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Diffusion-tensor imaging in brain tumors

  REVIEW

Diffusion-tensor imaging (DTI) is the only novel imaging technique that is able to demonstrate white 
matter tracts and their structural changes related to different brain pathologies. Diffusion tensor describes 
the 3D diffusion phenomenon of the protons according to their microenvironmental properties allowing 
a unique description of the space where this molecular movement takes place. This model provides in vivo 
demonstration of the complex ultrastructural organization of the white matter as well as structural changes 
due to tumoral invasion. Current applications of DTI and magnetic resonance tractography allow accurate 
delineation of the eloquent white matter tracts and their relation with tumoral tissue. This article 
summarizes the basic physics and clinical applications of DTI in brain tumor diagnosis and follow-up. 
Effectiveness of different DTI metrics and magnetic resonance tractography is reviewed in tumor 
characterization, treatment planning and in the assessment of post-therapeutic changes. The limitations 
and the advancements in DTI era to minimize these limitations are also discussed. Current technical 
properties of DTI and future expectations of new DTI models make it a very promising tool for more 
precise evaluation of tumor-related structural changes in white matter tracts.
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Primary and metastatic brain tumors are seri-
ous health problems and have some critical chal-
lenges in both their diagnosis and treatment. 
Primary brain tumors are mostly neuroepithe-
lial in origin. The most common primary brain 
tumors are meningiomas and glioblastomas in 
adults, and pilocytic astrocytomas, malignant 
glioma and embryonal tumors in children [201]. 
According to the central brain tumor registry of 
United States (CBTRUS) report in 2009 [201], 
the age-adjusted overall annual incidence rate 
for primary CNS tumors was 18.16 per 100,000 
person-years. In the 2009 update of cancer 
statistics of American Cancer Society [1], the 
number of estimated new cases of primary CNS 
tumors in the USA is approximately 22,070 and 
the estimated number of deaths due to primary 
CNS tumors is approximately 12,920. On the 
one hand, primary brain tumors are the second 
most common malignancy and the first most 
common solid malignant tumor among chil-
dren, following leukemias as a group being the 
most common [202] and the second most com-
mon cause of cancer-related deaths in younger 
patients with an overall 5‑year period survival 
rate of 35.5% for all ages [1]. On the other hand, 
metastatic brain tumors are the most common 
intracranial neoplasm in adults (20–40% of all 
metastatic cancers) with significantly high rates 

of morbidity and mortality and they outnum-
ber the primary brain tumors by a ratio of 10:1 
[203]. The increase in detection rate of metastatic 
brain tumors is due to advancement in imaging 
modalities and improvement in cancer therapy 
for systemic disease [203]. 

The imaging modality of choice for brain 
tumor diagnosis is MRI due to its high contrast 
resolution, and multiplanar, volumetric imag-
ing capability allowing tissue characterization 
to some extent. It provides detailed anatomic 
information regarding the anatomic relation of 
the tumor and affected brain tissue but it cannot 
give specific information concerning tumoral 
white matter involvement, which is critical for 
treatment planning to minimize the injury to 
eloquent white matter tracts during surgery. The 
signal attenuation due to molecular diffusion is 
one of the most important magnetic resonance 
(MR) contrast mechanisms [2,3]. Diffusion-
weighted imaging (DWI) allows the display of 
diffusion of water protons as a function of spatial 
location [2,3]. A more advanced diffusion-based 
MRI method, diffusion-tensor imaging (DTI), 
processes the diffusion information in a tensor 
model, which describes the magnitude, degree 
and orientation of diffusion anisotropy, and 
estimates the white matter connectivity in a 3D 
model termed MR tractography [2–11]. In this 
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article, the basic physics, methodology, clinical 
applications and limitations of DTI and MR 
tractography relevant to brain tumor diagnosis 
are reviewed. 

Basic physics & methodology
The translational motion of free water protons 
(i.e., Brownian motion) in 3D volume is mainly 
dependent on the temperature and density of 
the microenvironment, and on the dimensions 
of the moving molecules. If the motion of water 
protons is free in all directions, as in cerebro
spinal fluid (CSF), the resultant diffusion in 
each direction is equal to each other, in other 
words, it is isotropic in nature, but if it is hin-
dered in one or more directions as in brain tissue, 
no longer is the resultant diffusion equal to each 
other in all directions (i.e., it is anisotropic). The 
effect of anisotropic diffusion of bounded water 
protons on magnetization transfer (Bloch) equa-
tion was first described by Torrey in 1956 as an 
artifact causing an increase in MR signal [12]. In 
1965, Stejskal and Tanner successfully separated 
the effect of anisotropic diffusion from spin 
echo signal by designing a dedicated diffusion-
weighted sequence in which it sensitized to the 
diffusion of water protons by applying special 
diffusion gradients [13]. 

Brain tissue predominantly causes an aniso
tropic diffusion of water protons in certain 
amounts by limiting their motions owing to dif-
ferent anatomical (cell types, cellular architec-
ture and density) and physiological (permeability 
and microdynamics) properties. The amount of 
diffusion along the applied diffusion gradient 
can be calculated from DWI data and expressed 
as the apparent diffusion coefficient (ADC). The 
calculated ADC value can completely describe 
the whole properties of an isotropic diffusion 
but not those of an anisotropic one. In this situ-
ation, generating diffusion tensor rather than 
ADC is preferred for accurate characterization 
of diffusion restriction in different directions, 
which is caused by the shape or the boundaries 
of the volume in which the molecular movement 
takes place. 

By definition, ‘tensor’ is a mathematical func-
tion describing a complex physical phenomenon 
and is demonstrated as a vectorial quantity 
defined by more than three values. The diffusion 
tensor basically describes the 3D diffusion phe-
nomenon by using a matrix of numbers derived 
from measurements of at least six or more applied 
diffusion gradients in different ways. After ana-
lytical diagonalization of diffusion tensor, a 3D 
shape is formed by calculating three eigenvectors 

having three eigenvalues (l
1
, l

 2
 and l

 3
), which 

are perpendicular to each other [14]. The shape of 
this function can be changed from ellipsoid, as in 
anisotropic diffusion of a proton located in cor-
pus callosum, to a sphere, as in isotropic diffu-
sion of a CSF proton. The length of this ellipsoid 
is parallel to the major eigenvector having the 
highest eigenvalue and is also assumed to be par-
allel to the white matter tracts in measured voxel 
because the motion of water molecules along the 
myelinated white matter fibers is relatively free 
while perpendicular to them, it is more hindered 
[15]. This is the basic knowledge used for MR 
tractography. In MR tractography, after choosing 
a seed-point, the direction of ellipsoids (major 
eigenvectors) of contiguous voxels were followed 
as a path that represents the white matter tracts 
located in parallel and this is known as line-prop-
agation method [4–6,9]. The propagation is usu-
ally terminated when the tract trajectory reaches 
a voxel with a small anisotropy (fractional ani-
sotropy [FA] <0.2–0.15) in which the estimated 
major eigenvector direction becomes very sensi-
tive to image noise or when the angle between 
two consecutive steps is greater than 41–45° [7]. 
As a result, MR tractography estimates the 3D 
representation of white matter tracts. 

High-field MR scanners (1.5  T or prefer-
ably ≥3  T) equipped with strong gradients 
(>35 mT/m) are ideal for DTI and MR tracto
graphy. A minimum of eight or more element 
arrayed radio frequency head-coil, with at least 
four or more channel receiver systems, should 
be used for acquisition. Volumetric gradient 
echo T

1
 or fluid-attenuated inversion recovery 

images with or without paramagnetic contrast 
administration are usually acquired for the back-
ground image. Single-shot spin echo echo planar 
sequence, with diffusion gradients applied in at 
least six or more noncollinear directions includ-
ing b = 0, where b = 800–1000 s/mm2 , is usually 
used for DTI. A larger field of view and higher 
acquisition matrix are used as much as possible 
with a slice thickness of 2 mm or less. All images 
are usually zero-filled to the final reconstruction 
matrix size of 256 × 256. Parallel imaging with 
a reduction factor of two or more is usually pre-
ferred in order to decrease the acquisition time 
and to reduce susceptibility and eddy current 
artifacts. Care should be taken to obtain DTI 
images only before or after injection of the con-
trast medium for comparative studies because 
diffusion-tensor images obtained 6 min after 
contrast-medium injection result in significant 
changes in diffusion isotropic and anisotropic 
values [16].
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The analysis of DTI data always needs dedi-
cated software. Volumetric f luid-attenuated 
inversion recovery or T

1
‑weighted gradient echo 

images coregistered to ADC and FA maps are 
used for quantitative and qualitative analysis 
of tumoral and peritumoral areas. In the place-
ment of regions of interest (ROI) care is needed 
to avoid cystic/necrotic areas, CSF-filled sulci 
or cisterns and major vessels. The area of meas-
ured ROI must be kept constant minimizing the 
confounding factors in DTI analysis. 

Diffusion-tensor imaging metrics are usually 
calculated on a voxel-by-voxel basis. The mean 
diffusivity (MD) or, in other words, ADC, can 
completely describe the whole physical proper-
ties of an isotropic diffusion but cannot describe 
those of an anisotropic diffusion. MD is simply 
the mean of three major eigenvectors as shown 
in Equation 1:

3
D

1 2 3
=

+ +m m m

Owing to the insufficiency of MD to describe 
all the physical properties of anisotropic diffu-
sion, different diffusion measures such as par-
allel (axial, l

||
) and perpendicular (radial, l⊥) 

diffusivities, p‑, q‑, L‑anisotropies and FA, and 
linear, planar and spherical anisotropy coef-
ficients (C

L
, C

P
 and C

S
) were defined [8,17–25]. 

The equations of DTI metrics frequently used 
in tumor diagnosis are listed below:
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The FA is the most commonly used and is 
sensitive to the movement of water molecules 
through predominant diffusion in any one 

direction rather than equal diffusion in all direc-
tions. It has no units because it represents a ratio 
of diffusion coefficients. While lower FA values 
represent nearly isotropic diffusion, higher ones 
represent extremely anisotropic diffusion. 

By using these anisotropy metrics, different 
scalar or directionally encoded color images 
can be generated (Figure 1). In these maps, the 
direction of the greatest diffusivity with color 
intensity is directly proportional to relevant DTI 
metric. In a color-coded image, red is usually 
assigned to medial–lateral orientation, green to 
rostral–caudal orientation and blue to superior–
inferior orientation. A decrease in the intensity of 
colors in color-coded maps is assessed as reduced 
anisotropy. The location and direction of each 
tract should be evaluated as normal or abnormal. 

Further to these maps, fiber tracking is usu-
ally performed for corresponding white matter 
tracts according to the orientation to the tumor 
location for semiquantitative analysis (Figure 2). 
For fiber tracking, a seed-point is chosen from 
among the different anatomical landmarks 
according to the anatomical orientation of the 
corresponding white matter tract. 3D recon-
struction of white matter tracts are made mostly 
by means of an algorithm based on the fiber 
assignment by continuous tracking method [6]. 

Besides these anisotropy metrics, alterna-
tive methods for assessing brain tumors were 
also defined in the literature by DTI. The first 
is the tumor infiltration index (TII), which is 
expressed in Equation 11 as:

ATII F FAexp obs= -

where FA
exp

 is the FA that one would expect 
for the corresponding MD if the edema were not 
infiltrated with tumor and FA

obs
 is the measured 

FA [26]. The second is the fiber density index 
(FDI), which is constructed by determining the 
mean number of fiber paths passing through 
each pixel in the ROI; that is, FDI = number 
of fiber paths passing through ROI/area of ROI 
(in pixels) [27]. The third is the DFA% on the 
lesion side, which is defined as the percentage of 
FA decrement adjacent to the tumor, compared 
with the contralateral normal hemisphere and 
calculated by Equation 12 [28]:

% 100%FA
FA

FA FA

Normal

Lesion Normal
#=

-
D

Clinical applications 
Diffusion-weighted imaging and ADC calcula-
tion have long been used for tumor diagnosis. 
DWI is a very useful and rapid technique, which 
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provides very valuable information regarding 
the differential diagnosis of cystic brain lesions 
[29–32]. High signal intensity characteristics of 
brain abscesses, epidermoid tumors and lym-
phomas on DWI may be helpful to differentiate 
them from cystic/necrotic tumors and metas-
tases, arachnoid cysts and toxoplasmosis, respec-
tively, which show similar signal intensity to CSF 
on DWI [29–32], but necrotic tumor and cystic 
metastases may occasionally show restricted 
diffusion on DWI [33]. Similarly, tumor recur-
rence may have significantly lower maximum 
ADC values than radiation necrosis [34,35], but 
spatial resolution of current imaging technique 
may not be high enough to show whole tissue 
heterogeneity and characteristics allowing an 

absolute differentiation [36]. The results of stud-
ies assessing tumor type and grade by DWI had 
some controversies [37,38], but they mostly dem-
onstrated an inverse correlation between mean, 
parallel (axial, l

||
) and perpendicular (radial, l

⊥) diffusivities and tumor grade or cellularity 
[23,39–44]. Use of minimum ADC values may 
improve the efficacy of ADC for grading [45,46]. 
Either increased cellularity or tortuosity due to 
change in the composition of extracellular matrix 
by increased content of hydrophilic molecules 
can slow down the ADC without any change 
in extracellular space volume due to increased 
diffusion barriers in the tumoral environment 
[42,47–49]. But the increment in mean diffusibil-
ity during the tumor-growing process owing to 

Figure 1. Color-coded fractional anisotropy maps in normal volunteer. Axial directionally 
encoded color-coded fractional anisotropy maps from different levels (A–D) demonstrate normal 
anatomy of white matter tracts in brain and brainstem. In these maps, red is assigned to  
medial–lateral orientation, green to rostral–caudal orientation and blue to superior–inferior 
orientation. The color intensity is directly proportional to the amount of diffusional anisotropy.
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increased tumoral cellularity or tortuosity, which 
minimizes the interstitial space, can be canceled 
by the effect of vasogenic edema, which causes 
an increment of extracellular compartment due 
to the destructive structural alterations of neuro-
nal architecture [37,39,48]. Furthermore, DWI and 
ADC calculation can provide an early surrogate 
marker for monitoring the response of tumors to 
therapy [49,50]. Chenevert et al. detected a rapid 
increment in the mean ADC values shortly after 
treatment initiation and the magnitude of the 
diffusion changes corresponded with clinical 
outcome [49].

Besides these clinical applications, DWI 
and MD measurements usually fall behind in 
the evaluation of tumoral white matter tracts 
involvement. DTI and calculated anisotropy 
measures are useful for tumoral and peritu-
moral tissue characterization as well as for the 
estimation of potential patterns of white matter 
tract involvements. For detailed analysis, the 
DTI application in the brain tumor diagnosis 

is reviewed here in three subheadings includ-
ing tumor characterization, the assessment of 
peritumoral area and post-therapeutic changes.

�� Tumor characterization
Fractional anisotropy is superior to MD in the 
assessment and delineation of different degrees 
of glial tumor infiltration [51]. The results of pre-
vious studies, which quantified the tumoral and 
peritumoral FA values, showed that low-grade 
gliomas (Figure 3) tend to have higher tumoral 
FA values than high-grade gliomas (Figure 4) but 
there is no distinct cutoff FA value for precise 
differentiation [23,51–54]. Goebell et al. observed 
a continuous decline of FA from the surround-
ing tissue of the tumor toward the center due 
to increased neuronal degeneration or relative 
decrease of neurons in relation to tumor tissue 
towards the center of the tumor [55]. In addi-
tion, a narrow rim of increased FA and decreased 
MD values around the enhancing tumoral area, 
resembling tumor cell infiltration, is indicative 

Figure 2. 3D tractography images in normal volunteer. 3D magnetic resonance tractography images of white matter tracts 
reconstructed by fiber assignment by continuous tracking method in (A) whole brain, (B) corticospinal tract and (C) corpus callosum.

Figure 3. Low-grade glioma. The (A) axial fluid-attenuated inversion recovery, (B) contrast-enhanced T
1
-weighted, (C) apparent 

diffusion coefficient map and (D) fiber assignment map images of low-grade glioma at the left temporal lobe show moderate infiltration 
and displacement (arrowheads) with relatively higher fiber assignment values than high-grade gliomas. 
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of high-grade gliomas and not seen in low-
grade ones [53]. A lower incidence of destructive 
changes and more preservation of white mat-
ter tracts in low-grade tumors causes a smaller 
reduction in FA values than high-grade tumors. 
Contrary to ADC, a significant reduction in 
FA values with increasing tumor grade sug-
gests that FA and ADC are affected by different 
pathophysiological events that occur during the 
tumoral growth. As stated before, this multifac-
torial influence of mean diffusibility prevents 
a precise tumor grading and it is not directly 
dependent on the integrity of white matter tracts 
[41,52]. However, FA is mainly designated by the 
amount and the direction of diffusion restriction 
of water molecules along the myelinated white 
matter tracts and affected by the percentage of 
preserved and destroyed white matter tracts in 
the tumoral area [56–58]. The more prominent 
FA reduction in high-grade tumors compared 
with low-grade tumors is a consequence of the 
higher incidence of cystic and necrotic changes 
causing loss of white matter tract organization 
and integrity, and some investigators also suggest 
that FA is more sensitive than ADC in the detec-
tion of early tumoral involvement [52,57,58]. But 
any change in white matter tract composition 
by tumoral growth can affect the FA values, and 
reduction in FA is not a very specific finding for 
the detection of these types of changes because 
it can potentially result from fiber depletion 
(tumor destroys fibers, reducing their absolute 
numbers), fiber dilution (tumor or vasogenic 
edema spreads intact fibers apart, reducing their 
density) or fiber degradation (fibers themselves 
become intrinsically less anisotropic, retaining 
normal numbers and density) [27,59]. Roberts 
et al. [27] showed that FDI, which is highly cor-
related with FA, would distinguish degradation, 
in which FDI would presumably remain normal 

(at least until anisotropy falls below threshold), 
from depletion and dilution, in which FDI 
would be reduced [59]. 

Moreover, the qualitative assessment of DTI 
maps can define the different types of tumoral 
involvement such as displacement (characterized 
by normal or only slightly decreased FA with 
abnormal location and/or direction), edema 
(characterized by substantially decreased FA 
with normal location and direction), infiltra-
tion (characterized by substantially decreased 
FA with abnormal direction), destruction (char-
acterized by near isotropic diffusion without 
any identifiable tract on directional color-coded 
maps) or a combination of two or more [7,28,58,60]. 
Price et al. showed an increase in p‑values and 
a less marked reduction in q‑values in the infil-
trated tracts, but a marked reduction in q‑ and 
increase in p‑values in the destructive tracts [25]. 
Yen et al. showed that a positive DFA% is likely 
to be associated with edema or displacement, a 
DFA% between 0 and ‑30% is associated with 
displacement and infiltration, and a DFA% of 
less than -30% with disruption [28]. As stated 
in the literature, such qualitative assessment of 
DTI may improve the possibility of distinguish-
ing low- and high-grade glial tumors or infil-
trative gliomas and noninfiltrative tumors such 
as metastases (Figure 5) or meningiomas (Figure 6) 

from each other [26,48,58,61–65].
Besides gliomas and metastases, diffusion 

information can also be used for the assessment 
of other types of brain tumors. Dysembryoplastic 
neuroepithelial tumors (Figure 7) have significantly 
higher ADC values than normal parenchyma and 
ADC values have the highest correlation with 
tumor diagnosis among other imaging techniques 
such as MR spectroscopy and perfusion imaging 
[66]. Central neurocytomas (Figure 8) have a het-
erogeneous hyperintense appearance and lower 

Figure 4. High-grade glioma. The (A) axial fluid-attenuated inversion recovery, (B) contrast-enhanced T
1
-weighted, (C) apparent 

diffusion coefficient map and (D) fiber assignment map images of high-grade glioma at the left basal ganglia and occipito–temporal 
deep white matter show destruction (arrowheads) and peritumoral infiltration (arrows) with relatively low fiber assignment values. 
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apparent water diffusivity when compared with 
the contralateral white matter and may compli-
cate diagnosis by resembling high-grade gliomas 
[67]. Classic meningiomas have significantly lower 
tumoral FA, higher tumoral ADC and more 
spherical diffusion than atypical meningiomas 
but there is no difference in DTI metrics obtained 
from peritumoral edema because of the nonin-
filtrative nature of both tumors [68]. The FA and 
ADC of primary cerebral lymphoma are signifi-
cantly lower than those of glioblastomas because 
of their higher tumoral cellularity and nucleus/
cytoplasm ratio than glioblastomas and different 
cutoff values are defined to differentiate lympho-
mas from glioblastomas such as 0.192 for FA, 0.33 
for FA ratio, 0.818 for ADC and 1.06 for ADC 
ratio [69]. Although Beppu and colleagues had 
previously reported a positive correlation of FA 
value with glial tumor cellularity in their different 
articles [70–72], the results of more recent articles 
suggest that FA is inversely related to tumoral cel-
lularity [51,69]. This is another controversy regard-
ing the use of DTI, which needs to be evaluated 
by further histological cross-matched studies. 

Diffusion-tensor imaging has effective appli-
cations in posterior fossa as well as supratento-
rial tumors [60,73–75]. Brainstem gliomas, which 
account for approximately 15% of pediatric 
brain tumors, are usually differentiated as 
WHO grade II fibrillary astrocytomas or WHO 
grade III anaplastic astrocytomas at diagnosis 
and are known to infiltrate between normal 
axonal fibers [60,76]. The knowledge of the ana-
tomic and functional relationship between the 
tumor and adjacent white matter tracts is par-
ticularly important in the treatment planning 
of brainstem tumors where many important 
functional fiber tracts are passed and crossed. 

Although surgical options have high risks, they 
are essential in brainstem decompression, provid-
ing a means for acquiring the histological diag-
nosis or determining the subsequent therapy [75]. 
DTI can nicely demonstrate the relation between 
white matter tracts and tumor (Figure 9) and pro-
vide valuable information for both surgical plan-
ning and the outcome [73,74]. In a recent study 
investigating the efficacy of DTI in the detection 
of axonal degeneration in patients with brain-
stem tumors, Helton et al. found that FA values 
were altered proximal and distal to the brain-
stem tumors with a bimodal peak of antegrade 
decreased FA involving second- and third-order 
sensory axons and retrograde decreased FA of 
motor axons and they recommended use of DTI 
for therapy planning because it may improve 
prognostication of the possible functional tract 
recovery following therapy [74]. In their study, in 
which the efficiency of DTI metrics on surgical 
outcome of patients with primary posterior fossa 
tumors is probed, Lui et al. showed that higher 
MD and lower FA in the brainstem corticospinal 
tract are associated with contralateral motor defi-
cits, and lower transverse eigenvalue measures in 
the corticospinal tracts may be observed with an 
unfavorable clinical outcome [73]. 

�� Evaluation of peritumoral area
The precise differentiation between tumoral 
infiltration and pure vasogenic edema on the 
basis of DTI data is still in debate, but the 
results of different studies are very encouraging 
[26,48,58,63–65]. Lu et al. showed that TII may be 
more helpful than DTI metrics for this differ-
entiation because metastases have significantly 
higher mean peritumoral MDs and lower TIIs 
than gliomas [26]. However, they did not detect 

Figure 5. Brain metastasis of small-cell lung cancer. The (A) axial fluid-attenuated inversion recovery, (B) contrast-enhanced 
T

1
-weighted, (C) apparent diffusion coefficient map and (D) fiber assignment map images demonstrate multiple metastases throughout 

the brain. The metastasis at the right thalamus shows a smooth displacement (arrowheads) in adjacent right corticospinal tract consistent 
with noninfiltrative tumor.
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any difference in FA values similar to the results 
of Tsuchiya et al. [64]. Furthermore, Morita et al. 
demonstrated by using l‑chart analysis that 
the apparent water diffusivity of peritumoral 
edema was significantly higher in high-grade 
gliomas than in both metastases and meningio
mas owing to the destruction of the extracellular 
matrix ultrastructure by malignant cell infil-
tration causing greater water diffusion in the 
former [48]. Conversely, Provenzale et al. showed 
that mean FA, but not ADC, of peritumoral 
hyperintense and normal-appearing peritumoral 
regions for gliomas are significantly lower than 
those for meningiomas [65]. Contrary to previous 
results, this is a very promising finding because 
the difference between DTI metrics obtained 
from normal-appearing peritumoral white mat-
ter and normal-appearing contralateral white 
matter in infiltrative gliomas suggests that DTI 
has the ability to detect early tumoral infiltra-
tion before becoming prominent on conventional 
MR images and also supports the prior hypothesis 
that DTI can provide better delineation of glial 

tumor margins for exact treatment planning [63]. 
Additionally, the results of two more recent stud-
ies using more sophisticated DTI metrics are not 
only more interesting but also more challenging 
[18,77]. In the first of the two, Wang et al. [18], using 
FA, p‑, q‑ and L‑anisotropies, detected that gliob-
lastomas have significantly lower q‑anisotropy 
and FA in gross tumor and lower q‑anisotropy 
in the peritumoral region than metastases and 
they did not find any significant difference in 
any DTI metrics obtained from peritumoral 
normal-appearing white matter. In the second, 
Wang et al. obtained linear and planar anisotropy 
metrics beside FA and ADC from tumoral cen-
tral, tumoral enhancing, immediate peritumoral 
and distant peritumoral areas [77]. They showed 
that FA, C

L
 and C

P
 from glioblastomas were sig-

nificantly higher than those of brain metastases 
from all segmented regions, and the differences 
from the enhancing regions were the most signifi-
cant. The best logistic regression model included 
three parameters (ADC, FA and C

P
) from the 

enhancing part, resulting in 92% sensitivity, 

Figure 6. Meningioma. The (A) axial fluid-attenuated inversion recovery, (B) contrast-enhanced T
1
-weighted, (C) apparent diffusion 

coefficient map and (D) fiber assignment map images show a dural-based extra-axial meningioma at the right frontal region causing 
prominent edema (arrowheads) in adjacent brain parenchyma. 

Figure 7. Dysembryoplastic neuroepithelial tumor. The (A) axial fluid-attenuated inversion recovery, (B) contrast-enhanced 
T

1
-weighted, (C) apparent diffusion coefficient map and (D) fiber assignment map images show a dysembryoplastic neuroepithelial 

tumor at the left frontal lobe causing mild displacement (arrowheads) in peritumoral white matter tracts. 
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100% specificity and an area under the curve of 
0.98, and they recommended the combined usage 
of DTI metrics in assessment of brain tumors. 

In addition to tumor characterization and 
differentiation, DTI findings are also crucial for 
treatment planning [78–92]. Mapping the tumor-
altered white matter tracts by MR tractography 
(Figure 10) and implementation of the knowledge 
of structural integrity and location of eloquent 
pathways relevant to tumors on to DTI-based 
surgical functional navigation systems allowing 
intraoperative fiber tracking can improve the 
indications for determining surgical strategy, 
contribute to maximal safe resection of cerebral 
gliomas with corticospinal tract involvement, pre-
vent or minimize the chance of devastating dam-
age to the clinically eloquent white matter tracts 
during surgery, decrease the duration of surgery, 
patient fatigue and intraoperative seizures, and 

increase the quality of life of patients who survive 
high-grade glial tumors [87–91]. Both intraopera-
tive electrocortical stimulation [93–95] or func-
tional MRI (fMRI)-guided [19,80,82,84,85,96,97] 
advanced DTI fiber tracking implementations 
can also provide more accurate anatomical and 
functional delineation of eloquent white mat-
ter tracts and their relationship to the tumor 
than conventional MR-based surgical naviga-
tion systems. They may also provide access to 
direct connectivity information between func-
tional regions of the brain. The fMRI-guided 
DTI applications allow a more comprehensive 
and functionally related white matter mapping 
than DTI by increasing the tracking ability of 
DTI in infiltrated white matter tracts owing to 
proper selection of fMRI-activated, desired fiber 
bundles, especially when there is a tumor-related 
deviation in white matter tracts [19]. 

Figure 8. Central neurocytoma. The (A) axial fluid-attenuated inversion recovery, (B) contrast-enhanced T
1
-weighted, (C) apparent 

diffusion coefficient map and (D) trace diffusion-weighted images demonstrate a central neurocytoma located at the right lateral ventricle 
and corpus callosum with very low apparent diffusion coefficient values with faint peritumoral edema resembling high-grade glioma.

Figure 9. Brainstem glioma. 3D coregistered magnetic resonance tractography images of different brainstem tumors (A–C) show 
diffuse infiltration with smooth displacement and separation in adjacent preserved white matter tracts. This is a very typical appearance 
for infiltrative brainstem gliomas.
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�� Assessment of postoperative 
changes
Diffusion-tensor imaging is a very promising 
tool for comparing the status of eloquent corti-
cal pathways before and after the surgery and 
gives an opportunity to the neurosurgeon to 
demonstrate the preservation of endangered 
tracts postoperatively (Figure 11) [73,86,98]. Laundre 
et  al. showed that preoperative corticospinal 
tract involvement, as determined by DTI, is 
predictive of the presence or absence of motor 
deficits, and postoperative corticospinal tract 
normalization on DTI is predictive of clinical 
improvement [86]. DTI may also improve the 
clinical outcome by allowing maximum tumor 
resection while preserving the noninfiltrated 
white matter tracts. In their prospective study, 
Yu et al. classified the relationship of tumors 
and eloquent white matter tracts as simple dis-
placement, displacement with infiltration and 
simple disruption; they achieved the maximum 
tumor resection in tumors with simple displace-
ment and performed extensive resection by pre-
serving the residual part of the tract in tumors 
with displacement with infiltration and simple 
disruption [98]. 

Diffusion-tensor imaging also allows the 
detection and monitoring of treatment-induced 
neurotoxicity in cerebral white matter [98–102]. 
Several studies investigating the effect of cranial 
irradiation and chemotherapy indicate a promi-
nent decrease in mean FA values that are more 
severe in the frontal lobes compared with the 
parietal lobes despite the same radiation dose, 
suggesting regional susceptibility in the frontal 
lobe [99–104]. The post-treatment decline in FA 
values is also correlated with radiation dose, age 
at treatment (<5 years and >65 years), longer 
interval since treatment (>5 years), more than 
one vascular risk factor (hypertension, smoking, 

diabetes mellitus, alcoholism and multiple regi-
men of chemotherapy treatment) and deterio-
ration in cognitive functions such as decrease 
in school performance or in intelligence quo-
tient [99–104]. On the other hand, parallel (l

||
) 

and perpendicular (l⊥) diffusivities increased 
linearly and significantly with time, starting 
at 3 weeks and continuing to 32 weeks from 
the start of radiation therapy [22]. These find-
ings indicate radiation-induced dose-dependent 
demyelination and mild structural degradation 
of axonal fibers in acute and subacute stages, 
which is followed by subsequent diffuse dose-
independent demyelination and mild axonal 
degradation [22].

Knowledge on the efficiency of DTI in the dif-
ferentiation of tumor recurrence from radiation 
necrosis is relatively limited [20,105]. Sundgren 
and colleagues reported significantly higher 
ADC values in the contrast-enhancing lesions 
for the tumor-recurrence group and higher FA 
ratios in normal-appearing white matter tracts 
adjacent to the edema in the nonrecurrence 
group [20]. 

Diffusion-tensor imaging has also been used 
for the demonstration of other effects of sur-
gery on cortical pathways. Early changes due 
to Wallerian degeneration can be detected by 
DTI before conventional MR images and is 
characterized by increased MD and reduced FA 
[106,107]. It has been reported in the ipsilateral 
corticospinal tract after hemispherectomies [108] 
and in optic radiation after temporal lobectomies 
[109]. Furthermore, Concha et al. showed that 
the reduction in FA values following corpus cal-
losotomy in the first week after surgery is due to 
axonal fragmentation, which causes an increase 
in axial diffusivity, and in 2–4 months after sur-
gery is due to demyelination, which causes an 
increase in the radial diffusivity [110].

Figure 10. 3D coregistered magnetic resonance tractography images for preoperative assessment of relation between the 
tumor and eloquent white matter tracts. (A) Left frontal lobe tumor causes a total posterior displacement at the left corticospinal 
tract compared with the right one but still has enough distance away from the tract for safe resection. (B) Right thalamic tumor 
smoothly displaces the right corticospinal tract to posterior, which is consistent with a good respectability criterion. (C) Huge left frontal 
lobe tumor partly infiltrates and partly displaces the left corticospinal tract posteriorly. (D) Left occipital lobe tumor displaces the left 
optic tract smoothly upward. 
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�� Limitations
There are a number of limitations of DTI aris-
ing from its technique or applications. First 
of all, there is no ‘gold standard’ for in vivo 
tractography to validate its reliability [5]. There 
is some difficulty in comparing fiber directions 
in living tissue and a fixed specimen using 
histological confirmation owing to postmor-
tem changes during sample registration, dissec-
tion, freezing, dehydration, fixation, microtom-
ing and thawing [5]. However, recent studies 
showed a close correspondence of the tracts gen-
erated from the atlas with tracts isolated with 
classical dissection of postmortem brain tissue 
with certain limitations of DTI tractography, 
particularly for regions at remote locations from 
seeds [111,112]. Additionally, DTI cannot provide 
information regarding the connectivity of the 
brain at the cellular level but only reflects the 
macroscopic configuration of prominent fiber 
bundles [113]. 

Magnetic resonance tractography also suffers 
from thermal noise, physiological fluctuations 
and image artifacts, but its major disadvantage 
is the incapability of resolving fiber branching 
or crossing in the same voxel because it uses 
the consensus averaging of the eigenvalues of 
measured voxel owing to the limited number 
of applied diffusion gradients [5,10,114,115]. More 
sophisticated techniques, such as diffusion spec-
trum imaging [116], q‑ball imaging [117], high 
angular diffusion imaging [117–119] and combined 
hindered and restricted diffusion [120], can be 
used to minimize this technical challenge by 

providing more realistic depiction of areas of 
complex fiber architecture [10,117–119]. 

Other limitations of DTI practice include: 

�� Difficulties in reproducible determination of 
DTI-derived parameters and fiber-tracking 
images according to different user-defined FA 
values, angular thresholds, fiber lengths or 
locations of seed points causing a discordance 
to the anatomical landmarks;

�� Limited resolution of DTI data leading to 
substantial partial volume effects;

�� High sensitivity to motion;

�� Susceptibility artifacts as a result of using a 
echo planar imaging technique [11,113]. 

Most of these limitations can be minimized 
by using higher magnet fields, stronger and faster 
gradients, non-echo-planar imaging sequences 
and the development and optimization of more 
sophisticated algorithms [11,121,122]. Stieltjes et al. 
defined a fast and reproducible method for the 
quantitative analysis of corpus callosum infiltra-
tion and contralateral involvement using a proba-
bilistic mixture model, which shows that quanti-
tative DTI may be suitable for reliable depiction 
of fiber integrity and white matter infiltration by 
primary brain tumors [123]. In a recent article com-
paring the different approaches of DTI focusing 
on the positioning of the seed ROI, Hattingen 
et al. showed that the location of the seed ROI 
from which the tracking algorithm starts has a 
significant influence on the tracking results and 
the upward fiber tracking of the corticospinal 

Figure 11. Diffusion-tensor imaging in postoperative assessment of brain tumors. (A) 3D magnetic resonance tractography 
image for the postoperative assessment of right hemispheric glioblastoma shows a total destruction of the right corticospinal tract with 
complete preservation of the left one. (B) Postoperative assessment of glioblastoma involving the corpus callosum shows relative 
preservation of the corticospinal tracts. 
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tract should be preferred in patients with space-
occupying lesions, whereas downward fiber 
tracking should not be performed before upward 
fiber tracking fails [124]. Trying to keep the used 
parameters constant may help to produce more 
reproducible results in comprehensive studies.

Moreover, nonspecific loss of anisotropy in 
both infiltrated and edematous tracts poses a 
problem for MR tractography algorithms, which 
abort when the anisotropy falls below an arbi-
trary threshold [125]. Relaxing the stopping crite-
ria may allow an algorithm to proceed through 
low-anisotropy regions, but this increases the 
risk of generating spurious tracts because esti-
mates of primary eigenvector direction become 
less reliable for low-anisotropy tensors [125,126]. 
Furthermore, uncertainty in the definition of 
tumoral and peritumoral areas in different stud-
ies [18,26,48,58,62–65,77] can cause conflicting results, 
as stated in an earlier section. 

Future perspective
Although DTI has some limitations and techni-
cal challenges, it has been used very effectively in 
brain tumor diagnosis. It is the only novel tech-
nique that has the ability to visualize white mat-
ter tracts as well as their microstructural changes 
related to tumor tissue. The advances in DTI and 
MR tractography techniques will improve their 
effectiveness in both the diagnosis and the follow-
up of brain tumors. As Alexander et al. empha-
size in their article [11], a rigorous improvement in 
information collection has been expected, which is 
more specific to microstructural tissue pathology 
by the applications of non-monoexponential dif-
fusion decay measurements [127,128] and complex 
models of diffusion behavior [120,129,130]. As noted 
in the article, in which the pros and cons of these 
new imaging diffusion techniques are discussed 
superbly by Hagmann et al. [10], q‑ball imaging 
provides information regarding diffusion orien-
tation and anisotropy, and accurate depiction of 
fiber crossings within reasonable acquisition time 
but it is a hypothesis-based technique with limited 
accuracy and needs high hardware requirements. 
On the other hand, diffusion spectrum imaging 
is a principle-based, hypothesis-free technique 
and has already received theoretical and practical 
validation. It provides accurate depiction of fiber 
crossings with a specific angular resolution and 
maps of the entire field of diffusion, providing 6D 
data and increasing the possibility of quantitation 
and diffusion tensor information. However, hard-
ware requirements of this technique are high and 
the acquisition time is comparatively long, which 
is hardly tolerable for patients. Further to these 

techniques, newly developed diffusion imaging 
models [131–134] may also yield more detailed 
expression of the complex structural organization 
of the white matter of the brain by obtaining dif-
ferent types of structural information according 
to the technique used. When all these advance-
ments, most of which have taken place in the past 
10 years, are taken into account in the near future, 
further crucial improvements in DTI should be 
expected, leading to a clearer and more accurate 
definition of the complex neuronal architecture 
of white matter tracts and their changes due to 
tumoral infiltration, and to more effective guiding 
in glioma surgery. 

Conclusion
Diffusion-tensor imaging is a very promising 
tool to demonstrate the complex ultrastructural 
organization of the white matter of the brain due 
to characterization of the 3D diffusion properties 
of water. Current applications of DTI and MR 
tractography can accurately delineate the eloquent 
white matter tracts and their relation with tumoral 
tissue. The moderate sensitivity of DTI in the dif-
ferentiation of peritumoral vasogenic edema from 
tumor infiltration can be improved when com-
bined with other MRI techniques such as MR 
spectroscopy or perfusion imaging, or by using 
more advanced diffusion metrics or techniques. 
Application of DTI data to surgical functional 
navigation systems helps to determine the proper 
surgical strategy, provides maximal safe resec-
tion of tumor by minimizing the chance of dev-
astating damage to the clinically eloquent white 
matter tracts, decreases the duration of surgery 
and its complications and increases the survival 
of patients with high-grade glial tumors. DTI 
is also a very useful probe to monitor the post-
therapeutic changes occurring in white matter 
tracts. As a result, the advantages of this technique 
outweigh its disadvantages, which include limited 
resolution, problems in solving the crossing fibers, 
low reproducibility, and high sensitivity to motion 
and susceptibility artifacts, which are minimized 
through the development of more sophisticated 
methods and techniques. 
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Executive summary

�� Primary and metastatic brain tumors are serious health problems in both children and adults.
�� The relation between infiltrative gliomas and adjacent brain parenchyma is a crucial body of knowledge for proper treatment planning 

and predicts the clinical outcome. 

Basic physics & methodology
�� Diffusion-tensor imaging (DTI) is based on the definition of 3D volumes in which water protons move by using their diffusion properties 

and allows in vivo demonstration of the complex ultrastructural organization of the white matter.
�� Different DTI metrics such as mean diffusivity, p‑, q‑, L‑ and fractional anisotropy, and linear, planar and spherical anisotropy coefficients 

were defined for the quantitative assessment of the interaction between tumor and adjacent white matter tracts.

Clinical applications 
�� Diffusion-tensor imaging and its calculated metrics are quite effective in the assessment of tumoral and peritumoral tissues as well as the 

post-therapeutic changes.
�� The lower fractional anisotropy and apparent diffusion coefficient values are the more prominent in lymphomas than high-grade 

gliomas.
�� A combination of different DTI metrics is more useful in differential diagnosis of recurrence versus radiation necrosis and in assessment 

of edema versus invasion of fiber tracts than single-metric usage.
�� DTI-based functional neuro-navigation systems allow safe resection of tumors and preservation of eloquent white matter tracts, which 

efficiently decrease the postsurgical morbidity.

Limitations
�� Diffusion-tensor imaging has its own limitations originating from its theory or technique, which are partly eliminated by using high 

magnetic field strengths or by the implementation of new model or techniques to daily practice such as diffusion spectrum imaging, 
q‑ball imaging, high angular diffusion imaging or combined hindered and restricted diffusion.

Future perspective
�� In the near future, advancements in non-monoexponential diffusion decay measurements and sophisticated combined diffusion models 

will enable them to become suitable for routine imaging and provide a more precise demonstration of tumoral involvement of white 
matter tracts than the current DTI practice.
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