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The genome-wide association (GWA) study era 
really only began in June 2007, with the pub-
lication of the findings of the Wellcome Trust 
Case Control Consortium (WTCCC). The 
WTCCC showed that it is possible to identify 
susceptibility alleles and replicate these findings 
even with minor effects on disease risk in a sys-
tematic, unbiased, hypothesis-free approach [1,2]. 
Whilst the WTCCC papers were not the first 
GWA study to be reported, they made a criti-
cal contribution by setting the standard for the 
performance of these studies, addressing and 
discussing issues such as quality control, design 
and analysis.

Two recent, but very important, techno logical 
and scientific advances made GWA studies 
possible. The first was the completion of the 
International HapMap project that describes 
and annotates the common patterns of DNA 
sequence variation and linkage disequilibrium 
(LD) structure in the human genome [3]. This 
resource has made the intelligent design of 
marker panels covering the genome as efficiently 
as possible feasible through the use of tag single 
nucleotide polymorphisms (tagSNPs) in regions 
of high LD. By selecting SNPs that tag regions 
of the genome, more than 80% of the genome 
can be screened, whilst only typing approxi-
mately 10% of the common SNPs present. The 
second critical advance was the development of 
high-throughput microarray SNP genotyping 

platforms, which allow the genotyping of hun-
dreds of thousands (up to more than a million) 
of polymorphisms across the genome in large 
cohorts at a low cost per SNP and with a very low 
error rate. Nonetheless, GWA studies, while now 
financially feasible, still remain very expensive 
experiments and are usually the result of major 
international collaborations.

The WTCCC undertook two separate experi-
ments. In the first, they genotyped 14,000 cases 
of seven common diseases (including rheumatoid 
arthritis [RA]) and 3000 shared controls using a 
panel of 500,000 evenly scattered SNPs through-
out the genome. In the second experiment, they 
set out to type 14,500 nonsynonymous SNPs 
(nsSNPs) in 6000 unrelated affected individuals 
of four diseases (including ankylosing spondylitis 
[AS]) and 1500 common controls. There are les-
sons to be learnt about this type of study in both 
cases. In RA, these experiments have strongly 
replicated previously identified susceptibility loci, 
namely the HLA-DRB1 and PTPN22 loci. They 
also identified nine SNPs with high association 
score statistics, but not reaching genome-wide 
significance (1 × 10-5 < p < 1 × 10–7). Of particu-
lar interest amongst these variants are potential 
associations with subunits of the IL2 receptor 
(IL2RA and IL2RB), and the sex-differentiated 
association of rs11761231 on chromosome seven 
(p = 6.8 × 10–8) with an additive odds ratio for 
females of 1.32. For another, rs6920220 on 6q23, 
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association has since been replicated [4], while a 
new variant in the region (less than 4 kb away) 
has also been identified in an independent study 
including a replication phase [5]. The identity 
of the primary associated gene is unknown, 
and may be either TRAF1 or C5, or potentially 
both. Thus, although association mapping has 
higher resolution than linkage mapping, it is still 
a nontrivial challenge to achieve certainty, using 
genetic association studies alone, of the identity 
of the primary associated variant, and in some 
cases, even of the primary associated gene. A 
meta-analysis of these studies and comprehensive 
replication study is eagerly awaited.

Using the nsSNPs genotyping approach, 
the long and well-documented major histo-
compatibility complex (MHC) association with 
AS was easily confirmed. An additional two loci, 
ERAP1 (ARTS1) and IL23R, were also found to 
be new susceptibility regions for disease. Both 
loci showed strong association in the original 
screen population, replication and combined 
analyses. The products of these two genes rep-
resent excellent biological candidates for asso-
ciation with AS. The protein ERAP1 is involved 
in trimming peptides for MHC class I presenta-
tion [6], but also cleaves cell surface receptors 
for pro-inflammatory cytokines [7]. IL23R is a 
key factor in the regulation of the Th17 cells 
that express high levels of proinflammatory 
cytokines [8], and animal studies have shown 
that blocking IL-23 reduces inflammation [9]. 
Genetic variants that vary the function of both 
ERAP1 and IL23R could very well have a major 
effect on the inflammatory pathogenesis of AS; 
neither had been considered by the immunolog-
ical community as being of significance in the 
disease prior to the WTCCC findings. Indeed, 
the IL23R finding has been received with skepti-
cism in some quarters, as immunological dogma 
has it that AS is a human leukocyte antigen 
(HLA) class I restricted disease, and that there-
fore only mechanisms involving CD8 T cells 
could have a major role. Clearly, it is time to 
change that belief.

Another feature of these studies has been the 
breadth of association observed between the 
immunological diseases studied and the MHC. 
Significant association (p < 10–7) was observed 
for over 500 kb around the MHC in RA, AS, 
and in other immunologically mediated diseases 
studied (Type 1 diabetes, autoimmune thyroid 
disease and multiple sclerosis). The breadth of 
association suggests either that LD in this area is 
extremely long-ranging, that there is more than 
one disease-associated MHC gene in each of 

these conditions, or most likely, a combination 
of both explanations. There is already consid-
erable evidence for the existence of non-HLA-
DRB1 MHC associations in RA [10–12], and non-
HLA-B27 MHC associations in AS [13,14]. The 
recent demonstration, using a combination of 
classical HLA and dense SNP genotyping, that 
HLA-A and HLA-B are independently associated 
with Type 1 diabetes mellitus [15], a disease hith-
erto thought to be HLA class II-restricted, sug-
gests that further such studies in other MHC-
associated immunologically-mediated diseases 
would be very worthwhile.

More recent work by others on the quantita-
tive traits that influence risk for osteoporosis has 
identified several loci for which there is strong 
evidence of association with bone mineral den-
sity and fracture [16,17]. Four of these were already 
known as good candidate genes (ESR1, LRP5, 
OPG and RANKL), and the other two are new 
loci at 1p36 (near ZBTB40) and 6p21 in the 
MHC. While these variants have low odds 
ratios, four of them lie within crucial regulators 
of bone homeostasis, and the results thus provide 
insight into the underlying biology of disease. 
Furthermore, the combination of SNPs in LRP5 
and OPG was associated with an odds ratio for 
fracture of 1.33 and was common (present in 
22% of the cohort), indicating a significant pop-
ulation effect size. Prior to these studies, it had 
been thought that the low genetic covariance 
between fracture and bone density indicated 
that few genes would influence both traits [18,19]. 
Contrary to these predictions, no genes have yet 
been identified that affect fracture risk but not 
bone density, whereas most but not all genes 
associated with bone density affect fracture risk. 
This is not surprising as, with the exception of 
younger patients, fracture risk has much lower 
heritability than bone density [18–23]. Even these 
early and underpowered studies have thus made 
significant contributions, identifying regions not 
previously known to be involved in bone fragil-
ity, and identifying SNP combinations likely to 
be of value in fracture risk prediction.

Therefore, in a very short period, GWA stud-
ies have become established as the method of 
choice for investigation of the genetic architec-
ture of common diseases. GWA studies are now 
underway in most common musculoskeletal 
diseases, and have thankfully largely ended the 
phase of underpowered candidate gene studies 
that dominated the field for much of the past 
decade. These studies added little to our under-
standing of the etiopathogenesis of disease, being 
generally too small to provide robust findings, 
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either positive or negative. It is to be hoped and 
encouraged that GWA studies do not repeat some 
of the errors of this era, such as ‘salami slicing’ of 
data (where data gathered by one study are sepa-
rately reported in multiple end publications), and 
overinterpretation of modest findings. Given the 
cost of these studies and the large contribution 
we ask of the cohorts that are required to be stud-
ied, the authors feel it is an ethical requirement 
of investigators to design optimal studies with 
adequate power, preplanned confirmation studies 
and early public availability of genotype data to 
bona fide researchers to maximize its utility. The 
two WTCCC studies demonstrate that a sample 
size of 2000 cases and 3000 controls is about 
the smallest sample size for a single phase case–
control design that has adequate power to detect 
the likely genetic effects present in most common 
diseases. Smaller sample sizes, such as those used 
in the nsSNP component of the WTCCC (1000 
cases and 1500 controls), were enough to pick 
up quite large genes (e.g., ERAP1 and IL23R). 
However, the fact that in the other three diseases 
included in this study (autoimmune thyroid dis-
ease, multiple sclerosis and breast cancer) no non-
MHC genes achieved genome-wide significance 
indicates that this sample size is too small to 
investigate most common diseases (Figure 1).

One frequent criticism of these studies is that 
the genes that have been identified have had 
only been of small magnitude. Of course, this 
is not unexpected, as selection pressure makes it 
unlikely that genes of major adverse effect can 
become common in the general population. 
Nonetheless, it also raises several points of com-
mon confusion that would be valuable to clarify. 
Firstly, it is important to note that the current 
studies generally have not identified the key asso-
ciated variants, but are only tagSNP studies. The 
true disease-associated variants, once identified, 
may have stronger levels of association than the 
tagSNPs used in LD mapping. For example, in 
the WTCCC nsSNP study of AS, the strongest 
MHC-associated SNPs had odds ratios of only 
3–3.5. We know that the main MHC allele in 
AS is HLA-B27, which in white European popu-
lations has an odds ratio for disease of more than 
100. Secondly, the odds ratio is a poor measure 
of the overall contribution of a genetic variant 
to the overall risk of disease. This contribution 
depends on the prevalence of the associated 
allele; common disease-associated alleles have 
greater effects in the population. The contribu-
tion of a genetic variance for dichotomous traits 
is better reported using the population-attrib-
utable risk fraction (the proportion of cases of 

a disease that would not occur if the effect of 
that variant was removed from the population) 
(Figure 2). For quantitative traits, the proportion 
of the variance of that trait due to that specific 
genetic variant can be reported. Lastly, the con-
tribution of a gene to a disease depends not only 
on the importance of a gene in the etiopatho-
genesis of a disease, but also on the amount of 
functionally relevant genetic variation in that 
gene. Thus, genes like TNF may be essential to 
the development of inflammation in autoimmu-
nity, but because there is little or no effect of 
genetic variants of TNF on TNF expression or 
function, they have little or no association with 
disease on a population level.

The WTCCC experiments also provided 
researchers with insights into population struc-
ture, sample sizes required to detect moderate 
genetic effects and methodological improve-
ments. The study implemented extensive quality 
control checks in DNA quality and allele calling 
(Q–Q plots to identify inflation of association 
findings, thresholds for SNP, individual geno-
typing success rates, and, for Hardy–Weinberg 
equilibrium tests, visual inspection of cluster 
plots of associated variants) in order to mini-
mize incorrect genotype calls and false-positive 
signals. Another issue addressed by the study 
was the use of a common set of controls for a 
number of different diseases. What would be 
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Figure 1. Sample size requirements to identify genetic variants with 
varying odds ratio. Sample size requirements to identify genetic variants with 
varying odds ratios, assuming average D´ = 0.8, disease population 
prevalence = 1%, power = 80%, and significance threshold p = 10-7, an additive 
genetic model, and an equal number of cases and controls. For the genetic effect, 
sizes likely to be operating in common diseases, more than 2000 cases and controls 
are required to achieve adequate study power (calculated using ‘Genetic Power 
Calculator’ [33]). MAF: Minor allele frequency.
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the consequences of failing to match cases and 
controls for socio-demographic variables, or the 
impact of misclassification bias when controls 
meet the criteria used to define cases? The study 
demonstrated that both concerns were overstated 
and had little effect on power. Using these com-
mon controls, the study identified 13 loci that 
vary in minor allele frequency based on geo-
graphical regions across the UK, but concluded 
that population structure has, at the most, a 
minor effect, providing that non-European 
individuals were excluded from analysis. Major 
cost-cutting benefits can be expected from the 
use of common controls. Databases with more 
than 5000 white European controls are already 
available, and the WTCCC will shortly add a 
further 6000 controls to the public resource, 
typed at around 1 million SNPs each. If work-
ing in ethnically matched populations, unless 
one is interested in rare variants, or in a trait 
that is extremely common in the general com-
munity (≥20%), the available historic controls 
are adequate in most cases.

Whilst the initial WTCCC GWA study did 
not include a confirmation phase, it has now 
become standard to test findings for replica-
tion in a second cohort. Cost-effective phased 
designs have been developed that employ smaller 
discovery cohorts, but follow-up a large number 
of SNPs from that phase in a larger and more 
powerful replication set. These replication find-
ings are then generally analyzed both independ-
ently with the discovery set, and as a combined 

analysis. This approach significantly reduces the 
amount of genotyping involved. The economics 
of the design depend on the relative costs of the 
fixed marker genome-wide discovery chips, and 
the custom-designed confirmation chips. As the 
cost of fixed marker chips has declined faster than 
custom genotyping, the value of phased designs 
has also declined. Further reduction in geno-
typing cost can be achieved by the use of com-
mon or historic controls, and evidence has also 
been provided that sample pooling can be robust 
and sensitive enough to identify risk variants 
[24,25]. Disadvantages of DNA pooling include 
reduced genotyping accuracy (which tends to 
be over-represented amongst apparently associ-
ated SNPs), the absence of individual level data 
precluding haplotyping and complicating impu-
tation of nongenotyped variants, and increased 
challenges in typing copy number variants.

GWA studies are not the solution to all gene-
mapping challenges. In particular, they clearly 
struggle to identify susceptibility loci belonging 
to highly heterogeneous traits, or where the tag-
SNP approach has low power, such as where the 
common variant/common disease hypothesis 
breaks down, in regions of low LD, and for copy 
number variants. It is obvious from inspection 
of the number of genes identified in different 
diseases in the WTCCC study that diseases that 
were a priori likely to be more complex, such as 
bipolar disorder and hyper tension, had fewer 
genes identified than relatively phenotypically 
homogenous diseases, such as Crohn’s disease and 
Type 1 diabetes. These heterogenous diseases may 
be tractable with larger sample sizes, but a more 
efficient approach will be to try to study tighter 
clinical subsets to minimize heterogeneity. This 
has relevance to musculoskeletal diseases such as 
osteoarthritis and osteoporosis, which are likely 
to be genetically very hetero geneous. Whilst the 
WTCCC demonstrated that for many genes the 
common disease–common variant hypothesis is 
likely to be true, it is not clear what proportion 
of genes this holds true for. It remains possible 
that for a significant proportion of genes multiple 
variants are involved in the population risk of a 
disease, and these will be difficult, if not impos-
sible, to detect by GWA approaches. Instead, 
resequencing approaches will be needed to iden-
tify rare alleles in large cohorts. There is also a 
great deal of interest in the genetics community 
in other types of genetic variation, such as copy 
number variant and methylation changes, which 
are at best poorly typed by tagSNP approaches. 
High-throughput methods for studying these 
genetic variants are still in development, and 
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it is likely that we will see a further explosion 
of findings once these genotyping and analysis 
methods reach maturity. Lastly, current GWA 
studies have largely ignored gene–gene interac-
tion and gene–environment interaction. Both are 
likely to contribute significantly to the risk of 
developing disease, and more powerful studies 
and better statistical approaches will be needed 
to investigate them properly.

Amongst the more interesting findings to 
come out of GWA studies has been the over-
lap between diseases in their underlying genetic 
architecture. This has been particularly appar-
ent for autoimmune diseases, where several 
genes with pleiotropic effects across different 
diseases have been discovered. Researchers are 
thus increasingly investigating associations from 
related diseases to identify disease-associated var-
iants in other diseases. Examples of this include 
the association of variants of PTPN22 with sys-
temic lupus erythematosus, RA, Type 1 diabetes 
and autoimmune thyroid disease [26–29], STAT4 
in systemic lupus erythematosus and RA [30], 
and association of IL23R with Crohn’s disease, 
psoriasis and AS [2,31,32]. It therefore seems that 
certain genes may act as master regulators of the 
autoimmune system, and detailed studies of the 
newly identified variants across multiple autoim-
mune diseases may help explain both the com-
monalities and differences among these diseases. 
It is also notable that some of these variants were 
not picked up in fixed-marker GWA studies, as 
they lay in areas poorly tagged by the available 

chips. Thus, there remains a role for candidate 
gene studies, particularly in those areas with 
poor coverage in GWA studies.

The identification of risk alleles will go a long 
way towards elucidating the biological processes 
driving musculoskeletal diseases. These inves-
tigations are still in their early stages, and have 
as yet identified only a small proportion of the 
determinants of the genetic risk. Nonetheless, 
even in these early days of the GWA era, it is 
clear that these hypothesis-free approaches are 
a powerful method to investigate disease patho-
genesis, and that the longstanding promise of 
human genetics is now being delivered. The 
next challenge lies with functional biologists to 
determine the mechanism by which the asso-
ciated variants influence disease risk, and to 
develop interventions based on that informa-
tion. This will also be a nontrivial exercise, but 
at least the hypothesis-driven research commu-
nity will now have a firm foundation on which 
to build.
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