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Summary Developments in personalized medicine are adding to the clinician’s 
armamentarium and will allow for more individualized care for diabetes patients. The 
discovery of mutations causing many forms of monogenic diabetes now allows for the design 
of patient/mutation-specific targeted interventions. While many genetic loci are associated 
with Type 1 and 2 diabetes, and diabetes complications, these variants only modestly add 
to risk; therefore, genetic risk assessment for diabetes and its complications is not currently 
recommended in clinical practice. Genetic variants are also associated with drug metabolism, 
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 � Personalized medicine uses patient-specific molecular biomarkers, as well as more traditional testing, to 
individualize preventive, diagnostic and treatment strategies for patient care.

 � Monogenic forms of diabetes are found in less than 5% of diabetic patients and patients are often 
misdiagnosed as having Type 1 or 2 diabetes.

 � Genetic testing for maturity-onset diabetes of youth (MODY) should be performed in diabetes patients 
with autosomal dominant inheritance, onset at less than 25 years of age and b-cell dysfunction typically 
in the absence of insulin resistance or obesity. 

 � Glucose-lowering medications are rarely needed in patients with MODY2 except during pregnancy.

 � Patients with MODY1, MODY3 and permanent neonatal diabetes with KCNJ11 and ABCC8 mutations can 
be switched from insulin to sulfonylureas without worsening of hyperglycemia.

 � Currently identified genetic variants associated with Type 1 and 2 diabetes, and diabetes complications 
only modestly add to risk assessment models; therefore, genetic risk assessment for diabetes and its 
complications is not currently recommended in clinical practice.

 � Variants in CYP2C9, KCNJ11, ABCC8 and TCF7L2, and SLC22A1, SLC22A2 and SLC47A1 are associated with 
interindividual variability in response to sulfonylureas and metformin, respectively.

 � While personalized medicine holds great promise, many challenges exist that need to be addressed 
before this approach becomes standard of care in diabetes management.
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With the rapid improvement in technology, 
extensive data, including genomic, proteomic 
and metabolomic information, may soon be 
available for individual patients. Through the 
implementation of personalized medicine, 
these data have the potential to revolutionize 
the practice of medicine. Personalized medicine 
involves using patient-specific molecular bio-
markers derived from these tests, as well as more 
traditional testing to individualize preventive, 
diagnostic and treatment strategies rather than 
using general population guidelines to direct 
patient care. This transformation in the practice 
of medicine promises to produce improvements 
in patient care and patient outcomes, as well as 
lower healthcare costs by limiting preventive 
care, diagnostic testing and treatment to those 
known to be effective in patients with specific 
genomic, proteomic and metabolomic profiles. 

Diabetes
While the practice of personalized medicine in 
the field of diabetes is still in its infancy, early 
indications demonstrate areas of clear and poten-
tial benefit [1]. Diabetes is a heterogenous disor-
der made up of a number of subtypes, including 
the more common polygenic forms of diabetes, 
such as Type 1 diabetes (T1DM) and Type 2 
diabetes (T2DM), and the less common mono-
genic forms such as maturity-onset diabetes of 
youth (MODY) and neonatal diabetes. Given 
the heterogeneity of diabetes, it is not surprising 
that one strategy does not work for all patients. 
The purpose of this article is to review the cur-
rent and future role of personalized medicine in 
the care of the diabetic patient.

Monogenic diabetes
Monogenic forms of diabetes are found in less 
than 5% of diabetic patients and are primar-
ily disorders of b-cells and insulin secretion 
[2,3]. These disorders provide the best exam-
ple of how a personalized medicine approach 
can guide diagnosis and treatment in diabetes 
patients. The most common subtypes of mono-
genic diabetes are MODY and neonatal diabetes. 
Patients with monogenic diabetes are often mis-
diagnosed as having T1DM or T2DM, leading 

efficacy and side effects. Clinical studies are required to determine if genotype information 
improves day-to-day clinical management of diabetes and our overall approach to clinical 
practice. While the development of personalized medicine is promising for the future, a 
number of challenges remain that will need to be overcome before personalized medicine 
becomes standard of care in Type 1 and 2 diabetes management.

to misguided treatment decisions [4]. MODY 
is characterized by autosomal dominant inher-
itance, onset at less than 25 years of age and 
b-cell dysfunction, typically in the absence of 
insulin resistance or obesity (Table 1) [2,5]. To 
date, eight genes have been identified as causing 
MODY: HNF4a (MODY1), GCK (MODY2), 
HNF1a (MODY3), IPF1 (MODY4), HNF1b 
(MODY5), NEUROD1 (MODY6), KLF11 
(MODY7), and CEL (MODY8) [2,5], although 
not all believe that NEUROD1 and KLF11 meet 
all of the criteria to be included under the MODY 
subcategorization. Neonatal diabetes is usually 
diagnosed before 6 months of age and can be 
either transient neonatal diabetes (TNDM) 
or permanent neonatal diabetes (PNDM) [6]. 
TNDM represents 50–60% of cases of neona-
tal diabetes. Depending on the study, 50–75% 
of TNDM cases have a mutation on chromo-
some 6q24 near the PLAGL1 and HYMAI genes 
[3,7]. Another 10% of TNDM cases are attrib-
utable to mutations in the KCNJ11 gene that 
codes for Kir6.2, while 13% are attributable to 
mutations in the ABCC8 gene that codes for 
Sur1 [7]. Kir6.2 is part of a potassium channel 
in the insulin secretion pathway. Sur1 regulates 
the opening and closing of the Kir6.2 channel. 
Mutations in either of these proteins can block 
closure of the channel, which, in turn, decreases 
insulin secretion (TNDM or PNDM), or leave 
the channel closed, which results in unregu-
lated insulin secretion (hypoglycemic hyper-
insulinemia of infancy). Approximately 50% 
of patients with PNDM have mutations in the 
KCNJ11 gene. The next most common muta-
tions causing PNDM are found in the insulin 
and ABCC8 genes [8]. Homozygous mutations 
in IPF-1 and GCK, genes that cause MODY in 
their heterozygous form, also account for a small 
percentage of neonatal diabetes. In 25–40% of 
cases, the causative genes for neonatal diabetes 
have yet to be identified [8].

Since specific gene mutations are known to 
cause MODY and neonatal diabetes, a personal-
ized medicine approach utilizing commercially 
available molecular genetic testing can be used 
to ascertain the specific gene mutation causing 
diabetes in an individual patient. With this 
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information, a patient-specific treatment plan 
can be designed that addresses the best treat-
ment options, the likelihood of progression of 
the disease and the development of diabetes-
related complications, and recommendations 
for genetic counseling. For example, GCK, the 
gene causing MODY2, is considered to be the 
glucose sensor of the b-cell and phosphorylation 
of glucose by glucokinase is the rate-limiting step 
for insulin secretion [5]. Mutations in GCK lead 
to decreased glucokinase affinity for and phos-
phorylation of glucose with a shift to a higher 
glucose threshold for insulin secretion. Patients 
with MODY2 tend to have modest levels of 
hyperglycemia that does not progress with age 
(mean fasting glucose: 128 ± 22 mg/dl; range: 
77–297 mg/dl; HbA1c: 6–7%), since once glu-
cose levels reach the higher threshold required 
for affinity to glucokinase, insulin secretion 
occurs [9,10]. As a result, diabetes complications 
are uncommon in MODY2 [5]. Identifying 
patients with glucokinase mutations impacts 
their care, since unlike patients with T1DM and 
T2DM, glucose lowering medication is rarely 
needed except during pregnancy. Spyer et al. 
demonstrated that knowing both the mother’s 
and baby’s GCK genotype may be relevant to 
prenatal care [11]. Non-MODY2 offspring born 

to MODY2 mothers are heavier than MODY2 
offspring born to MODY2 mothers (3.9 ± 0.6 
vs 3.2 ± 0.8 kg; p < 0.001) and are more likely 
to have macrosomia (39 vs 7%; p = 0.001) [11]. 
While in utero GCK genotyping of babies with 
MODY2 mothers is not routinely performed, 
genotyping should be considered when excess 
fetal growth occurs as knowing the baby’s GCK 
genotype can provide valuable information for 
tailoring maternal diabetes treatment, which, in 
turn, may improve fetal outcomes. In the case 
of the mother with MODY2 and the baby with-
out MODY2, treatment with insulin should be 
instituted to decrease the risk of macrosomia and 
obstetric complications. However, when both 
mother and offspring have GCK mutations, 
insulin treatment is generally not necessary [12].

Unlike MODY2, MODY1 and MODY3 
patients have progressive b-cell failure result-
ing in increasing hyperglycemia and the need 
for glucose-lowering medication [13]. Because 
of the younger age at diagnosis and absence 
of metabolic syndrome, many MODY1 and 
MODY3 patients are inappropriately diagnosed 
with T1DM and started on insulin therapy [14]. 
However, patients with MODY1 and MODY3 
are highly responsive to sulfonylureas [15–17]. 
Therefore, once patients with MODY1 and 

Table 1. Maturity-onset diabetes of youth. 

MODY Gene Function MODY cases 
(%)

Phenotype Ref.

MODY1 HFN4a Transcription 
factor

30–70 Onset in adolescence or early adulthood 
Progressive defect of insulin secretion
Sensitive to sulfonylureas

[2,5]

MODY2 GCK Glycolytic 
enzyme

30–70 Mild hyperglycemia beginning at birth 
Often do not require glucose-lowering 
medication except during pregnancy

[2,5]

MODY3 HFN1a Transcription 
factor

5–10 Onset in adolescence or early adulthood 
Progressive defect of insulin secretion
Sensitive to sulfonylureas

[2,5]

MODY4 IPF1 Transcription 
factor

Very rare Adult onset
Progressive defect of insulin secretion
Pancreatic agenesis in homozygotes

[2,5]

MODY5 HFN1b Transcription 
factor

5–10 Renal cysts and diabetes [2,5]

MODY6† NEUROD1 Transcription 
factor

Very rare Early adulthood
Obesity
Progressive b-cell failure

[66]

MODY7† KLF11 Transcription 
factor

Extremely 
rare

Diagnosed in adulthood
Progressive b-cell failure

[67]

MODY8 CEL Lipolytic 
enzyme

Extremely 
rare

Exocrine and endocrine pancreatic 
deficiencies

[68]

†There is debate as to whether NEUROD1 and KLF11 should be included as MODY genes. 
MODY: Maturity-onset diabetes of youth.
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MODY3 are correctly diagnosed, they can be 
successfully transferred from insulin to sul-
fonylurea therapy without deterioration in gly-
cemic control [18]. Differences in pathogenesis, 
prognosis and treatment of MODY highlight the 
importance of personalized medicine in diabe-
tes care and strongly support genetic testing in 
appropriate individuals. Current recommenda-
tions for genetic screening for MODY can be 
found at the ‘Diabetes Genes’ website [101].

In children with neonatal diabetes, know-
ing the specific mutation helps in establishing 
if a child has TNDM or PNDM. Children 
with TNDM are treated in the short term with 
insulin with the expectation that diabetes will 
resolve by 18 months [19]. These children require 
continued monitoring as diabetes often recurs 
during adolescence. Two of the genes associated 
with PNDM, KCNJ11 and ABCC8, code for 
proteins targeted by the sulfonylurea class of dia-
betes medications. In 85–90% of patients with 
variants in one of these genes, treatment can 
be switched from insulin to sulfonylureas with 
blood sugars remaining well controlled [20,21].

Prediction & prevention of diabetes
Since T1DM and T2DM are complex disorders 
with many genes of varying penetrance and envi-
ronment factors contributing to disease risk, pre-
dicting who will acquire either type of diabetes 
is much more complicated than predicting who 
will inherit a monogenic form of diabetes. As a 
result, predictive models that include primarily 
genetic factors are not as precise as predicting 
monogenic diseases. 

Type 1 diabetes
For T1DM, genetic, antibody and metabolic 
tests are available to estimate disease risk; how-
ever, these are primarily used in the research set-
ting in first-degree relatives of T1DM patients 
owing to their overall low positive predictive 
value in the general population [22,23]. Family 
history and HLA are the strongest predictors 
of T1DM, with HLA accounting for 30–50% 
of genetic risk [24]. Those with HLA haplotypes 
DR3-DQA1*0501-DQB1*0201 and DR4-
DQA1*0301-DQB1*0302 are at highest risk for 
developing T1DM. By contrast, those with HLA 
genotype DRB1*1501-DQA1*0102-DQB1*0602, 
DRB1*1401-DQA1*0101-DQB1*0503 and 
DRB1*0701-DQA1*0201-DQB1*0303 are at 
the lowest risk [22,24,25]. The specific HLA type 
may also predict the age and rapidity of diabetes 

onset [22,24–26]. Candidate gene and genome-wide 
association studies have identified over 50 loci that 
associate with T1DM [102]. With the exception of 
HLA, these loci have a modest effect on diabetes 
risk (odds ratio <1.2) [27]. Not all children with 
a genetic predisposition to T1DM will develop 
the disease. An environmental exposure is nec-
essary to initiate b-cell autoimmunity. Many 
factors have been considered as triggers for the 
autoimmune response, including viral infections 
and nutritional factors [22]. Research to confirm 
the environmental factors has been inconclusive; 
therefore, until this element is clarified, T1DM 
prediction models will not include this important 
component. After the environmental exposure, 
autoimmune destruction of b-cells commences 
and antibodies to islet cell antigens, includ-
ing insulin, GAD65, IA-2 and Znt8, mark this 
process [22]. With each additional antibody, the 
likelihood of developing T1DM increases [28,29]. 
Metabolic tests, such as the oral glucose tolerance 
test and acute insulin response to glucose, have 
also been utilized in combination with HLA and 
antibody testing to help T1DM predictive models 
[30–32]. Patients with a family history of T1DM, 
an at-risk HLA genotype, multiple antibodies and 
low acute insulin response to glucose have more 
than a 50% chance of developing T1DM. While 
the specificity of a model including all of these 
factors improves risk assessment, once the tests 
display abnormal results the autoimmune destruc-
tion has progressed and b-cell damage may not 
be reversible. With genetic and other ‘omics’ data, 
the expectation is for these data to lead to a more 
comprehensive understanding of T1DM patho-
physiology. In a personalized medicine paradigm, 
this understanding could ultimately produce bet-
ter risk assessment tools and a means to identify 
those in need of preventive treatment. Ideally, 
using this type of approach, an individual patient’s 
specific defective pathway could be precisely tar-
geted and treated, thereby, theoretically avoiding 
autoimmune destruction of b-cells and T1DM. 
While the tools described above have improved 
our predictions for the occurrence of T1DM, until 
a proven preventative treatment is developed, the 
threshold for performing these tests will be fairly 
high outside of the research setting.

Type 2 diabetes
Through candidate gene and genome-wide 
association studies, over 40 genes/loci have 
been associated with increased risk of T2DM 
[33]. The gene variant with the strongest effect 
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is rs7903146, located in intron 3 of the TCF7L2 
gene. Having one copy of the minor allele for 
this single nucleotide polymorphism (SNP) 
increases the risk of T2DM by 1.45-fold and 
having two copies increases the risk by 2.41-
fold [34]. Since the impact of the TCF7L2 SNP 
and other SNPs on diabetes risk is small (odds 
ratio: 1.1–1.4), a genotype risk score based on 
an individual’s number of diabetes risk alleles 
has been utilized to attempt to improve disease 
prediction [35]. While some studies demonstrate 
improved risk prediction [36], other studies using 
this methodology find that predictions are only 
slightly better than those based on the presence 
or absence of nongenetic risk factors alone [37]. 
To add to the complexity of using genotype 
to predict T2DM, models do not account for 
gene–gene or gene–environment interactions. 
While both interactions are acknowledged as 
important, little research has focused on how to 
integrate them into the personalized medicine 
paradigm. 

Medication management
The focus of pharmacogenetics and pharma-
cogenomics is to define the impact of genetic 
variation on responses to medications. By using 
a pharmacogenetics approach, drug therapy 
can be selected based on its predicted efficacy, 
pharmacokinetics, pharmacodynamics and side-
effect profile in a specific individual. Therefore, 
this approach has the potential to reduce the 
large number of treatment failures, and the time 
and costs associated with failure. As the patho-
physiology of diabetes is established, another 
objective of pharmacogenetic research will be 
to determine if drugs targeting specific molecu-
lar defects can be designed to prevent, cure or 
improve the treatment of the disease.

Many of the genes impacting drug efficacy are 
related to their absorption, distribution, metab-
olism (activation/inactivation) and excretion. 
CYP2C9 is the major enzyme responsible for 
metabolism of sulfonylurea medications. Multi-
ple CYP2C9 alleles exist, some of which impact 
the half life of the drugs. In individuals carrying 
the CYP2C9*3/*3 genotype, sulfonylurea clear-
ance is 20% of those carrying the CYP2C9*1/*1 
genotype with heterozygotes (CYP2C9*1/*3) 
being intermediate between the two groups 
[38]. Data on whether these differences in drug 
clearance impact clinical care are lacking. Future 
studies will be required to determine if utilizing 
CYP2C9 genotype in prescribing sulfonylureas 

will be effective [38]. Several other gene variants 
that are also associated with increased diabetes 
risk have been implicated in sulfonylurea effi-
cacy. Sur1 and Kir6.2 proteins are therapeutic 
targets of sulfonylurea medications. Variants in 
both proteins have been associated with interin-
dividual variability in sulfonylurea response, as 
well as secondary sulfonylurea failure [39,40]. Var-
iants in TCF7L2, possibly through their effects 
on GLP-1 [41], are associated with a reduced low-
ering of HbA1c in patients taking sulfonylurea 
medications (Table 2) [42,43]. 

As with other drugs, the glycemic response 
to metformin is variable, with some people 
having a marked response and others demon-
strating little benefit. At least three drug trans-
porters, OCT1 encoded by SLC22A1, OCT2 
encoded by SLC22A2 and MATE1 encoded by 
SLC47A1, participate in the distribution and 
excretion of metformin and have been shown to 
cause variation in drug response [44–46]. OCT1 
is expressed in the membrane of hepatocytes 
and is responsible for the uptake of metformin 
into hepatocytes. Genetic variants decreas-
ing OCT1 activity are associated with lower 
hepatic levels of metformin, as well as a reduced 
lowering of HbA1c [45,47]. OCT2 is expressed 
in the membrane of the renal epithelial cells, 
and transports metformin into these cells [48,49]. 
Genetic variants decreasing OCT2 activity are 
associated with impaired renal excretion of met-
formin and higher metformin blood levels [50,51]. 
MATE1 carries metformin out of hepatocytes 
into bile and out of renal epithelium into urine. 
Decreased MATE1 activity leads to increased 
plasma and hepatocyte metformin levels, 
which leads to lower HbA1c levels possibly by 
a greater inhibition of hepatic gluconeogenesis 
[52,53]. Therefore, polymorphisms in SLC22A1, 
SLC22A2 and SLC47A1 play an important role 
in therapeutic response to metformin. What has 
yet to be determined is how to integrate these 
findings into clinical care.

Complications
Strategies to delay the development and progres-
sion of long-term microvascular and macrovascu-
lar complications of diabetes involve intensive gly-
cemic management, as well as aggressive therapy 
for hypertension and hyperlipidemia. However, 
some patients, despite excellent glucose, blood 
pressure and lipid control, develop complications 
while others with poor glucose, blood pressure 
and lipid control, never develop complications. 
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These outcomes highlight the need to be able to 
distinguish which individuals would benefit most 
from concentrated interventions to prevent com-
plications, as well as individuals where aggressive 
interventions are not warranted. 

Based on familial clustering of complications 
and other studies, genetic susceptibility prob-
ably plays a role in this heterogeneity [54,55]. 
Through candidate gene and genome-wide 
association studies, important steps have been 
made towards the discovery of genetic mark-
ers that may ultimately be useful predictors of 
complications and responses to therapy [54]. 
Substantial data suggests that the renin–angio-
tensin system plays a key role in the occurrence 
of diabetic nephropathy. In the majority of pop-
ulations, an insertion(I)/deletion(D) polymor-
phism of the ACE gene influences the clinical 
course of diabetic nephropathy [56,57]. The II 

genotype is protective against development and 
progression of diabetic nephropathy compared 
with those with the DI and DD genotypes. 
The difference in clinical course may be due 
to variation in ACE levels. Subjects carrying 
one or two copies of the D allele have increased 
systemic and renal ACE levels compared with 
those who are homozygous for the I allele [58]. 
ACE inhibitors are particularly effective in 
preventing and slowing progression of renal 
disease in diabetes patients with the II geno-
type [59]. However, the DD genotype is associ-
ated with a better response to angiotensin II 
receptor blockers [57]. Therefore, the ACE I/D 
polymorphism is not only helpful in classify-
ing patients as at risk for diabetic nephropathy, 
but also in choosing the most appropriate 
renoprotective renin–angiotensin system 
blockade for treatment. 

Table 2. effects of polymorphisms on metabolism and efficacy of diabetes medication.

variant effect Ref.

Sulfonylurea

CYP2C9*3 Higher sulfonylurea levels, greater decrease in fasting glucose levels 
and more likely to achieve HbA1c <7% in CYP2C9*3 carriers 

[69,70]

ABCC8 S1369A 1369A carriers had greater decreases in fasting plasma glucose and 
HbA1c 

[39]

TCF7L2 rs7903146 (C>T), 
rs12255372 (G>T)

Higher treatment failure (HbA1c <7%) in TT homozygotes of either SNP [43,71]

Repaglinide

CYP2C8*1/*3 Lower repaglinide mean AUC and peak plasma concentration with 
CYP2C8*1/*3 genotype

[72]

SLCO1B1 521T>C Higher repaglinide AUC with SLCO1B1 521CC than SLCO1B1 521TC and 
TT genotype 

[73]

KCNJ11 E23K Carriers of K23 allele had greater decrease in HbA1c [74]

Nateglinide

CYP2C9 Reduced nateglinide clearance in CYP2C9*3 carriers [75]

SLCO1B1 521T>C Higher maximum concentration and AUC in SLCO1B1 521CC individuals 
compared with SLCO1B1 521TC individuals 

[76]

Metformin

OCT1 R61C, G401S, 
M420del, G465R

Higher AUC, maximum plasma concentration and decreased 
glucose-lowering response to metformin in reduced function allele 
variants 

[45]

OCT2 808G>T Higher mean renal clearance in 808T carriers [77]

MATE1 rs2289669 G>A Greater reduction in HbA1c with each rs2289669 A allele [52]

MATE1 rs2289669 G>A, 
OCT1 rs622342 A>C

Interaction between MATE1 rs2289669 and OCT1 with greater decrease 
in HbA1C levels with each additional OCT1 rs622342 A allele and MATE1 
rs2289669 A allele

[78]

ATM rs112112617 A>C A allele associated with improved glycemic response [79]

Pioglitazone

PPARg Pro12Ala Ala12 allele associated with greater decrease in HbA1c and fasting 
glucose plasma levels in some studies 

[80]

AUC: Area under curve; SNP: Single nucleotide polymorphism.
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The challenge
While personalized medicine holds great promise, 
many challenges exist that need to be addressed 
before this approach becomes standard of care 
in diabetes [60–63]. One of the most critical steps 
will be advancement and innovation in compu-
tational and bioinformatics capabilities in order 
to harness the massive amount of data produced 
by ‘omic’ studies and translate these data into 
useful information for the medical community. 
Progress in these areas, as well as in technology 
(e.g., whole-genome sequencing), should lead to 
a more complete understanding of the functional 
significance of genes, the large segments of inter-
genic DNA, gene–gene and gene–environment 
interactions, and the molecular pathways leading 
to diabetes. Other gaps that need to be filled to 
maximize the benefits of personalized medicine 
for all individuals include identifying structural 
variants and private or rare variants with large 
effects, and collecting data on minorities and 
other ethnic groups who are often not included in 
large-scale genomic studies. Concerns have also 
been raised as to the role of large-scale genotyping 
in predicting a disease in which the current list 
of susceptibility genes account for only 10% of 
T2DM risk [61,64], and in which adding genetic 
data to models using traditional diabetes risk fac-
tors does little to improve predicting diabetes for 
an individual. A more comprehensive picture of 
the workings of DNA should also help determine 
if this missing heritability is the result of yet to be 
identified genetic variability, over estimation of 
heritability due to genetic interactions or other, 
as yet, undiscovered factors [65]. 

New social and ethical issues also arise as an 
ever increasing amount of data are collected on 
individuals. Concerns range from how privacy 
will be maintained and what constitutes privacy, 
who owns the data (patient and provider, among 
others) and who has the authority to destroy the 

data, to the role of direct-to-consumer marketing 
of genetic tests, many of which have unproven 
clinical validity and utility, limited oversight from 
the US FDA and other regulatory bodies, and 
lack a healthcare provider to interpret results and 
put the results in an appropriate context for an 
individual patient [63]. US Congress has tried to 
address concerns related to genetic discrimination 
by passing the Genetic Information Nondiscrimi-
nation Act in 2008 [60]. The law prohibits genetic 
discrimination by health insurers and employ-
ers. How effective the law will be with the tran-
sition to personalized medicine and widespread 
whole-genome sequencing remains to be seen.

Conclusion & future perspective
Personalized medicine, in general and also for 
care of the diabetic patient, is still at an early 
stage with much work ahead to fully realize its 
potential. For diabetes, personalized medicine 
success stories can be found in its application 
to diagnosis and management of patients with 
MODY1, 2 and 3, and neonatal diabetes. For 
T1DM and T2DM, advancements in the trans-
lation of data from genomics and other ‘omic’ 
research into clinically relevant tools for predic-
tion, prevention and treatment of diabetes will 
be necessary in order for the practice of personal-
ized medicine to become standard of care outside 
of the research setting. 
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