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The digital pathologist  
& computerized image analysis  
of histopathology
Over the last decade, the nature of diagnostic 
healthcare has changed rapidly owing to an 
explosion in the availability of patient data for 
disease diagnosis. Traditional methods of ana­
lysis of cancer samples were limited to a few 
variables, usually stage, grade and the measure­
ment of a few clinical markers, such as estrogen 
receptor, progesterone receptor, HER2 for breast 
cancer and prostate-specific antigen for prostate 
cancer (CaP). The pathologist was trained to 
synthesize this information into a diagnosis 
that would help the clinician determine the best 
course of therapy. These data were also used to 
try to understand the molecular basis of cancer 
with the goal of improving therapy.

With the recent advent and cost–effective­
ness of whole-slide digital scanners, tissue histo­
pathology slides can now be digitized and stored 
in digital image form. With the availability 
and analysis of a much larger set of variables 
combined with sophisticated imaging and ana­
lysis techniques, the traditional paradigm of a 
pathologist and a microscopy could rapidly be 
replaced with a digital pathologist relying on 
a large flat screen panel to view and rapidly 
analyze digitized tissue sections.

Computer-aided diagnosis  
of histopathology
Over the past decade, dramatic increases in com­
putational power and improvement in image 
analysis algorithms have allowed the develop­
ment of powerful computer-assisted analytical 
approaches to biomedical data. Just as with digi­
tal radiology over two decades ago, digitized tis­
sue histopathology has now become amenable to 
the application of computerized image analysis 
and machine-learning techniques for accurate 

diagnosis. In the context of CaP, for example, of 
the approximately 1 million biopsies performed 
in the USA every year, only 20% are found to be 
positive for cancer. This implies that pathologists 
are spending a large fraction of their time look­
ing at benign tissue, which in most cases is easily 
distinguishable from cancer [1,2]. This represents 
a huge waste of time and resources that might be 
better spent analyzing patients who actually have 
CaP, or to focus on the cases where the disease 
is difficult to identify/classify or presents with 
nonstandard features. Consequently, several 
researchers have begun to develop computer-
aided diagnosis methods by applying image 
processing and computer vision techniques to 
try and identify spatial extent and location of 
diseases such as breast cancer [3–9], CaP [10–17], 
neuroblastomas and meningiomas [18–21] on 
digitized tissue sections.

One of the principal challenges in analysis 
of digital histopathology data is the enormous 
density of data that the algorithms have to con­
tend with, compared with radiological and other 
imaging modalities. For instance, the largest 
radiological datasets obtained on a routine basis 
are high-resolution chest CT scans comprising 
approximately 512 × 512 × 512 spatial elements 
or approximately 134 million voxels. A single 
core of prostate biopsy tissue digitized at 40× 
resolution is approximately 15,000 × 15,000 ele­
ments or approximately 225 million pixels. To 
put this in context, a single prostate biopsy pro­
cedure can comprise anywhere between 12 and 
20 biopsy samples or approximately 2.5–4 bil­
lion pixels of data generated per patient study. 
Thus, unlike computer-aided detection (CAD) 
algorithms previously proposed for radiology, 
histopathology CAD algorithms are typically 
constructed within a multiresolution frame­
work [22] in order for them to be rapid, efficient 
and accurate. 
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Computer-aided prognosis
A second important role of computerized image 
analysis of digital pathology is to identify prog­
nostic markers and to predict disease outcome 
and survival. For instance, in both breast cancer 
[23–25] and CaP [26–28], cancer grade is known 
to be highly correlated to patient outcome 
and long-term survival. One of the issues with 
grade determination by a pathologist is the high 
degree of inter- and intra-observer variability 
[25,29–32]. Since pathologist grade is reflected in 
tissue architecture and nuclear arrangement, 
graph-based [4,5,7,33,34] algorithms have been 
proposed to quantitatively characterize spatial 
arrangement and distribution of histological 
structures such as cancer nuclei, lymphocytes 
and glands. 

“…of the approximately 1 million biopsies 
performed in the USA every year, only 20% 

are found to be positive for cancer. This 
implies that pathologists are spending a 

large fraction of their time looking at benign 
tissue, which in most cases is easily 

distinguishable from cancer…”

It is conceivable that these image-based pre­
dictors may in the future become powerful and 
accurate enough to be able to rival more expen­
sive molecular prognostic assays in predicting 
disease outcome. For instance, for estrogen 
receptor-positive breast cancers, our group has 
been developing an image-based risk score pre­
dictor that on a small cohort of data appears to 
perform as well as a commercial molecular gene 
expression assay called Oncotype DX® [5,16] in 
predicting patient outcome. 

Computer-aided theragnosis
It has always been accepted that cancer is a com­
plex disease that we do not yet fully understand. 
In the clinic, the same treatment applied to two 
patients with diseases that look very similar 
have vastly different outcomes. A part of this 
difference is undoubtedly patient specific, but a 
part must also be a result of our limited under­
standing of the relationship between disease 
progression and clinical presentation. There is 
a consensus among clinicians and researchers 
that a more detailed approach, using computer­
ized imaging techniques to better understand 
tumor morphology, combined with the clas­
sification of diseases into more meaningful 
molecular subtypes, will lead to better patient 
care and more effective therapeutics. The vari­
ables that can be used in such an analysis are the 

molecular features of a tumor (as measured by 
gene-expression profiling or real-time PCR and 
FISH), results from the imaging of the tumor 
cellular architecture and microenvironment (as 
captured in histological imaging), the tumor 
3D tissue architecture and vascularization (as 
measured by dynamic contrast-enhanced MRI) 
and its metabolic features (as seen by metabolic 
or functional imaging modalities e.g., magnetic 
resonance spectroscopy or PET) [35]. 

While digital pathology offers very inter­
esting, highly dense data, one of the exciting 
challenges in the future will be in the area of 
multimodal data fusion for making therapy 
recommendations (theragnosis), especially as it 
pertains to personalized medicine. For instance, 
our group [36] has been exploring the correlation 
and integration of protein expression and histo­
logical image measurements to develop a com­
bined classifier to predict which CaP patients 
will have disease recurrence following therapy.

Role of the pathologist in the  
digital age
While image analysis methods for digital patho­
logy are rapidly finding application in the clinic, 
both imaging, computer scientists and patho­
logists alike need to appreciate that the primary 
purpose of these tools is to complement the role 
of the pathologist. They will not in the short or 
medium term be able to replace the vast domain 
of expertise that a pathologist brings to the table; 
a lesson that we can appreciate from radiology 
where the availability of commercial CAD sys­
tems over the last two decades has not in any 
way diminished the role of the radiologist. 

“We are living in an exciting time when 
disease diagnostics and treatment are 
becoming more accurate and patient 

specific. Computerized imaging methods are 
beginning to assist … in making an accurate 

diagnosis of disease…”

The vast majority of histopathology image 
analysis researchers are computer vision 
researchers. As such, it is important to main­
tain a constant collaboration with clinical and 
research pathologists throughout the research 
process. There are unique challenges to analysis 
of histopathology imagery, particularly in the 
performances required for eventual use of the 
technique in a clinical setting. It is the patholo­
gist who can best provide the feedback on the 
performance of the system, as well as suggest­
ing new avenues of research that would provide 
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beneficial information to the pathologist com­
munity. Additionally, it is the pathologist that 
is best equipped to interpret the analysis results 
in light of underlying biological mechanisms 
which, in turn, may lead to new research ideas. 

Looking to the future
We are living in an exciting time when disease 
diagnostics and treatment are becoming more 
accurate and patient specific. Computerized 
imaging methods are beginning to assist the 
pathologist and radiologist in making an accu­
rate diagnosis of disease and identify mor­
phological features correlated with prognosis. 
Molecular profiling of disease promises to help 
the clinician understand the underlying bio­
logy of the disease and suggest new and more 
effective therapeutics. We stand at the thresh­
old of an era when predictive, preventive and 
personalized medicine will transform medicine 
by decreasing morbidity in cancer. We believe 
this transformation will be driven by the inte­
gration of multiscale heterogeneous data [9,36]. 
The goal of our research and the research of 
many other scientists is aimed at a future when 
disease diagnostics will involve the quantitative 
integration of multiple sources of diagnostic 
data, including genomic, imaging, proteomic 
and metabolic data acquired across multiple 
scales/resolutions that can distinguish between 
individuals or between subtle variations of the 
same disease to guide therapy. Quantitative 

cross-modal data integration will also allow 
disease prognostics, enabling physicians to pre­
dict susceptibility to a specific disease as well as 
disease outcome and survival. Finally, the ana­
lysis will provide theragnostics; the ability to 
predict how an individual will react to various 
treatments. Such a theragnostic profile would 
be a synthesis of various biomarkers and imag­
ing tests from different levels of the biological 
hierarchy. It would be used as the ‘signature’ of 
an individual patient, useful in predicting her/
his response to drug treatment. A collection of 
these profiles, followed up over time, would 
provide insights into the disease process and be 
useful for improvements in developing future 
treatment options. 
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