGMT 
and improve glioma cell sensitivity to TMZ.

The regression analysis between miRNA and 
MGMT mRNA from the TCGA dataset 
indicated that miR-603 and miR-181d are 
consistently inversely related with MGMT 
mRNA in the TCGA dataset (p value of 0.005 
and 0.006 respectively) Table 3.

Table 2. Paring between miRNA and 3’ UTR of MGMT and Minimum Free Energy scores of the complex miR-181d and miR-
603 ranked top 2 in “absolute” minimum free energy, pointing to these as miRNAs that can effectively regulate MGMT mRNA 
expressions. In addition, 3 of the 5 binding sites predicted for miR603 and miR-181d were within 40 nucleotides apart of each other, 
contributing to cooperative regulation of MGMT.

Gene = MGMT 
miRNA

Geometric Share 
Complementarity Score Duplex structure MFE kcal/mol 

(min free energy)

miR181d-5p 142

miRNA 3'
ugggUGGCUGUUGUUACUUACAa 5'

|| |:| | |:|||:|||
Target 5' taaaACAGGCCA-AGTGAGTGTg 3'

-20.9

miR767 139

miRNA 3'
ucuuuGGUACCCCAUACUCGUcu 5'

:||| |||||||||
Target 5' tggctTCAT---GTATGAGCAag 3'

-13.50

miR603 158

miRNA 3' ugCGCGU-CCGGUC---UCU-----
GGGUCCGu 5'

|: || ||||||   ||:||||||| Target 5'
ctGTCCAGGGCCAGCTAAGGCCCATCCC AGGCc 3'

-24.80

miR-409-3p 125

miRNA 3' uccCCAAGUGGCUC--
GUUGUAag 5'

| | ::||||| |:|||| Target 5'
caaGCTCTGCCGAGGCCGACATga 3'

-13.3

miR124-3p 135
miRNA 3' ccguaagUGGCG--CACGGAAu 5‘

:|||| ||||:||
Target 5' tgtgcgaGCCGCGAGTGCTTTc 3'

-15.6
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Figure 11. Training Accuracy.

Figure 12. Images with methylation status.

Figure 12. Images with methylation status.

Table 3. Correlation between MGMT mRNA (TCGA database) and miRNAs.
miR-181d-5p miR-603 miR-409-3p miR-124-3p

r -0.218 -0.211 0.073 -0.011
p-value 0.006 0.005 0.363 0.882
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Discussion
The first CNN model used for tumor 
segmentation was a fully convolutional model 
with an encoder-decoder architecture (U-Net). 
The U-Net consists of 4 down-sampling blocks, 
in which the input image is scaled down using 
convolutional layers, followed by 4 up-sampling 
blocks in which the input image is scaled up 
using transpose convolution blocks.

The final loss, as measured by the dice loss 
coefficient, was 0.98 on the training dataset 
and 0.7 on the validation dataset. The dice loss 
(DL) is the intersection over union in which the 
intersection is factored in twice in the numerator 
and denominator [16].

Mathematically: 
𝐷𝐿=2TP/2TP+FP+FN=2|X∩Y|/|X|+|Y| [16]

The second CNN, a classification model with a 
ResNet-50 backbone for MGMT methylation 
prediction was a convolutional network with two 
fully connected layers at the end to classify each 
image into one of two categories, methylated 
or unmethylated. A ResNet-50 has residual 
connections that enable an easier propagation of 
the error into the lower layers of the network. The 
input images to this model are individual frames 
of size 128x128x1 and an Adam Optimizer was 
also used with a learning rate of 0.0001, a batch 
size of 16, and 50 epochs. Additionally, the loss 
used was a categorical cross entropy loss with a 
categorical cross entropy accuracy for evaluation 
[17].

Categorical cross-entropy loss is defined as

2

𝐶𝐶𝐸 = − ∑ 𝑡𝑖 ∗ log(𝑓(𝑠𝑖)) = −𝑡1 ∗ log(𝑓(𝑠1)) − 
(1 − 𝑡1) ∗ log (1 − 𝑓(𝑠1))

𝑖=1

where i=1 if methylation is false, i=2 if 
methylation is true, f(si): probability output for 
class i

ti: 1 for true ground truth class, 0 otherwise. 
Simply put, it is the (negative) log of the 
probability output for the ground truth class 
[17].

The dataset used here for both training and 
validation was the TCIA dataset. Before dividing 
the dataset into a training and validation set, 
the trained segmentation model was used to 
identify frames in each video where the tumor 
was visible. If the BraTS dataset segmentation 
model didn’t predict a tumor to be present on a 

given frame of a video, that frame was not used 
for training or validation.

Using this approach, the accuracy on the 
training set was 99% and the accuracy on the 
validation set was initially 90%, as determined 
by the categorical cross entropy averaged over all 
data points. A dropout of 20% was used to avoid 
a possibility of overfitting. After aggregating the 
results on a video level and using a majority rules 
approach, the validation accuracy increased to a 
final accuracy of 95% using a threshold of 0.5. 
Additionally, analysis of the final ROC and 
accuracy curves show that at a 0.5 threshold the 
accuracy is maximized with a true positive rate 
of 92.5% and true negative rate of 97.5%.

Conclusion
Gene methylation is a control mechanism that 
regulates gene expression. MGMT is a DNA 
repair enzyme that causes resistance to the 
effect of alkylating chemotherapy. Aberrant 
methylation deactivates the gene, leading to 
loss of MGMT protein expression and reduced 
proficiency to repair DNA damage induced by 
alkylating chemotherapeutic agents, thereby 
increasing tumor susceptibility to alkylating 
agent-based chemotherapy [8]. Thus, MGMT 
methylation results in a favorable response 
to temozolomide, while an unmethylated or 
overexpressed MGMT reduces the efficacy 
of alkylating drugs and confers resistance to 
the TMZ treatment [10]. Hence, detecting 
expression levels of MGMT gene becomes 
crucial to narrow the options of alkylating 
agents (e.g. TMZ) or to select patients directly 
for a second line personalized therapy.

Since miRNAs regulate a variety of cellular 
processes, such as cell differentiation, cell 
proliferation, apoptosis, stress resistance 
and stem cell maintenance [18], they were 
a key part of this research to understand the 
posttranscriptional regulation of onco- or tumor- 
suppressor genes, and specifically MGMT. The 
author used computational models to predict 
miRNAs to regulate the MGMT expression 
and improve sensitivity to temozolomide to 
increase the overall patient survival rate. Of 
multiple miRNAs simulated, the MFE scores 
and geometric share complementarity scores 
(GSC) demonstrated miR603 and miR181d to 
bind with the 3’ UTR of MGMT to suppress 
its expression. These 2 miRNAs (miR603 and 
miR-181d) were identified to suppress MGMT 
expression through binding to the 3’-UTR 
of MGMT mRNA, thus affecting its protein 
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translation. This leads to the conclusion that 
transfection of miR603 and miR-181d mimics 
into GBM cells can suppress MGMT mRNA 
and protein expression and sensitize GBM cells 
to the alkylating drug like temozolomide for 
patients with MGMT promoter unmethylated 
glioblastomas.

The platform provides a user-friendly interface 
backed by complex algorithms to perform 
real-time image processing, BraTS-based 
image segmentation, tumor cropping, and 
methylation status prediction of patient image 
scans within seconds, in contrast to traditional 
methods that take 7-10 days and are time and 
cost intensive.
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