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Summary	 Genome-wide association studies have facilitated a substantial and rapid 
rise in the number of confirmed susceptibility variants for Type 2 diabetes. This has inevitably 
led to widespread hope that these findings will translate into improved clinical care for the 
growing numbers of patients with diabetes. This article summarizes recent discoveries in the 
field of Type 2 diabetes genetics and will discuss their importance and the current obstacles 
to clinical translation.
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�� More than 40 genetic susceptibility variants for Type 2 diabetes (T2D) have been identified so far, largely 
through genome-wide association studies.

�� The majority of genome-wide association studies findings have highlighted genetic variants primarily 
affecting b‑cell function rather than insulin resistance.

�� Together, the identified genetic loci explain a small fraction of the overall heritable risk for T2D (~10%).

�� Potential areas of clinical translation include risk prediction, prevention, pharmacogenetics and 
development of novel therapeutics.

�� Ongoing research studies are focused towards identifying rare genetic variants conferring a larger effect 
on risk of T2D, which could facilitate clinical translation.

�� Future research includes detailed physiological and functional studies to identify the underlying 
molecular defects associated with each genetic susceptibility variant. 

�� Clinicians should be aware that T2D genetic research is currently experiencing a dramatic revolution and 
remain optimistic that these landmark studies will translate into improved care for diabetic patients. 
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The importance of genetic factors in the etiology 
of Type 2 diabetes (T2D) is well established from 
family and twin studies [1,2]. However, it has 
been challenging to identify the specific genetic 
variants associated with increased diabetes risk. 

A significant breakthrough in understanding the 
genetic basis of complex diseases including T2D 
has been facilitated by the arrival of genome-
wide association studies (GWAS). Since 2007, 
GWAS have led to a rapid rise in the number of 
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confirmed susceptibility variants for T2D [3–7]. 
Understandably these landmark studies have 
fuelled widespread expectation that genetic 
information will provide useful insights into the 
underlying pathophysiology of T2D and, ulti-
mately, translate into improved care and novel 
therapeutics for patients with diabetes. This 
article summarizes recent advances in the field 
and discusses their clinical implications and the 
current obstacles to clinical translation. 

T2D genetics before GWAS
Early research techniques to establish a link 
between genotype and phenotype included link-
age analysis and candidate gene association stud-
ies. Linkage analysis detects genetic loci co-seg-
regating with diabetes within families and was 
successful in uncovering the molecular genetic 
basis of monogenic b‑cell dysfunction (matu-
rity-onset diabetes of the young [MODY])  [8]. 
Candidate gene studies examine specific genes 
postulated to have a role in the pathogenesis of 
T2D. Despite considerable efforts, these meth-
ods initially yielded only two confirmed T2D 
susceptibility variants; the P12A change in the 
peroxisome proliferator activated receptor‑g 
(PPARG) gene [9] and the E23K variant in the 
ATP-sensitive potassium channel (K

ATP
) gene, 

KCNJ11 [10]. More recent large-scale associa-
tion studies have reported that common genetic 
variation in the WSF1 and HNF1B genes also 
confer susceptibility to T2D [11,12]. In 2006 the 
deCODE investigators identified a susceptibil-
ity variant in TCF7L2 (encoding the transcrip-
tion factor  7-like  2 protein) through regional 
exploration of a previously demonstrated linkage 
signal on chromosome 10q [13]. This susceptibil-
ity variant has been subsequently replicated in 
multiple European and non-European groups [14] 
(although not in Pima Indians [15]) and has the 
largest effect on T2D risk described to date with 
a per-allele odds ratio (OR) of approximately 1.4.

GWAS era of T2D genetics
Genome-wide association studies are a power-
ful biology-agnostic method to detect genetic 
variation predisposing to disease by screening 
the entire genome of individuals with and with-
out the disorder of interest for a large number 
of common single nucleotide polymorphisms 
(SNPs). These studies have been facilitated by 
several recent developments including comple-
tion of the Human Genome Project, availabil-
ity of affordable high-throughput genotyping 

technologies, development of statistical and com-
putational software to analyze the huge datasets 
and international collections of many thousands 
of individuals with well-characterized pheno-
types. A higher frequency of a particular allele 
at a given SNP in the cases versus the controls 
suggests that it is associated with the disease, with 
a p value of 5 × 10-8 being required to satisfy 
genome-wide significance [16]. Each GWAS typi-
cally involves hundreds of thousands of simulta-
neous tests of association, therefore, this stringent 
threshold reflects the usual p value of 0.05 with 
a Bonferroni correction for 1 million statistical 
tests, and reduces the number of false-positive 
SNPs identified. Even with such strict statistical 
thresholds, positive findings are routinely repli-
cated in independent datasets to verify or refute 
the association of a SNP with the phenotype 
of interest. The data from several case–control 
collections can be merged and summarized via 
meta-analysis, which has enabled identification of 
SNPs of smaller effect size by increasing the over-
all sample size. To date GWAS have identified 
over 40 susceptibility loci for T2D in European 
and Asian populations (Figure 1) [3,17–24].

Obstacles to clinical translation
One obstacle to clinical translation is that, 
although many new and interesting suscep-
tibility loci have been identified, the major-
ity are associated with small effect sizes (OR 
~1.1–1.3). Typically each copy of a susceptibil-
ity allele at each locus is associated with only a 
15–20% increase in the lifetime risk of T2D [25]. 
Together, the current confirmed susceptibility 
variants account for approximately only 10% of 
the known T2D heritability [26]. An additional 
obstacle to translation is that a SNP identified 
as associated with disease by GWAS is usually 
annotated by the gene in closest proximity. In 
fact, in the majority of cases the causal variants 
and molecular mechanisms for diabetes risk 
are unknown. Furthermore, most genetic risk 
variants are found in the intronic or noncoding 
regions of genes and most likely to affect the reg-
ulation of transcription rather than gene func-
tion per se. One of the biggest current challenges 
is characterizing the downstream consequences 
of these variants, which requires both physio
logical and functional studies to demonstrate 
a causal relationship [27]. Current rudimentary 
understanding of the underlying mechanism 
associated with each susceptibility variant limits 
translation to the clinical setting. 
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Pathophysiological insights into T2D 
arising from GWAS
Genome-wide association studies allow an unbi-
ased global search of the entire human genome 
and can, therefore, identify novel and unsus-
pected pathways involved in the pathogenesis 
of T2D. Most of the identified T2D suscepti-
bility variants are not close to obvious candi-
date genes, suggesting that there is much left 
to be elucidated regarding the pathophysiology 
of this disease. There are some common emer-
gent themes; the genes implicated are largely 
involved in b‑cell function and insulin secre-
tion rather than insulin resistance [19,28]. This 
may partly reflect design of some of the GWAS, 
which matched for BMI and therefore removed 
adiposity and insulin resistance from the equa-
tion. The FTO gene, predisposing to obesity, was 
only identified in the UK GWAS, which did not 
match for BMI [29]. However, these results do 
emphasize the critical role of the b‑cell in all 
types of diabetes. 

A further significant observation from the 
GWAS is the potential role of cell cycle regula-
tion abnormalities in the pathogenesis of T2D, 
following the identification of several risk loci 
mapping close to genes involved in this process 
(such as CDKN2A/B) [4–6]. Additional evidence 
for the role of cell cycle regulation in b‑cell mass 
includes islet hypoplasia and development of a 
T2D phenotype in rodents with overexpression 
of Cdkn2a [30]. Furthermore, GWAS have high-
lighted that T2D susceptibility loci share asso-
ciations with other common diseases including 
certain cancers [31]. Interestingly, CDKN2A/B 
encodes cyclin-dependent kinase inhibitors that 
are known tumor suppressors [32] and germ line 
loss-of-function mutations in CDKN2A cause a 
familial melanoma syndrome [32,33]. Ongoing 
research in this area may clarify epidemiological 
data linking diabetes and cancer [34]. 

Another epidemiological observation sup-
ported by recent genetic studies is the link 
between low birth weight and T2D risk [35]. 
The T2D susceptibility variants within or near 
ADCY5, CDKAL1 and HHEX-IDE genes have 
all been robustly associated with low birth 
weight [36,37] and provide further support for 
the fetal insulin hypothesis. This hypothesis 
proposes that genetic variants predisposing to 
reduced insulin secretion or action can restrict 
intra-uterine growth and, therefore, lower birth 
weight as well as the development of T2D in 
later life [38].

Potential clinical applications of the GWAS 
findings in diabetes
�� Risk prediction & prevention

The development of personalized susceptibility 
profiles based on genetic information in order to 
aid prediction, early detection and prevention 
of T2D is one potential clinical application of 
the recent GWAS. In fact genome-wide genetic 
profiling is already commercially available for 
prediction of T2D. This clinical application has 
been investigated in several prospective cohort 
studies including the Framingham Offspring 
study [39], Malmo Preventative Project (MPP) 
and Botnia study [40], Genetics of Diabetes 
Audit and Research Tayside (GoDARTS) 
study  [26] and the Whitehall  II prospective 
cohort study [41]. In these studies 16–20 sus-
ceptibility loci were genotyped, and a genetic 
score based on the number of risk alleles was 
calculated in those who developed diabetes 
during the follow-up period and those who 
remained disease free. This genetic score was 
compared with established risk prediction 
models (such as the Cambridge T2D risk score 
and Framingham offspring study T2D risk 
score), which incorporate various clinical and 
biochemical factors including BMI, parental 
history of diabetes and lipid profile [26,39–41]. 
The power of the phenotype-based risk mod-
els was significantly better than the genotype-
based risk model to predict the individuals who 
developed T2D in this population [26,39–41]. 
Importantly the addition of the genetic score 
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Figure 1. 	Cumulative total of Type 2 
diabetes susceptibility loci since 2000 
and a  prediction of susceptibility loci that 
will be identified using next-generation 
sequencing technologies.
GWAS: Genome-wide association studies; 
T2DM: Type 2 diabetes mellitus. 
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did not improve the discriminative accuracy of 
the phenotypic models. These studies have all 
concluded that traditional clinical risk factors 
most reliably define future risk of developing 
T2D, and that there is only marginal improve-
ment with the addition of currently available 
genotypic information. This may reflect that 
phenotypic information already incorporates 
the genotypic information from the available 
risk alleles, the current number of susceptibility 
variants may be too low to accurately predict 
overall predisposition to T2D, or environmen-
tal factors such as obesity and diet might have 
a stronger affect on T2D risk. Interestingly, 
subset analyses of the study cohorts suggested 
that genetic testing may be beneficial in younger 
patients prior to the clinical manifestation of 
phenotypic characteristics associated with T2D. 
This was recently examined by de Miguel-Yanes 
and colleagues by re-calculating the genotype 
score using the updated list of 40 T2D suscep-
tibility variants in the Framingham Offspring 
Study [42]. This study demonstrated that the 
genetic score marginally improved the ability to 
predict future diabetes in subjects younger than 
50 years compared with phenotypic features. 
In fact this age group may be the most likely to 
benefit from lifestyle and medical intervention, 
prior to the development of adverse clinical fea-
tures, although this would need to be confirmed 
in prospective studies. 

Robust evidence that the use of genetic infor-
mation can produce meaningful changes in 
human behavior or allow therapeutic interven-
tion should precede widespread use of genetic 
testing for prediction. Genetic investigation of 
the Diabetes Prevention Program (DPP) sug-
gested that homozygous carriers of the TCF7L2 
risk allele randomized to the lifestyle interven-
tion arm did not have an increased risk of T2D 
despite carrying the two copies of the risk allele 
(it usually confers 80% increased risk of devel-
oping diabetes) [43]. One study reported that 
a ‘high-risk’ result from genetic testing would 
inspire the 71% of 152 healthy subjects inter-
viewed to adopt healthy lifestyle changes [44]. 
A second study found no evidence that direct-
to-consumer genetic testing had any effect on 
short-term lifestyle behavior (diet and exer-
cise) or psychological health [45]. This empha-
sizes that prospective clinical trials would be 
required to demonstrate that the anticipated 
enthusiasm would translate into measurable 
patient outcomes. 

�� Pharmacogenetics
Pharmacogenetics is the effect of genetic varia-
tion on the therapeutic response and side-effect 
profile of oral hypoglycemic agents and may 
reflect differences in drug pharmacokinetics 
or metabolism at a molecular level. Genetic 
profiling may allow true ‘personalization’ of 
medicine by optimizing an individual’s treat-
ment choices to maximize clinical efficacy and 
minimize toxicity. Experience with mono-
genic diabetes has already demonstrated that 
genetic information can guide clinical practice 
and management decisions; for example indi-
viduals with MODY caused by heterozygous 
HNF1A mutations are exquisitely sensitive to 
sulfonylureas [46] and children with permanent 
neonatal diabetes caused by activating muta-
tions in the KCNJ11 gene can safely transfer 
from insulin to sulfonylureas [47]. Application of 
pharmacogenetics to T2D is more challenging. 
Initial studies were underpowered and rarely 
replicated, which led to inconclusive and con-
flicting results. However, some recent studies 
have demonstrated robust association between 
genetic variation and therapeutic response to 
commonly used oral hypoglycemic agents. 

Metformin is the first-line treatment for 
T2D. It is not metabolized and is excreted 
unchanged via the kidneys and the biliary tract 
and so studies have focused on specific drug 
transporters. The multidrug and toxin extru-
sion 1 transporter, encoded by the SLC47A1 
gene, is responsible for the final step of met-
formin clearance through bile and urine. Two 
independent studies reported that a variant in 
SLC47A1 was associated with reduced HbA1c 
in metformin-treated T2D patients  [48,49]. 
However, the most compelling evidence to 
date though comes from a recent GWAS, 
which demonstrated that common variants 
near the ataxia telangiectasia mutated gene 
(ATM) are associated with an effective treat-
ment response to metformin (defined as achiev-
ing HbA1c ≤7%) in over 1000 individuals with 
T2D from Scotland, which was subsequently 
replicated in two independent datasets from 
the UK [50]. Homozygous loss-of-function 
ATM mutations result in ataxia telangiectasia, 
a severe neurodegenerative disorder and, inter-
estingly, these individuals have an increased 
risk of diabetes [51]. Furthermore, inhibition of 
ATM influences activation of AMP-activated 
protein kinase, which is widely considered to 
be a molecular target of metformin [52]. 
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Pharmacogenetics has also been studied in 
patients treated with sulfonylureas. In 2007 
Pearson and co-workers demonstrated that 
patients homozygous for the diabetes risk 
allele (G) of the TCF7L2 variant were twice 
as likely to fail sulfonylurea therapy compared 
with those homozygous for the T  allele [53]. 
Another study showed that homozygous car-
riers of the ABCC8 A1369 risk allele (which 
is in complete linkage disequilibrium with the 
E23K KCNJ11 variant) had a greater therapeu-
tic response to sulfonylureas in a prospective 
trial of over 1000 lean, Chinese T2D patients 
treated with gliclazide for 8 weeks [54,55]. This 
observation is supported by recent functional 
studies that have demonstrated that variant 
channels have an enhanced response to class A 
sulfonylureas such as gliclazide compared with 
wild-type channels  [56]. Other groups have 
investigated the effect of variants in CYP2C9, 
which encodes the cytochrome p450 respon-
sible for metabolizing sulfonylureas in the 
liver  [49]. Zhou and colleagues demonstrated 
that homozygous carriers of the loss-of-func-
tion CYP2C9 alleles were 3.4‑times more likely 
to achieve HbA1c targets and had lower risk of 
failure of sulfonylurea therapy than wild-type 
carriers [57]. These studies indicate that genetic 
variation can influence response to oral hypo-
glycemic agents. Genetic background alone 
is insufficient to predict response at an indi-
vidual level but pharmacogenetics is a devel-
oping field with potential to advance the goal 
of personalized medicine. Future progress will 
require study of larger cohorts in which drug 
response is well characterized and eventually, 
prospective clinical trials to assess whether 
genotypic information can guide therapeutic 
choices effectively. 

�� Novel therapeutic targets
As well as providing useful insights into the 
pathophysiology of T2D, it is likely that the 
susceptibility loci identified in the GWAS could 
highlight novel biological pathways or molecu-
lar targets that may be amenable to therapeutic 
intervention. The two oldest T2D susceptibil-
ity variants lie within the genes PPARG and 
KCNJ11/ABCC8, which encode targets of 
established oral hypoglycemic agents, thiazoli-
dinediones and sulfonylureas, respectively. This 
highlights that genetic variants of modest effect 
may illuminate pathways that could be targeted 
for drug development. For example, the first 

T2D GWAS identified a susceptibility variant 
in the SLC30A8 gene (which encodes the b‑cell 
zinc transporter ZnT-8) [3]. This protein trans-
ports zinc into the b‑cell for insulin storage and 
secretion [58]. A therapeutic agent that enhances 
the intracellular function of this transporter 
could hypothetically increase insulin secre-
tion and lower blood glucose levels. Perhaps 
not surprisingly given the relatively short time 
since their discovery, no medical therapies have 
directly stemmed from GWAS findings so far, 
but this remains a distinct future possibility. 

�� Biomarkers to aid diabetes diagnostics
One potential clinical application that has 
arisen directly from GWAS is based on the 
observation that patients with MODY caused 
by HNF1A mutations have significantly lower 
blood levels of high-sensitivity C‑reactive pro-
tein compared with other types of diabetes [59]. 
This could form the basis of a useful diagnostic 
test in order to select subjects with common 
types of diabetes who would benefit from diag-
nostic testing for underlying MODY mutations. 
This finding stemmed from two separate GWAS 
showing that C‑reactive protein levels are influ-
enced by common variation near the HNF1A 
gene in healthy adults [60,61]. Individuals with 
HNF1A-MODY are commonly misdiagnosed 
despite important clinical implications [62] 
and, therefore, a widely-available, cost-effec-
tive biomarker could improve diagnosis rate of 
monogenic diabetes. Analogous to this example 
in monogenic diabetes, it is possible that the 
presence of specific underlying genetic variants 
could allow sub-classification according to the 
underlying molecular pathway in T2D. This 
could facilitate a more personalized pathway 
of management and treatment in T2D as well. 

Future perspective
The heritability of T2D remains largely unex-
plained by the growing list of T2D susceptibil-
ity variants. One hypothesis to account for the 
‘missing heritability’ is the role of low-frequency 
(LF) risk variants (Figure 2) [63]. GWAS have 
focused on finding common variants associated 
with disease and, therefore, the role of variants 
with a minor allele frequency (MAF) of <5% is 
unknown. LF variants are predicted to confer 
a larger effect on T2D risk to the individual 
with an OR of approximately 2–3. Nejentsev 
and colleagues resequenced coding regions of 
ten candidate genes to find causative variants 
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for Type 1 diabetes, and identified four rare 
variants within the IFIH1 (MAF ≤1.1%) that 
lowered Type 1 diabetes risk (OR: 0.5–0.7), 
independently of each other [64]. Although LF 
variants have been implicated in the pathogen-
esis of other complex diseases such as hyper-
triglyceridemia [65,66], none have yet been 
identified that are associated with T2D. The 
identification of large effect susceptibility vari-
ants will enhance potential for clinical transla-
tion. The search for LF variants will be facili-
tated via the 1000 Genomes Project  [67]. This 
international collaborative initiative is using 
next generation whole-genome sequencing 
technology to systematically catalog all vari-
ants with a minor allele frequency of greater 
than 1% of at least 1000 genomes. Early pilot 
analyses have identified more than several mil-
lion new polymorphisms including insertions, 
deletions and large structural variants [68]. The 
discrimination of pathogenic mutations from 
incidental genetic variation will be challenging 
and will require robust statistical, functional 
and physiological studies. Additional research 
resources are being directed towards other types 
of genetic variations including structural varia-
tions (e.g.,  copy number variants) [69] and epi-
genetic modification (e.g., DNA methylation 
and histone acetylation) [70,71]. Furthermore, 
the majority of GWAS have been conducted 
in European population and so a priority is 
to examine non-European populations. This 
may highlight different metabolic pathways 
or identify shared variants that exist at higher 

frequencies in non-European populations and 
are, therefore, more easily detected. 

It is clear that full understanding of GWAS 
results will require identification of the causal 
gene associated with a susceptibility variant. 
This requires ‘fine-mapping’, functional and 
physiological investigation, which are labor 
intensive and time consuming. For example, 
despite several functional studies, the precise 
mechanism through which TCF7L2 modu-
lates pancreatic function remains incompletely 
understood. It is a component of the Wnt signal-
ing pathway and may have a role in the preser-
vation of b cell mass [72]. Physiological studies 
of nondiabetic TCF7L2 risk allele homozygote 
carriers have shown reduced insulinogenic index 
and insulin disposition index during oral glu-
cose tolerance tests [73] and impaired incretin 
effect [74]. A recent study has shed light on the 
potential molecular mechanism of how TCF7L2 
could influence gene function. It was demon-
strated in human pancreatic islets that the 
TCF7L2 risk variant alters chromatin state and 
that carriers of the risk variant have more open 
chromatin at this locus [75]. Since open chroma-
tin state correlates with increased transcriptional 
activity, this provides one possible mechanism 
linking an intronic variant with a disease phe-
notype. Rigorous functional assessment of the 
susceptibility variants should facilitate advances 
in clinical translation of risk alleles identified 
through GWAS.

Finally, any proposed clinical application 
based on new genetic technologies should be 
evaluated in well-conducted prospective trials 
prior to widespread use. 

Conclusion
The exciting results generated by GWAS have 
led to intense speculation regarding their clinical 
utility. The lack of clinical impact to date is not 
surprising as this branch of genetic research is 
very new. Importantly, experience within mono-
genic diabetes has proven that genetic studies can 
affect treatment and diagnosis. It is challenging 
to translate the GWAS findings into improved 
care for diabetic patients. Current obstacles to 
clinical translation are the focus of ongoing 
research efforts; these include detailed functional 
characterization of the identified T2D suscepti-
bility variants as well as searching for ‘missing 
heritability’. Clinicians should maintain inter-
est in the current revolution in T2D genetic 
research and acknowledge these studies will 
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