REVIEW

Genomic science: what are the implications for personalized diabetes care?

Ravi Kant1 & Kristi Silver*1,2

Practice Points

- Personalized medicine uses patient-specific molecular biomarkers, as well as more traditional testing, to individualize preventive, diagnostic and treatment strategies for patient care.

- Monogenic forms of diabetes are found in less than 5% of diabetic patients and patients are often misdiagnosed as having Type 1 or 2 diabetes.

- Genetic testing for maturity-onset diabetes of youth (MODY) should be performed in diabetes patients with autosomal dominant inheritance, onset at less than 25 years of age and β-cell dysfunction typically in the absence of insulin resistance or obesity.

- Glucose-lowering medications are rarely needed in patients with MODY2 except during pregnancy.

- Patients with MODY1, MODY3 and permanent neonatal diabetes with KCNJ11 and ABCC8 mutations can be switched from insulin to sulfonylureas without worsening of hyperglycemia.

- Currently identified genetic variants associated with Type 1 and 2 diabetes, and diabetes complications only modestly add to risk assessment models; therefore, genetic risk assessment for diabetes and its complications is not currently recommended in clinical practice.

- Variants in CYP2C9, KCNJ11, ABCC8 and TCF7L2, and SLC22A1, SLC22A2 and SLC47A1 are associated with interindividual variability in response to sulfonylureas and metformin, respectively.

- While personalized medicine holds great promise, many challenges exist that need to be addressed before this approach becomes standard of care in diabetes management.

SUMMARY

Developments in personalized medicine are adding to the clinician’s armamentarium and will allow for more individualized care for diabetes patients. The discovery of mutations causing many forms of monogenic diabetes now allows for the design of patient/mutation-specific targeted interventions. While many genetic loci are associated with Type 1 and 2 diabetes, and diabetes complications, these variants only modestly add to risk; therefore, genetic risk assessment for diabetes and its complications is not currently recommended in clinical practice. Genetic variants are also associated with drug metabolism,
eft and side effects. Clinical studies are required to determine if genotype information improves day-to-day clinical management of diabetes and our overall approach to clinical practice. While the development of personalized medicine is promising for the future, a number of challenges remain that will need to be overcome before personalized medicine becomes standard of care in Type 1 and 2 diabetes management.

With the rapid improvement in technology, extensive data, including genomic, proteomic and metabolomic information, may soon be available for individual patients. Through the implementation of personalized medicine, these data have the potential to revolutionize the practice of medicine. Personalized medicine involves using patient-specific molecular biomarkers derived from these tests, as well as more traditional testing to individualize preventive, diagnostic and treatment strategies rather than using general population guidelines to direct patient care. This transformation in the practice of medicine promises to produce improvements in patient care and patient outcomes, as well as lower healthcare costs by limiting preventive care, diagnostic testing and treatment to those known to be effective in patients with specific genomic, proteomic and metabolomic profiles.

Diabetes

While the practice of personalized medicine in the field of diabetes is still in its infancy, early indications demonstrate areas of clear and potential benefit [1]. Diabetes is a heterogenous disorder made up of a number of subtypes, including the more common polygenic forms of diabetes, such as Type 1 diabetes (T1DM) and Type 2 diabetes (T2DM), and the less common monogenic forms such as maturity-onset diabetes of youth (MODY) and neonatal diabetes. Given the heterogeneity of diabetes, it is not surprising that one strategy does not work for all patients. The purpose of this article is to review the current and future role of personalized medicine in the care of the diabetic patient.

Monogenic diabetes

Monogenic forms of diabetes are found in less than 5% of diabetic patients and are primarily disorders of β-cells and insulin secretion [2,3]. These disorders provide the best example of how a personalized medicine approach can guide diagnosis and treatment in diabetes patients. The most common subtypes of monogenic diabetes are MODY and neonatal diabetes. Patients with monogenic diabetes are often misdiagnosed as having T1DM or T2DM, leading to misguided treatment decisions [4]. MODY is characterized by autosomal dominant inheritance, onset at less than 25 years of age and β-cell dysfunction, typically in the absence of insulin resistance or obesity (Table 1) [2,5]. To date, eight genes have been identified as causing MODY: HNF4α (MODY1), GCK (MODY2), HNF1α (MODY3), IPF1 (MODY4), HNF1β (MODY5), NEUROD1 (MODY6), KLF11 (MODY7), and CEL (MODY8) [2,5], although not all believe that NEUROD1 and KLF11 meet all of the criteria to be included under the MODY subcategorization. Neonatal diabetes is usually diagnosed before 6 months of age and can be either transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) [6]. TNDM represents 50–60% of cases of neonatal diabetes. Depending on the study, 50–75% of TNDM cases have a mutation on chromosome 6q24 near the PLAG1 and HYMA1 genes [3,7]. Another 10% of TNDM cases are attributable to mutations in the KCNJ11 gene that codes for Kir6.2, while 13% are attributable to mutations in the ABCC8 gene that codes for SUR1 [7]. Kir6.2 is part of a potassium channel in the insulin secretion pathway. SUR1 regulates the opening and closing of the Kir6.2 channel. Mutations in either of these proteins can block closure of the channel, which, in turn, decreases insulin secretion (TNDM or PNDM), or leave the channel closed, which results in unregulated insulin secretion (hypoglycemic hyperinsulinemia of infancy). Approximately 50% of patients with PNDM have mutations in the KCNJ11 gene. The next most common mutations causing PNDM are found in the insulin and ABCC8 genes [8]. Homozygous mutations in IPF1 and GCK, genes that cause MODY in their heterozygous form, also account for a small percentage of neonatal diabetes. In 25–40% of cases, the causative genes for neonatal diabetes have yet to be identified [8].

Since specific gene mutations are known to cause MODY and neonatal diabetes, a personalized medicine approach utilizing commercially available molecular genetic testing can be used to ascertain the specific gene mutation causing diabetes in an individual patient. With this
information, a patient-specific treatment plan can be designed that addresses the best treatment options, the likelihood of progression of the disease and the development of diabetes-related complications, and recommendations for genetic counseling. For example, GCK, the gene causing MODY2, is considered to be the glucose sensor of the β-cell and phosphorylation of glucose by glucokinase is the rate-limiting step for insulin secretion [5]. Mutations in GCK lead to decreased glucokinase affinity for and phosphorylation of glucose with a shift to a higher glucose threshold for insulin secretion [9,10]. Patients with MODY2 tend to have modest levels of hyperglycemia that does not progress with age (mean fasting glucose: 128 ± 22 mg/dl; range: 77–297 mg/dl; HbA1c: 6–7%), since once glucose levels reach the higher threshold required for affinity to glucokinase, insulin secretion occurs [9,10]. As a result, diabetes complications are uncommon in MODY2 [5]. Identifying patients with glucokinase mutations impacts their care, since unlike patients with T1DM and T2DM, glucose lowering medication is rarely needed except during pregnancy. Spyer et al. demonstrated that knowing both the mother’s and baby’s GCK genotype may be relevant to prenatal care [11]. Non-MODY2 offspring born to MODY2 mothers are heavier than MODY2 offspring born to MODY2 mothers (3.9 ± 0.6 vs 3.2 ± 0.8 kg; p < 0.001) and are more likely to have macrosomia (39 vs 7%; p = 0.001) [11]. While in utero GCK genotyping of babies with MODY2 mothers is not routinely performed, genotyping should be considered when excess fetal growth occurs as knowing the baby’s GCK genotype can provide valuable information for tailoring maternal diabetes treatment, which, in turn, may improve fetal outcomes. In the case of the mother with MODY2 and the baby without MODY2, treatment with insulin should be instituted to decrease the risk of macrosomia and obstetric complications. However, when both mother and offspring have GCK mutations, insulin treatment is generally not necessary [12].

Unlike MODY2, MODY1 and MODY3 patients have progressive β-cell failure resulting in increasing hyperglycemia and the need for glucose-lowering medication [13]. Because of the younger age at diagnosis and absence of metabolic syndrome, many MODY1 and MODY3 patients are inappropriately diagnosed with T1DM and started on insulin therapy [14]. However, patients with MODY1 and MODY3 are highly responsive to sulfonylureas [15–17]. Therefore, once patients with MODY1 and

<table>
<thead>
<tr>
<th>MODY</th>
<th>Gene</th>
<th>Function</th>
<th>MODY cases (%)</th>
<th>Phenotype</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODY1</td>
<td>HFN4α</td>
<td>Transcription factor</td>
<td>30–70</td>
<td>Onset in adolescence or early adulthood, Progressive defect of insulin secretion, Sensitive to sulfonylureas</td>
<td>[2,5]</td>
</tr>
<tr>
<td>MODY2</td>
<td>GCK</td>
<td>Glycolytic enzyme</td>
<td>30–70</td>
<td>Mild hyperglycemia beginning at birth, Often do not require glucose-lowering medication except during pregnancy</td>
<td>[2,5]</td>
</tr>
<tr>
<td>MODY3</td>
<td>HFN1α</td>
<td>Transcription factor</td>
<td>5–10</td>
<td>Onset in adolescence or early adulthood, Progressive defect of insulin secretion, Sensitive to sulfonylureas</td>
<td>[2,5]</td>
</tr>
<tr>
<td>MODY4</td>
<td>IPF1</td>
<td>Transcription factor</td>
<td>Very rare</td>
<td>Adult onset, Progressive defect of insulin secretion, Pancreatic agenesis in homozygotes</td>
<td>[2,5]</td>
</tr>
<tr>
<td>MODY5</td>
<td>HFN1β</td>
<td>Transcription factor</td>
<td>5–10</td>
<td>Renal cysts and diabetes</td>
<td>[2,5]</td>
</tr>
<tr>
<td>MODY6†</td>
<td>NEUROD1</td>
<td>Transcription factor</td>
<td>Very rare</td>
<td>Early adulthood, Obesity, Progressive β-cell failure</td>
<td>[66]</td>
</tr>
<tr>
<td>MODY7†</td>
<td>KLF1</td>
<td>Transcription factor</td>
<td>Extremely rare</td>
<td>Diagnosed in adulthood, Progressive β-cell failure</td>
<td>[67]</td>
</tr>
<tr>
<td>MODY8</td>
<td>CEL</td>
<td>Lipolytic enzyme</td>
<td>Extremely rare</td>
<td>Exocrine and endocrine pancreatic deficiencies</td>
<td>[68]</td>
</tr>
</tbody>
</table>

†There is debate as to whether NEUROD1 and KLF1 should be included as MODY genes.
MODY: Maturity-onset diabetes of youth.
MODY3 are correctly diagnosed, they can be successfully transferred from insulin to sulfonylurea therapy without deterioration in glycemic control [18]. Differences in pathogenesis, prognosis and treatment of MODY highlight the importance of personalized medicine in diabetes care and strongly support genetic testing in appropriate individuals. Current recommendations for genetic screening for MODY can be found at the ‘Diabetes Genes’ website [18].

In children with neonatal diabetes, knowing the specific mutation helps in establishing if a child has TNDM or PNDM. Children with TNDM are treated in the short term with insulin with the expectation that diabetes will resolve by 18 months [19]. These children require continued monitoring as diabetes often recurs during adolescence. Two of the genes associated with PNDM, KCNJ11 and ABCC8, code for proteins targeted by the sulfonylurea class of diabetes medications. In 85–90% of patients with variants in one of these genes, treatment can be switched from insulin to sulfonylureas with blood sugars remaining well controlled [20,21].

Prediction & prevention of diabetes

Since T1DM and T2DM are complex disorders with many genes of varying penetrance and environment factors contributing to disease risk, predicting who will acquire either type of diabetes is much more complicated than predicting who will inherit a monogenic form of diabetes. As a result, predictive models that include primarily genetic factors are not as precise as predicting monogenic diseases.

Type 1 diabetes

For T1DM, genetic, antibody and metabolic tests are available to estimate disease risk; however, these are primarily used in the research setting in first-degree relatives of T1DM patients owing to their overall low positive predictive value in the general population [22,23]. Family history and HLA are the strongest predictors of T1DM, with HLA accounting for 30–50% of genetic risk [24]. Those with HLA haplotypes DR3-DQA1*0501-DQB1*0201 and DR4-DQA1*0301-DQB1*0302 are at highest risk for developing T1DM. By contrast, those with HLA genotype DRB1*1501-DQA1*0102-DQB1*0602, DRB1*1401-DQA1*0101-DQB1*0503 and DRB1*0701-DQA1*0201-DQB1*0303 are at the lowest risk [22,24,25]. The specific HLA type may also predict the age and rapidity of diabetes onset [22,24–26]. Candidate gene and genome-wide association studies have identified over 50 loci that associate with T1DM [102]. With the exception of HLA, these loci have a modest effect on diabetes risk (odds ratio <1.2) [27]. Not all children with a genetic predisposition to T1DM will develop the disease. An environmental exposure is necessary to initiate β-cell autoimmunity. Many factors have been considered as triggers for the autoimmune response, including viral infections and nutritional factors [22]. Research to confirm the environmental factors has been inconclusive; therefore, until this element is clarified, T1DM prediction models will not include this important component. After the environmental exposure, autoimmune destruction of β-cells commences and antibodies to islet cell antigens, including insulin, GAD65, IA-2 and Znt8, mark this process [22]. With each additional antibody, the likelihood of developing T1DM increases [28,29]. Metabolic tests, such as the oral glucose tolerance test and acute insulin response to glucose, have also been utilized in combination with HLA and antibody testing to help T1DM predictive models [30–32]. Patients with a family history of T1DM, an at-risk HLA genotype, multiple antibodies and low acute insulin response to glucose have more than a 50% chance of developing T1DM. While the specificity of a model including all of these factors improves risk assessment, once the tests display abnormal results the autoimmune destruction has progressed and β-cell damage may not be reversible. With genetic and other ‘omics’ data, the expectation is for these data to lead to a more comprehensive understanding of T1DM pathophysiology. In a personalized medicine paradigm, this understanding could ultimately produce better risk assessment tools and a means to identify those in need of preventive treatment. Ideally, using this type of approach, an individual patient’s specific defective pathway could be precisely targeted and treated, thereby, theoretically avoiding autoimmune destruction of β-cells and T1DM. While the tools described above have improved our predictions for the occurrence of T1DM, until a proven preventative treatment is developed, the threshold for performing these tests will be fairly high outside of the research setting.

Type 2 diabetes

Through candidate gene and genome-wide association studies, over 40 genes/loci have been associated with increased risk of T2DM [33]. The gene variant with the strongest effect
is rs7903146, located in intron 3 of the TCF7L2 gene. Having one copy of the minor allele for this single nucleotide polymorphism (SNP) increases the risk of T2DM by 1.45-fold and having two copies increases the risk by 2.41-fold [34]. Since the impact of the TCF7L2 SNP and other SNPs on diabetes risk is small (odds ratio: 1.1–1.4), a genotype risk score based on an individual’s number of diabetes risk alleles has been utilized to attempt to improve disease prediction [35]. While some studies demonstrate improved risk prediction [36], other studies using this methodology find that predictions are only slightly better than those based on the presence or absence of nongenetic risk factors alone [37].

To add to the complexity of using genotype to predict T2DM, models do not account for gene–gene or gene–environment interactions. While both interactions are acknowledged as important, little research has focused on how to integrate them into the personalized medicine paradigm.

Medication management

The focus of pharmacogenetics and pharmacogenomics is to define the impact of genetic variation on responses to medications. By using a pharmacogenetics approach, drug therapy can be selected based on its predicted efficacy, pharmacokinetics, pharmacodynamics and side-effect profile in a specific individual. Therefore, this approach has the potential to reduce the large number of treatment failures, and the time and costs associated with failure. As the pathophysiology of diabetes is established, another objective of pharmacogenetic research will be to determine if drugs targeting specific molecular defects can be designed to prevent, cure or improve the treatment of the disease.

Many of the genes impacting drug efficacy are related to their absorption, distribution, metabolism (activation/inactivation) and excretion. CYP2C9 is the major enzyme responsible for metabolism of sulfonylurea medications. Multiple CYP2C9 alleles exist, some of which impact the half life of the drugs. In individuals carrying the CYP2C9*3/*3 genotype, sulfonylurea clearance is 20% of those carrying the CYP2C9*1/*1 genotype with heterozygotes (CYP2C9*1/*3) being intermediate between the two groups [38]. Data on whether these differences in drug clearance impact clinical care are lacking. Future studies will be required to determine if utilizing CYP2C9 genotype in prescribing sulfonylureas will be effective [38]. Several other gene variants that are also associated with increased diabetes risk have been implicated in sulfonylurea efficacy. Sur1 and Kir6.2 proteins are therapeutic targets of sulfonylurea medications. Variants in both proteins have been associated with interindividual variability in sulfonylurea response, as well as secondary sulfonylurea failure [39,40]. Variants in TCF7L2, possibly through their effects on GLP-1 [41], are associated with a reduced lowering of HbA1c in patients taking sulfonylurea medications (Table 2) [42,43].

As with other drugs, the glycemic response to metformin is variable, with some people having a marked response and others demonstrating little benefit. At least three drug transporters, OCT1 encoded by SLC22A1, OCT2 encoded by SLC22A2 and MATE1 encoded by SLC47A1, participate in the distribution and excretion of metformin and have been shown to cause variation in drug response [44–46]. OCT1 is expressed in the membrane of hepatocytes and is responsible for the uptake of metformin into hepatocytes. Genetic variants decreasing OCT1 activity are associated with lower hepatic levels of metformin, as well as a reduced lowering of HbA1c [45,47]. OCT2 is expressed in the membrane of the renal epithelial cells, and transports metformin into these cells [48,49]. Genetic variants decreasing OCT2 activity are associated with impaired renal excretion of metformin and higher metformin blood levels [50,51], MATE1 carries metformin out of hepatocytes into bile and out of renal epithelium into urine. Decreased MATE1 activity leads to increased plasma and hepatocyte metformin levels, which leads to lower HbA1c levels possibly by a greater inhibition of hepatic gluconeogenesis [52,53]. Therefore, polymorphisms in SLC22A1, SLC22A2 and SLC47A1 play an important role in therapeutic response to metformin. What has yet to be determined is how to integrate these findings into clinical care.

Complications

Strategies to delay the development and progression of long-term microvascular and macrovascular complications of diabetes involve intensive glycemic management, as well as aggressive therapy for hypertension and hyperlipidemia. However, some patients, despite excellent glucose, blood pressure and lipid control, develop complications while others with poor glucose, blood pressure and lipid control, never develop complications.
These outcomes highlight the need to be able to distinguish which individuals would benefit most from concentrated interventions to prevent complications, as well as individuals where aggressive interventions are not warranted.

Based on familial clustering of complications and other studies, genetic susceptibility probably plays a role in this heterogeneity [54,55]. Through candidate gene and genome-wide association studies, important steps have been made towards the discovery of genetic markers that may ultimately be useful predictors of complications and responses to therapy [54]. Substantial data suggests that the renin–angiotensin system plays a key role in the occurrence of diabetic nephropathy. In the majority of populations, an insertion(I)/deletion(D) polymorphism of the ACE gene influences the clinical course of diabetic nephropathy [56,57]. The II genotype is protective against development and progression of diabetic nephropathy compared with those with the DI and DD genotypes. The difference in clinical course may be due to variation in ACE levels. Subjects carrying one or two copies of the D allele have increased systemic and renal ACE levels compared with those who are homozygous for the I allele [58].

ACE inhibitors are particularly effective in preventing and slowing progression of renal disease in diabetes patients with the II genotype [59]. However, the DD genotype is associated with a better response to angiotensin II receptor blockers [57]. Therefore, the ACE I/D polymorphism is not only helpful in classifying patients as at risk for diabetic nephropathy, but also in choosing the most appropriate renoprotective renin–angiotensin system blockade for treatment.

Table 2. Effects of polymorphisms on metabolism and efficacy of diabetes medication.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylurea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2C9*3</td>
<td>Higher sulfonylurea levels, greater decrease in fasting glucose levels and more likely to achieve HbA1c <7% in CYP2C9*3 carriers</td>
<td>[69,70]</td>
</tr>
<tr>
<td>ABCB1 S1369A</td>
<td>1369A carriers had greater decreases in fasting plasma glucose and HbA1c</td>
<td>[39]</td>
</tr>
<tr>
<td>TCF7L2 rs7903146 (C>T), rs12255372 (G>T)</td>
<td>Higher treatment failure (HbA1c <7%) in TT homozygotes of either SNP</td>
<td>[43,71]</td>
</tr>
<tr>
<td>Repaglinide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2C8*1/*3</td>
<td>Lower repaglinide mean AUC and peak plasma concentration with CYP2C8*1/*3 genotype</td>
<td>[72]</td>
</tr>
<tr>
<td>SLCO1B1 S21T>C</td>
<td>Higher repaglinide AUC with SLCO1B1 S21CC than SLCO1B1 S21TC and TT genotype</td>
<td>[73]</td>
</tr>
<tr>
<td>KCNJ11 E23K</td>
<td>Carriers of K23 allele had greater decrease in HbA1c</td>
<td>[74]</td>
</tr>
<tr>
<td>Nateglinide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>Reduced nateglinide clearance in CYP2C9*3 carriers</td>
<td>[75]</td>
</tr>
<tr>
<td>SLCO1B1 S21T>C</td>
<td>Higher maximum concentration and AUC in SLCO1B1 S21CC individuals compared with SLCO1B1 S21TC individuals</td>
<td>[76]</td>
</tr>
<tr>
<td>Metformin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT1 R61C, G401S, M420del, G465R</td>
<td>Higher AUC, maximum plasma concentration and decreased glucose-lowering response to metformin in reduced function allele variants</td>
<td>[45]</td>
</tr>
<tr>
<td>OCT2 808G>T</td>
<td>Higher mean renal clearance in 808T carriers</td>
<td>[77]</td>
</tr>
<tr>
<td>MATE1 rs2289669 G>A</td>
<td>Greater reduction in HbA1c with each rs2289669 A allele</td>
<td>[52]</td>
</tr>
<tr>
<td>MATE1 rs2289669 G>A, OCT1 rs622342 A>C</td>
<td>Interaction between MATE1 rs2289669 and OCT1 with greater decrease in Hba1C levels with each additional OCT1 rs622342 A allele and MATE1 rs2289669 A allele</td>
<td>[78]</td>
</tr>
<tr>
<td>ATM rs112112617 A>C</td>
<td>A allele associated with improved glycemic response</td>
<td>[79]</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPARγ Pro12Ala</td>
<td>Ala12 allele associated with greater decrease in HbA1c and fasting glucose plasma levels in some studies</td>
<td>[80]</td>
</tr>
</tbody>
</table>
Genomic science: what are the implications for personalized diabetes care? REVIEW

The challenge
While personalized medicine holds great promise, many challenges exist that need to be addressed before this approach becomes standard of care in diabetes [60–63]. One of the most critical steps will be advancement and innovation in computational and bioinformatics capabilities in order to harness the massive amount of data produced by ‘omic’ studies and translate these data into useful information for the medical community. Progress in these areas, as well as in technology (e.g., whole-genome sequencing), should lead to a more complete understanding of the functional significance of genes, the large segments of intergenic DNA, gene–gene and gene–environment interactions, and the molecular pathways leading to diabetes. Other gaps that need to be filled to maximize the benefits of personalized medicine for all individuals include identifying structural variants and private or rare variants with large effects, and collecting data on minorities and other ethnic groups who are often not included in large-scale genomic studies. Concerns have also been raised as to the role of large-scale genotyping in predicting a disease in which the current list of susceptibility genes account for only 10% of T2DM risk [61,64], and in which adding genetic data to models using traditional diabetes risk factors does little to improve predicting diabetes for an individual. A more comprehensive picture of the workings of DNA should also help determine if this missing heritability is the result of yet to be identified genetic variability, over estimation of heritability due to genetic interactions or other, as yet, undiscovered factors [65].

New social and ethical issues also arise as an ever increasing amount of data are collected on individuals. Concerns range from how privacy will be maintained and what constitutes privacy, who owns the data (patient and provider, among others) and who has the authority to destroy the data, to the role of direct-to-consumer marketing of genetic tests, many of which have unproven clinical validity and utility, limited oversight from the US FDA and other regulatory bodies, and lack a healthcare provider to interpret results and put the results in an appropriate context for an individual patient [63]. US Congress has tried to address concerns related to genetic discrimination by passing the Genetic Information Nondiscrimination Act in 2008 [68]. The law prohibits genetic discrimination by health insurers and employers. How effective the law will be with the transition to personalized medicine and widespread whole-genome sequencing remains to be seen.

Conclusion & future perspective
Personalized medicine, in general and also for care of the diabetic patient, is still at an early stage with much work ahead to fully realize its potential. For diabetes, personalized medicine success stories can be found in its application to diagnosis and management of patients with MODY1, 2 and 3, and neonatal diabetes. For T1DM and T2DM, advancements in the translation of data from genomics and other ‘omic’ research into clinically relevant tools for prediction, prevention and treatment of diabetes will be necessary in order for the practice of personalized medicine to become standard of care outside of the research setting.

Financial & competing interests disclosure
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

References
Papers of special note have been highlighted as:
- of interest
° of considerable interest

4 Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53(12), 2504–2508 (2010).
Has one of the largest cohorts of patients with permanent neonatal diabetes who have undergone mutation analysis for the disease.

Demonstrates both the clinical outcomes of switching from insulin to oral sulfonylureas in patients with diabetes due to a Kir6.2 mutation, and also demonstrates the changes in insulin secretion during oral glucose tolerance tests, mixed meal tests and intravenous glucose tolerance tests associated with the switch.

Baschal EE, Aly TA, Babu SR et al. HLA-DPB1*0402 protects against type 1A diabetes autoimmunity in the highest risk DR3-DQB1*0201/DR4-DQB1*0302 DAISY population. Diabetes 56(9), 2405–2409 (2007).

Sosenko JM, Skyler JS, Mahon J et al. The application of the diabetes prevention trial-Type 1 risk score for identifying a preclinical state of Type 1 diabetes. Diabetes Care 35(7), 1552–1555 (2012).

Calculation of the Diabetes Prevention Trial-Type 1 Risk Score in participants of the Diabetes Prevention Trial-Type 1 and the TrialNet Natural History Study helped to determine the likelihood of developing Type 1 diabetes over the following 2 years; therefore, this type of testing has the potential to provide a personalized medicine approach in predicting the onset of Type 1 diabetes.

Hivert MF, Jablonski KA, Perreault I et al. Updated genetic score based on 54 confirmed Type 2 diabetes loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60(4), 1340–1348 (2011).

Longitudinal study in over 2000 of the participants of the Framingham Offspring Study demonstrated that, with our current understanding of the genetics of Type 2 diabetes, our ability to predict the development of Type 2 diabetes using genotype plus common risk factors is only slightly better than predictions based on common risk factors alone.

Genomic science: what are the implications for personalized diabetes care? REVIEW

Villarelal DT, Robertson H, Bell GI et al. TCF7L2 variant rs7903146 affects the risk of Type 2 diabetes by modulating insulin action. Diabetes 59(2), 479–485 (2010).

MATE1 protein, encoded by the SLC47A1 gene, is responsible for transport of metformin from the proximal renal tubule cells into urine. In incident metformin users from the Rotterdam study, the SLC47A1 rs2289669 genotype predicted improvement in HbA1c, suggesting an important role for MATE1 in metformin pharmacokinetics and for predicting clinical response to metformin therapy.

80 Hsieh MC, Lin KD, Tien KJ et al. Common polymorphisms of the peroxisome proliferator-activated receptor-gamma (Pro12Ala) and peroxisome proliferator-activated receptor-gamma coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with Type 2 diabetes mellitus. Metabolism 59(8), 1139–1144 (2010).

Websites

101 Diabetes Genes. Guidelines for genetic testing in MODY. www.diabetesgenes.org/content/guidelines-genetic-testing-mody

102 T1D Base. Human Type 1 diabetes loci. www.t1dbase.org/page/RegionsLanding/display#1%25Human%25ASSOC