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Bone disease is a major problem for patients suffering from advanced pros-
tate cancer. It can result either from metastatic osseous lesions severely 
impairing patients’ quality of life and overall survival or from androgen 
deprivation therapy (ADT) and secondary osteopenia osteoporosis associ-
ated with an increased risk for skeletal-related events. Activation of osteo-
clasts is essential for both ADT-induced osteoporosis and metastatic bone 
disease. The individual risk of developing fractures during ADT can be eval-
uated by analysis of bone mineral density and fracture risk models. Gen-
eral measures can be recommended to all patients receiving ADT. Bisphos
phonates, RANKL inhibitors and selective estrogen receptor modulators 
are effective tools to reduce bone loss during ADT. Besides imaging, serum 
and urine markers are gaining increasing importance in diagnosis and fol-
low  up of bone metastases. Bisphosphonates are the current standard of 
bone-targeted treatment for patients with bone metastases. The RANKL 
inhibitor denosumab has recently been approved for the prevention of skel-
etal-related events in patients with metastatic bone disease from prostate 
cancer. Whether bisphosphonates and denosumab can prevent the devel-
opment of bone metastases is being investigated at present. Endothelin-A 
receptor antagonists and Src-inhibitors are under investigation for treatment 
and prevention of bone metastases yielding different effectiveness in initial 
preliminary clinical trials.
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Prostate cancer affects bone metabolism in different ways. Nonmetastatic pros-
tate cancer in untreated patients is associated with a lower bone mineral density 
(BMD) [1]. BMD can also be reduced in patients treated with androgen deprivation 
therapy (ADT), which can be achieved by pharmacological hormonal manipu-
lation or surgical castration. The reduction of BMD is even more pronounced 
in patients treated with ADT compared with postmenopausal women [2]. It is 
associated with a higher incidence of lumbar spine and hip fractures, and there-
fore, has a significant impact on morbidity and mortality [3–5]. Moreover, in men 
with hip fractures, the mortality after 1 year reaches up to 38% [6]. On the other 
hand, the risk of additional skeletal-related events (SREs), that is, pain, compres-
sion of the spinal cord or metabolic disturbances such as hypercalcemia (which 
is more common in other malignancies with lytic or mixed bone lesions) is also 
increased in the presence of metastatic bone disease [7,8]. Metastatic bone disease 
and ADT-induced bone loss can both lead to loss of mobility, decrease in quality 
of life [9,10] and a significant increase in medical costs [10]. This article reviews cur-
rent trends and future perspectives in pathophysiology, diagnosis and treatment 
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(including options already approved for therapy and 
options currently investigated in clinical trials) of both 
ADT-induced osteoporosis and bone metastases from 
prostate cancer.

Pathophysiology of ADT-induced osteoporosis
Besides chronic glucocorticoid therapy, alcoholism and 
smoking, hypogonadism is one of the most frequent 
causes of acquired osteoporosis in men [11]. ADT for 
prostate cancer has been shown to increase bone turn-
over [12] by increasing sensitivity of osteoclasts to para-
thyroid hormone (PTH) [13]. Androgens are also able 
to inhibit the release of RANKL, which is an impor-
tant mediator of osteoclast activation [14]. Furthermore, 
androgens influence the release of IL-6 that regulates 
bone resorption [15]. Thus, ADT may subsequently lead 
to increased activation of RANKL and osteoclasts. An 
important mechanism of osteoporosis during ADT 
is therapy-induced estrogen deficiency [16]. Estrogens 
directly influence bone metabolism by interacting 
with estrogen receptors on osteoblasts and osteoclasts 
[17]. They regulate the release of growth factors and 
cytokines by immune cells that attenuate osteoblast 
and osteoclast activation and are, therefore, important 
determinants of bone metabolism [18,19].

The normal range of bone loss is 0.5–1.0% per year 
and occurs from mid-life [20]. During the initial phase 
of ADT, patients sustain loss in BMD of the hip and 
spine of approximately 2–3% per year [21]. Interestingly, 
in patients who underwent bilateral orchiectomy, a loss 
of BMD of the hip of 9.6%/year has been reported. 
The decrease of BMD is evident for up to 10 years 
during ADT and most distinctive during the first year 
of treatment [22]. The loss of BMD goes along with an 
increased risk of clinical fractures in patients treated 
with gonadotropin releasing hormone (GnRH) ago-
nists. Moreover, duration of treatment directly corre-
lates with risk of developing fractures [3], and treatment 
with GnRH agonists was shown to independently pre-
dict fracture risk [23]. Whether newer drugs inhibiting 
hormonal pathways also influence bone metabolism, 
has to be evaluated in clinical trials. One of these 
drugs, which are currently investigated in clinical tri-
als in patients with castration-resistant prostate cancer 
(CRPC), is abiraterone. It is a specific inhibitor of the 
enzyme CYP17A1, which is essential for testosterone 
production in the testes, prostate and adrenal gland. 
As CYP17A1 is also involved in estrogen production, 
abiraterone leads to a decrease of testosterone and estro-
gen levels without causing adrenal insufficiency. First 
results from recent clinical trials available show promis-
ing effects of abiraterone in patients with CRPC [24]. 
So far, there is not enough clinical data to evaluate its 
effect on BMD and fracture risk.

Besides ADT-induced osteoporosis, bone metabolism 
and skeletal stability are also impaired by glucocorti-
coids. These drugs are widely used in patients with 
prostate cancer especially during chemotherapy with 
the objective to increase the efficacy of the chemothera-
peutic drugs. The chronic intake of glucocorticoids is a 
well-known risk factor for development of osteoporosis. 

Pathophysiology of metastatic bone disease
It has been estimated that more than 80% of men who 
die with prostate cancer develop bone metastases  [25]. 
The median time between the clinical diagnosis of meta-
static bone disease and death is 3–5 years [26]. Although 
metastatic bone disease from prostate cancer features 
mostly osteoblastic characteristics, bone formation and 
resorption are dysregulated both ways [27]. This osseous 
metastatic tissue is less stable than the normal bone and 
is associated with an increased risk of fracture [28].

The process of formation of bone metastases involves 
several steps. First, the metastatic tumor cell spread 
occurs from the primary tumor site. After survival in 
blood circulation, tumor cells bind to the endothelial 
cells of the bone marrow and establish a conducive 
microenvironment via crosstalk with osteoblasts and 
osteoclasts leading finally to a proliferation of tumor 
cells. On the one hand, tumor cells secrete cytokines 
(e.g., PTH-related peptide [PTHrP] and TGF-b) that 
stimulate osteoclasts and lead to the release of growth 
factors from the osseous tissue. On the other hand, tumor 
cells activate osteoblasts by releasing osteoblastic factors 
such as VEGF, PDGF and endothelin-1 (ET-1) [29–31]. 
Physical factors in the bone microenvironment, such 
as hypoxia and acidic pH, contribute to the release of 
osteolytic and osteoblastic factors from tumor cells [32].

Paget’s theory suggests that both host response and 
tumor activity are relevant for the development of bone 
metastases [33]. The growth of metastases in the bone is 
assumed to be promoted by growth factors secreted by 
the host and tumor cells which proliferate in the bone 
and bone marrow. Prostate cancer cells tend to infiltrate 
most frequently the trabecular bone of the axial skeleton 
(e.g., lumbar spine and pelvis) as well as the proximal 
ends of the femur. The cause for this phenomenon may 
be due to interaction between the Batson plexus, which 
forms a network of veins and receives blood from the 
prostate, and the marrow spaces of the vertebral column 
[34]. Evidence supporting the theory of hematogenic 
spread is based on the detection of circulating tumor 
cells before clinical detection of bone metastases [35,36]. 
Once tumor cells enter the bone marrow, they bind to 
the endothelium and finally migrate into the bone micro-
environment [37–39]. Disseminated tumor cells can be 
detected in the bone marrow of patients without clinical 
evidence of metastases. The presence of disseminated 
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tumor cells has been demonstrated to 
be a prognostic factor [40,41]. Tumor 
cells can interact with bone marrow 
microenvironment and lead to an 
activation of local bone resorption by 
osteoclasts [42]. Osteoclastogenesis 
is regulated by the RANKL [43]. 
RANKL is secreted by osteoblast 
precursor cells and stromal cells [27]. 
This secretion is promoted by several 
factors produced by tumor cells such 
as PTHrP [27]. RANKL binds to the 
RANK receptor on preosteoclasts 
and stimulates osteoclastogenesis 
with subsequent bone resorption [44]. 
Bone resorption drives the release 
of growth factors including IGFs, 
FGFs, TGF-b, PDGF and bone mor-
phogenetic proteins (BMPs). These 
growth factors promote, in turn, the 
proliferation of tumor cells and the 
release of factors stimulating osteo-
clasts (e.g., PTHrP and IL-6) and 
osteoblasts (e.g., VEGF and PDGF) 
[27,32,45]. This whole process displays 
a vicious cycle of bone destruction 
in metastatic bone disease (Figure 1). 

Diagnosis of ADT-induced 
bone loss
As iatrogenic hypogonadism induces 
decreased BMD, patients who 
undergo ADT have to be evaluated 
concerning their risk of developing 
fractures. It is essential to assess other risk factors of 
osteoporosis. These include age of over 65 years, previ-
ous fractures, family history of osteoporosis, low BMD, 
corticosteroid use, alcohol consumption, previous frac-
tures and ADT longer than 6 months [46]. A further 
important step is to determine the baseline BMD before 
therapy with repeated measurements during therapy. 
Since bone loss is most significant in the first year of 
therapy [22], measurement of BMD can be repeated 
within 12 months. There are several techniques to deter-
mine BMD. The standard method is dual-energy x-ray 
absorptiometry (DXA). This method is based on two 
x-ray beams with different energy levels that measure 
a 2D area of BMD  [47]. The diagnosis of osteoporo-
sis is confirmed if BMD is less than or equal to 2.5 
standard deviations below the value of a young adult 
reference population. This is expressed as the so-called 
‘T-score’ [48]. The indication to perform DXA depends 
on the type of fracture that needs to be predicted. For 
instance, the risk of developing hip fractures is most 

accurately predictable by the measurement of BMD of 
the femoral neck. Therefore, guidelines propose DXA of 
the femoral neck and lumbar spine as most osteoporotic 
fractures occur in the hip or spine region. 

An alternative technique, which is used increasingly 
for analyzing BMD, is quantitative computed tomog-
raphy (QCT). In contrast to DXA, QCT is not size 
dependent and allows separate measurement of the 
cortical and trabecular BMD [49]. QCT of the spine 
and femoral neck has been shown to be at least as accu-
rate as DXA in predicting the risk of fracture develop-
ment  [50–52]. Limitations of QCT include a relatively 
high level of ionizing irradiation compared with DXA 
[53] and scarce data compared with DXA, especially 
for its use in children and men. Peripheral quantita-
tive computed tomography as an alternative to QCT 
(pQCT) shows negligible doses of radiation exposure 
and has shown improved accuracy in predicting frac-
tures [54]. However, to date, DXA remains the most 
widespread technique to measure BMD. 
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Figure 1. Pathophysiology of metastatic bone disease. Tumor cells secrete factors such 
as PTHrP, M-CSF and IL-6 that promote the activation of osteoclasts. Tumor cells induce 
the release of RANKL from osteoblasts. RANKL binds on RANK and activates osteoclasts. 
Osteoprotegerin produced by osteoblasts binds and inactivates RANKL. Bone resorption by 
osteoclasts releases factors such as IGF, FGF, PDGF and bone morphogenic proteins. These 
factors stimulate the proliferation of tumor cells. 
M-CSF: Macrophage colony stimulating factor; PTHrP: Parathyroid-hormone-related peptide; 
RANKL: RANK ligand.
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The fracture risk model developed by Kanis et al. is a 
tool to predict the risk of fracture in men and women, as 
the measurement of BMD alone might not be sufficient 
enough to estimate fracture risk [55]. The guidelines of 
the National Osteoporosis Foundation (NOF) recom-
mend initiating a treatment at the age of at least 50 years 
in men with low BMD (T-score -1 to -2.5, osteopenia) 
at the femoral neck, total hip, or spine and with 10‑year 
risk probability of at least 3% of hip fracture or a 10-year 
major osteoporosis-related fracture probability of at 
least 20% based on the US-adapted WHO absolute 
fracture risk model [56,57]. However, the fracture risk 
assessment model has not been properly validated in 
patients treated with ADT. Furthermore, both fracture 
risk models and BMD measurement can be confounded 
by sclerotic metastases. 

Diagnosis of bone metastases
In patients newly diagnosed with prostate cancer, serum 
prostate specific antigen (PSA) can help to determine 
the necessity for further imaging. A pretreatment PSA 
above 100 ng/ml has been demonstrated to be asso-
ciated with a positive predictive value of 100% for 
the presence of bone metastases [58]. On the contrary, 
asymptomatic patients with a well or moderate differ-
entiated tumor and a PSA below 20 ng/ml have a very 
low probability of bone metastasis and, therefore, do 
not require routine radiological work-up [59]. The 2010 
EAU guidelines recommend radiological investigations 
for bone metastases only in patients with symptoms 
suspicious of bone metastases, poorly differentiated 
tumors and in those with well or moderately differ-
entiated tumors with a PSA of at least 20 ng/ml [60]. 
For asymptomatic patients who underwent primary 
therapy with intent to cure or patients undergoing 
ADT, the absolute PSA value and PSA velocity have 
to be considered for the decision making of perform-
ing radiological investigations [61–63]. The accuracy 
of predicting bone metastases can be improved up to 
98%, when PSA and bone-specific alkaline phosphatase 
(BAP) are determined in the serum [64]. Patients who 
are at risk for bone disease are recommended to undergo 
radiologic investigation. 

Imaging of bone metastases
Radiological imaging of bone metastases is essential for 
correct diagnosis and evaluation of treatment response. 
For evaluation of treatment response to sytemic ther-
apy, it has to be considered, that in contrast to other 
malignancies, the radiological evaluation criteria in solid 
tumors (RECIST) should not be used in most osseous 
lesions of prostate cancer patients [65] since only mixed 
osteolytic osteoblastic or pure osteolytic lesions can be 
measured reliably with this method.

When selecting the appropriate imaging technique to 
evaluate bone metastases, it has to be considered that 
different techniques visualize different tumor character-
istics. X-ray, CT and MRI are able to detect structural 
changes of bone and bone marrow, whereas functional 
techniques like skeletal scintigraphy, PET and single 
photon emission computed tomography (SPECT) 
measure metabolism of bone and tumor cells. Newer 
hybrid techniques like PET/CT are capable to detect 
changes both in bone structure and metabolism. In the 
following section, imaging techniques are reviewed with 
regard to their ability to detect metastases and evaluate 
treatment response. 

■■ Conventional x-ray
X-ray is often used for clarifying nonspecific or atypi-
cal findings in skeletal scintigraphy. It is able to detect 
structural changes of the bone like osteolysis or osteo-
sclerosis. In prostate cancer, sclerotic lesions are pre-
dominantly found. X-ray can only detect lesions with 
a loss of bone mineral content exceeding 50% [66]. It 
could be shown, that it has a much lower sensitivity in 
detecting bone metastases than skeletal scintigraphy [67]. 
Its low spatial resolution and superposition of structures 
result in a high rate of equivocal evaluations. Response 
to treatment does not become apparent 3–6 months 
after initiation of therapy [68].

■■ CT
In contrast to x-ray, CT as a whole body imaging tech-
nique shows a higher resolution of anatomical details. 
It is able to detect metastatic spread earlier than x-ray in 
the bone marrow before bone destruction becomes clini-
cally apparent [69]. Its sensitivity ranges from 71–100% 
[67]. Compared to x-ray, CT is also superior for the 
assessment of treatment response [70]. Besides MRI, CT 
is the only technique that is recommended in the revised 
RECIST guidelines for the measurement of osteolytic 
or mixed osteolytic-osteoblastic lesions [65]. This dem-
onstrates its superiority compared with functional 
imaging techniques in evaluating treatment response. 
One of the most important applications of CT is the 
evaluation of skeletal stability and fracture risk turning 
it into an important diagnostic tool in patients with 
bone metastases. 

■■ MRI
Magnetic resonance imaging is superior to CT in 
detecting bone marrow lesions and extraosseous 
growth of bone metastases as it has a higher soft tis-
sue contrast [71]. Compared to skeletal scintigraphy, 
MRI has an improved sensitivity and specificity. This 
provides higher detection rates [72] and improved visu-
alization of bone metastases in patients with negative 
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bone scan findings [73]. This discrepancy arises from 
the fact that even in the case of extensive bone marrow 
involvement the amount of destroyed bone matrix is 
little [74]. MRI has been shown to be appropriate in 
order to assess treatment response due to excellent soft 
tissue contrast. It facilitates the evaluation of changes 
in tumor size and differentiation between viable tumor 
and necrosis. Tombal et al. demonstrated that MRI 
is able to quantitatively measure treatment response 
on the basis of the RECIST criteria in single bone 
lesions [75].

Diffusion weighted imaging (DWI) is a novel tech-
nique allowing for better quantitative assessment of 
tumor growth. Based on its principle of visualiza-
tion of changes in the motion of water molecules it 
is capable of detecting tumors and post-treatment tis-
sue changes [76]. Quantitative DWI has been demon
strated to predict the tumor response to chemotherapy 
and visualize treatment-related intratumoral tissue 
changes before changes in tumor growth become 
apparent [77–80]. While these results indicate that DWI 
can be a valuable additional tool for the evaluation of 
treatment response, the advantages in the diagnosis of 
bone metastases compared with skeletal scintigraphy 
is discussed controversially in current literature [81,82].

■■ Bone scintigraphy
Tcm99-MDP-scintigraphy is still the gold standard 
technique for detecting bone metastases in patients 
with prostate cancer. The extent of disease can be eval-
uated by a semi-quantitative grading system, which 
has been shown to correlate with overall survival in 
patients with prostate cancer [83]. Bone scintigraphy 
detects bone metastases up to 18 months earlier than 
plain x-ray. One of its limitations is its low sensitivity 
and specificity compared with MRI for the detection 
of bone metastases at an earlier stage of the disease. 
Compared to other techniques, it provides a higher 
number of equivocal reports. Bone scintigraphy is 
also limited by providing less quantitative informa-
tion, which is especially needed in evaluating treat-
ment response. One attempt to quantitatively analyze 
bone metastases but has not been widely adopted so 
far is the bone scan index, which was described by 
Imbriaco et al. [84]. Detectable response on bone scan 
is often delayed up to 6–8 months [85]. An important 
limitation for the evaluation of treatment response 
is the flare-up phenomenon that can be detected up 
to 6 months after induction of systemic therapy and 
hampers the differentiation between response and 
disease progression [86]. Owing to its high availabil-
ity and profound clinical data, bone scintigraphy is 
nowadays still the method of choice for the detection 
bone metastases.

■■ PET
PET is another technique to visualize tumor cell 
metabolism. Fluorodeoxyglucose (FDG) is the tracer 
most commonly used for the detection of tumor cell 
metabolism. As its uptake is elevated in all cells with 
high glucose metabolism (i.e., muscle tissue, inflamma-
tion, blood system) unspecific FDG uptake can limit 
the detection of bone metastases [87]. Compared to bone 
scintigraphy, FDG PET alone shows decreased sensi-
tivity and specificity for the detection of sclerotic bone 
metastases [88]. However, FDG PET could be identi-
fied as a promising outcome parameter for patients with 
CRPC [89]. Alternatively, F-fluoride is a more specific 
bone PET tracer representing osteoblastic activity with 
a high sensitivity for the detection of bone metastases 
owing to its high imaging contrast between normal and 
abnormal bone tissue [90–92].

■■ Hybrid techniques
The inability of PET to visualize structural changes and 
its low spatial resolution led to the development of novel 
hybrid techniques such as PET/CT and PET/MRI. Both 
techniques combine functional and structural data and 
show better results than PET and CT alone. Additionally, 
they are superior to bone scintigraphy in the detection 
of bone metastases [91,93,94]. The positive predictive value 
for the detection of bone lesions with both techniques is 
approximately 98% [94] and several studies have demon-
strated that information acquired from both techniques 
are complementary. Other fusion techniques such as 
SPECT/CT have also been used to detect bone metasta-
ses with a high sensitivity and specificity, and with regard 
to their ability to reduce the rate of equivocal reports 
examined by bone scintigraphy [95]. However, the main 
limitation of hybrid techniques is their costs.

■■ Bone turnover markers
To reduce exposition to ionizing radiation and costs, 
serum and urine markers for diagnosis and follow-up of 
patients with bone metastases have been studied within 
the last decade. Serum markers include BAP, cross-linked 
C-terminal (Ctx) and cross-linked N-terminal (Ntx) telo-
peptides of type I collagen (which can be also used as a 
marker in the urine), cross-linked carboxyterminal telo-
peptide of type I collagen, and N-terminal propeptides 
of type I procollagen. These markers have been shown 
to be elevated in patients with bone metastases [96–99]. 
Furthermore, a correlation between serum markers and 
extent of disease has been confirmed [100]. There is also 
evidence that suggests a correlation between the level 
of bone turnover markers and the risk for SREs, dis-
ease progression and death [101–103]. Besides their diag-
nostic value, bone turnover markers may also be used 
for marker-directed therapy. Lipton et al. demonstrated 
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that normalization of bone turnover markers is associ-
ated with a lower risk of SREs and improved overall 
survival  [104]. Marker levels correlate with response to 
zoledronic acid [104–106], denosumab  [107] and other 
bone-targeted drugs [108] and are, therefore, used to com-
pare drugs in their ability to reduce bone turnover in 
clinical studies [109]. We evaluated serum samples from 
80 patients with histologically proven prostate cancer, 
41 of those with and 39 without bone metastases, and 
51 patients with benign prostate hyperplasia for ICTP 
and PINP [110]. Therapeutic response to bisphosphonate 
therapy was monitored in seven out of the 41 metastasized 
patients, 5 and 9 weeks after initiation of therapy. The 
results demonstrated that both markers for bone turnover 
were increased in patients with skeletal metastases com-
pared with patients without metastases and to the benign 
prostate hyperplasia patients. The differences were statis-
tically significant. In patients on bisphosphonate therapy 
the serum levels decreased significantly. 

Bone turnover markers are promising tools to diag-
nose bone metastasis, support indication for therapy and 
evaluate treatment response. These characteristics led to 
the initiation of the BISMARK trial [201] that assesses 
the potential of urinary Ntx levels to reduce the dose-
dependent toxicity of zoledronic acid without impaired 
oncological efficacy. The trial is already closed and the 
results are awaited in the near future.

Whenever discussing the role of serum markers for the 
diagnosis of bone metastases, it has to be borne in mind 
that ADT-related bone loss also causes an increase in bone 
turnover markers both in the serum and urine. ADT 
might, therefore, interfere with changes of bone metabo-
lism due to metastatic disease [111]. Notwithstanding, 
there is evidence that demonstrates superiority of bone 
tumor markers to bone scintigraphy in detecting bone 
metastases regardless of the possible confounding role of 
ADT [100]. However, one limitation for the routine use 
of serum bone turnover markers is the possible increase 
in patients with decreased renal function [112] and the 
variability of urine markers due to analytic and biologic 
factors [113]. The large inter-individual variation in bone 
marker levels also reduces their routine use in clinical 
practice. An urgent issue that has to be addressed in 
future trials is to determine the most useful marker for 
routine clinical use as the variability of markers used in 
clinical studies make it difficult to compare results. More 
clinical studies should certainly be conducted to evaluate 
their significance in metastatic prostate cancer. 

Strategies for the treatment of ADT-induced 
bone loss
When osteoporosis with an increased fracture risk is diag-
nosed in patients who are treated or planned for treat-
ment with GnRH agonists, it has to be decided whether 

supportive therapy is required. As mentioned previously, 
this decision can be made on the basis of models to cal-
culate fracture risk, BMD or the level of bone turnover 
markers. There are general measures to reduce fracture 
risk, which can be recommended to all patients receiving 
ADT. These recommendations include the cessation of 
smoking [114] and alcohol consumption [115], and initiation 
of resistance exercise training [116,117]. Another measure, 
which can be recommended to all patients undergoing 
hormone ablation therapy, is a dietary intake of calcium 
and vitamin D that has been shown to reduce bone loss 
and to decrease fracture risk [118]. Various medicamen-
tous treatment options for ADT-induced osteoporosis 
are summarized in Table 1 (for levels and corresponding 
types of evidence see Table 2). 

Bisphosphonates
The role of bisphosphonates as a treatment modality to 
prevent bone loss in patients with ADT-induced osteo-
porosis has been investigated in a couple of studies. As 
pyrophosphate analogs, bisphosphonates are internal-
ized by osteoclasts. Nitrogenous bisphosphonates (e.g., 
zoledronic acid) inhibit the mevalonate pathway, which 
finally leads to the induction of apoptosis in osteoclasts 
[119]. Non-nitrogenous bisphosphonates (e.g., clodronate) 
are metabolized to toxic ATP-analogs. Bisphosphonates 
that are approved by the US FDA for the treatment of 
noncancer-associated osteoporosis include alendronate, 
risedronate, ibandronate and zoledronic acid.

In patients with decreased testosterone levels, alen-
dronate has been shown to increase BMD [120]. In 
osteopenic patients receiving antihormonal therapy 
for prostate cancer, alendronate achieved a significant 
increase in BMD of the lumbar spine and femoral 
neck [121]. Alendronate as a oral bisphosphonate is asso-
ciated with major gastrointestinal side effects [122], which 
lead to a decreased clinical use of this drug. Intravenous 
bisphosphonates have the advantage that they have to 
be administered only every 1–12 months. Moreover, 
in several studies it has been proven that they prevent 
ADT-related bone loss. In two randomized clinical 
trials, pamidronate administered during ADT led to 
a significant reduction or elimination of BMD loss in 
patients with metastatic or nonmetastatic prostate can-
cer [123,124]. Zoledronic acid (zoledronate), a more potent 
intravenous bisphosphonate, has even been shown to 
increase BMD in patients with nonmetastatic prostate 
cancer undergoing ADT [22,125]. However, none of the 
bisphosphonates have ever been proven to reduce the 
rate of SREs in patients with iatrogenic hypogonadism 
in a randomized trial. The positive trials performed in 
patients with ADT-induced bone loss only showed a sig-
nificant improvement of BMD as a surrogate parameter 
of fracture risk.
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Despite improved gastrointestinal tolerance com-
pared with oral bisphosphonates, zoledronic acid and 
pamidronate have some major side effects. These 
include decreased renal function (which may occur 
during therapy with i.v. bisphosphonates, especially 
when administered too rapidly or in a very large dose) 
and osteonecrosis of the jaw (ONJ), which represents 
a severe side effect. However, its incidence is approxi-
mately 5% but is controversially discussed [126]. It 
occurs mainly during treatment with i.v. zoledronic 
acid in the context of malignancy. ONJ is difficult to 
treat and can be cured in only a third of cases [127]. 
Risk factors are chronic or iatrogenic immune suppres-
sion, soft-tissue or bone wounds, i.v. administration of 
bisphosphonates and duration of treatment. As many 
side effects of bisphosphonates are dose dependent, it 
is currently investigated in the BISMARK trial  [201] 
whether the dose of zoledronate can be adapted to 
the levels of bone resorption markers and, thus, 
obtain lower rates of side effects without impaired 
oncological efficacy. 

Denosumab
The inhibition of RANKL as a main inductor of osteo-
clast activity in osteoporosis and cancer-related bone 
disease has been intensively investigated during the last 
few years. Various preclinical studies have provided 
evidence for the major role of RANKL in the pro-
cess of bone loss [128,129]. Denosumab is a fully human 
monoclonal antibody targeting RANKL. It has shown 
to be efficacious for the treatment of postmenopausal 
osteoporosis in women. In a randomized multicenter 
Phase  III trial (n = 7868), denosumab significantly 
reduced the incidence of fractures in postmenopausal 
women [130]. As a result of this study, the FDA and 
the EMA approved denosumab for therapy of post-
menopausal osteoporosis in 2010 for women with an 
increased risk for fractures. Furthermore, denosumab 
is an effective tool for the treatment of ADT-induced 
osteoporosis. In a double-blind, multicenter Phase III 
study, denosumab was evaluated for its effects on inci-
dence of fractures (primary end point) and the sur-
rogate marker BMD in men with nonmetastatic pros-
tate cancer receiving antihormonal therapy (n = 1468). 
Denosumab at a dose of 60 mg every 6 months (sub-
cutaneously) significantly increased BMD of lumbar 
spine, total hip, femoral neck and radius and was the 
first drug that led to a significantly decreased incidence 
of new vertebral fractures (3‑year incidence of new ver-
tebral fractures 1.5% in the denosumab arm vs 3.9% 
in the placebo arm; relative risk 0.38; p = 0.006) [131]. 
Therefore, the EMA approved denosumab for the 
therapy of ADT-induced osteoporosis in 2010. In 
this trial denosumab was well tolerated with rates of Ta
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adverse events similar the placebo group. Nevertheless, 
denosumab can also cause ONJ and hypocalce-
mia [132]. Furthermore, an increased rate of infec-
tions was observed in several studies, which empha-
sizes the important role of the RANKL pathway for 
immunologic processes [133]. 

Selective estrogen receptor modulators
As estrogens show a protective effect on bone struc-
ture, selective estrogen modulators deliver a popular 
tool for the treatment of osteoporosis. In men with 
nonmetastatic prostate cancer treated with GnRH ago-
nists, raloxifene, which acts as an agonist on estrogen 
receptors in bone tissue and an antagonist in breast 
and endometrium tissue, could achieve an increase 
of BMD in the hip by 1.1 ± 0.4% (Phase II study, 
n = 48) [134–136]. In a recently published Phase III trial 
with 1284 patients receiving ADT, application of tore-
mifene, another selective estrogen receptor modula-
tor, during a 2-year period resulted in a significantly 
decreased incidence of new vertebral fractures versus 
placebo (2‑year incidence of new vertebral fractures: 
2.5% in the toremifene and 4.9% in the placebo group, 
relative risk reduction of 50%, p = 0.05) [137]. A signifi-
cant reduction of bone turnover markers and improve-
ment of BMD as secondary end points could also be 
confirmed in this study. Thus, toremifene is the second 
drug after denosumab that could prove a reduction of 
the fracture rate in patients receiving antihormonal 
therapy for prostate cancer. An additive positive effect 
of toremifene is the improvement of lipid profiles in 
men receiving ADT  [137,138]. Cholesterol and triglyc-
erides are increased in patients receiving ADT leading 
to an increased risk of cardiovascular disease. However, 
venous thromboembolic events, a well-known problem 
of therapy with estrogens, occurred more frequently in 
the toremifene group (2.6 vs 1.1%). It is expected that 
a new drug application for toremifene in the treatment 
of ADT-induced osteoporosis will be submitted to the 
FDA soon. 

Bone-relevant strategies for the treatment of 
osseous metastases of prostate cancer
Beside the drugs used for the inhibition of tumor growth 
such as GnRH-agonists, antiandrogens and chemother-
apeutics, various drugs influencing bone metabolism are 
available for the treatment of bone metastases in prostate 
cancer. These drugs will be subsequently reviewed and 
are summarized in Table 3 (for levels and corresponding 
types of evidence see Table 2).

■■ Bisphosphonates
Bisphosphonates are the standard bone-targeting drug 
for the treatment of symptomatic bone metastases in 
cancer patients [139]. 

Zoledronic acid is the only bisphosphonate approved 
by the FDA for the treatment of patients with CRPC 
and metastatic bone disease. In these patients, approval 
was obtained after zoledronic acid had demonstrated in 
a large Phase III (n = 643) trial its ability to significantly 
reduce the rate of SREs (i.e., compression of the spinal 
cord and fractures) [140]. 

In this study, patients with CRPC who received 
ADT and suffered from bone metastases were either 
treated with zoledronic acid 4 or 8 mg or placebo every 
3 months. The study protocol was modified during the 
trial since nephrotoxicity was observed in some patients 
and, therefore, the 8 mg dose had to be reduced to 4 mg. 
The zoledronic acid group arm had a significantly lower 
rate of SREs (33.2 vs 44.2%, p = 0.021) and a prolonged 
time to first SRE and showed significantly lower levels 
of bone resorption markers (70–80%) indicating inhibi-
tion of active osteolysis by the drug. As many patients 
were likely to have entered the trial with general bone loss 
caused by increased age or previous antihormonal ther-
apy, it is unknown whether the effects of zoledronic acid 
in this study are the result of an antiosteoporotic effect 
on the general skeleton or on bone metastases. Overall 
survival (OS) was not significantly different between the 
zoledronic acid and placebo arms. Nevertheless, a trend 
towards improved survival was observed [140].

Table 2. Levels and corresponding types of evidence. **Not cited in Text

Level Type of evidence

1a Evidence obtained from meta-analysis of randomized trials

1b Evidence obtained from at least one randomized trial

2a Evidence obtained from one well-designed controlled study without randomization

2b Evidence obtained from at least one other type of well-designed quasi-experimental study

3 Evidence obtained from well-designed nonexperimental studies, such as comparative studies, 
correlation studies and case reports

4 Evidence obtained from expert committee reports or opinions or clinical experience of 
respected authorities

Adapted from [214].
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Another bisphosphonate, pamidronate, with an 
in vitro potency (evaluated in experimental animals and, 
therefore, cannot be considered as equal to its possible 
clinical efficacy) of approximately 1:100 compared with 
zoledronic acid, was evaluated in a combined analysis of 
two Phase III trials (n = 378) for its ability to reduce bone 
pain and SREs in patients with metastatic prostate cancer 
and disease progression after first-line ADT [141]. Despite 
a 50% reduction of bone resorption markers in the pami-
dronate treatment arm, the drug failed to demonstrate 
a significant benefit compared with placebo with regard 
to the reduction of SREs and bone pain. It was assumed 
that lack of efficacy was due to an inadequate osteoclast 
inhibition by pamidronate, as compared with zoledronate 
with reduced urinary NTx levels by 70–80%, pamidro-
nate was able to reduce NTx by only 50%. However, 
it should be noted that bone turnover markers are only 
surrogate parameters and that their levels do not equate 
with incidence of fractures and other SREs.

In a Phase III trial with 209 patients, intravenous 
clodronate, another bisphosphonate, failed to improve 
symptomatic disease PFS and OS, as well as overall 
quality of life of patients with CRPC [142]. In contrast 
to CRPC, there is only one randomized controlled 
trial, which investigated the role of bisphosphonates 
in patients with hormone-sensitive metastatic prostate 
cancer. In this Phase III study (n = 311), patients with 
hormone-sensitive prostate cancer undergoing ADT 
therapy either received oral clodronate or placebo. After 
59 months, the clodronate group showed a nonsignifi-
cant improvement of symptomatic bone PFS (primary 
end point) and OS (secondary end point) [143]. Subgroup 
analysis suggested that the drug might be more effective 
the sooner after diagnosis of bone metastases treatment 
is started. In 2009, the 8‑year OS data were published 
after 258 of the 311 enrolled patients had died [144]. The 
clodronate group demonstrated a significantly improved 
overall survival compared with placebo (22 vs 14%, 
p = 0.032). As zoledronic acid has been shown to be 
superior in the treatment of metastatic CRPC compared 
with clodronate, its efficacy in the treatment of hormone 
responsive PC is currently evaluated in a large Phase III 
trial with 680 patients enrolled [202]. 

Another important issue, which is evaluated in sev-
eral clinical trials, is whether bisphosphonates are able 
to prevent the development of metastatic bone disease. 
Currently, the results of two randomized Phase III tri-
als are available. In the MRC PR04 trial, patients with 
locally advanced stage T2–T4 prostate cancer (n = 508) 
without detectable bone metastases, who received exter-
nal beam radiation therapy, a combination of hormonal 
and radiation therapy or primary hormonal therapy 
were either treated with placebo or oral clodronate [145]. 
The primary end point was the time to development of 

symptomatic bone metastases or prostate cancer death. 
With a median of almost 10 years of follow-up, clodro-
nate demonstrated no benefit compared with placebo 
neither in the primary end point nor in the OS [144]. 
The Zometa 704 trial evaluated whether intravenous 
zoledronic acid is able to prolong the time to first bone 
metastasis in patients with nonmetastatic CRPC. For 
this study, a bone scan was performed every 4 months 
in patients, who either received zoledronate 4 mg every 
4 weeks or placebo. Owing to a low event rate, the study 
was terminated 3 years after its onset in September 2002. 
At this point of time no significant difference in the time 
to first bone metastasis was observed. Since the role of 
zoledronic acid for the prevention of bone metastases is 
still unclear after Zometa 704 trial, the ongoing Zometa 
European Study (ZEUS) has been initiated. In this trial, 
1443 patients without bone metastases and distinct risk 
factors, such as pN1 or PSA ≥20 ng/ml were random-
ized to standard prostate cancer therapy with or without 
zoledronic acid 4 mg i.v. every 3 months. Primary end 
point is the proportion of patients, who develop at least 
one bone metastasis after 48 months of therapy [203]. The 
ongoing Stampede Trial compares safety, PFS and OS of 
androgen suppression alone versus androgen suppression 
in varying combinations with zoledronate, docetaxel, 
prednisolone and celecoxib in patients with locally 
advanced or metastatic prostate cancer [204]. The final 
results of these studies are eagerly awaited. In contrast to 
other malignancies, such as myeloma and breast cancer, 
the application of bisphosphonates does not result in a 
significant reduction of pain in patients with prostate 
cancer according to a Cochrane review [146]. 

■■ Denosumab
As osteoclastogenesis, an important process for the 
development of bone metastases, is driven by secretion 
of RANKL and other factors, RANKL inhibitors are 
of major interest in the treatment of metastatic bone 
disease. In preclinical studies, inhibition of RANKL by 
osteoprotegerin resulted in reduced growth of existing 
tumor lesions and prevented the development of new 
metastases [147–149]. In patients with metastatic bone 
disease (from PC, breast cancer or other neoplasms) 
and increased bone turnover despite i.v. bisphospho-
nate therapy, application of denosumab demonstrated a 
better ability to normalize bone turnover markers than 
continuation of bisphophonates did [150]. However, the 
rate of SREs, which formed the main clinical end point 
in this Phase III trial, was similar in both treatment 
arms. A significant reduction of bone turnover markers 
by the application of denosumab could also be observed 
in patients with metastatic breast cancer [151]. Ongoing 
Phase III studies are further evaluating, if denosumab is 
able to reduce the rate of SREs in patients with metastatic 
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prostate cancer. At the ASCO meeting 2010, the interim 
results of a Phase III study comparing denosumab to 
standard-of-care zoledronic acid for the prevention of 
SREs were presented. In patients with metastatic CRPC, 
denosumab significantly delayed the time to first on-
study SRE compared with zoledronate (median time to 
first on study SRE 17.1 vs 20.7 months for zoledronate 
and denosumab; risk reduction 18%; p = 0.008). In this 
study, denosumab was also superior in reducing bone 
turnover markers compared with zoledronate. OS, time 
to cancer progression and adverse event rate were similar 
in the bisphosphonate and the denosumab arm [152]. The 
final results of this study are eagerly awaited. Similar 
effects were observed in patients with breast cancer. In 
a Phase III study, including 2000 patients with meta-
static breast cancer, subcutaneously applied denosumab 
significantly delayed time to first SRE versus zoledronic 
acid [153]. For zoledronate, median time to first SRE was 
26.4 months. Median time to first SRE for denosumab 
was not reached after 34 months. Remarkably, ONJ 
showed the same incidence (1.4 vs 2%, p = 0.39). Before, 
ONJ was assumed to be a class-specific side effect of 
nitrogen-containing bisphosphonates by many experts. 
As a result of these studies, denosumab has been cur-
rently approved by the FDA for the prevention of SREs 
in patients with solid tumors (including breast and pros-
tate cancer). Other ongoing Phase III studies are evalu-
ating the ability of denosumab to prevent bone metas-
tases in patients with CRPC without bone metastases 
[205]. Until today, there is no data available, if denosumab 
has an effect on cancer-specific and overall survival in 
patients with metastatic prostate cancer.

Src–tyrosine kinase inhibition
Src, a nonreceptor tyrosine kinase, has a key function 
in the regulation of bone metabolism. High levels of 
Src are related with increased osteoclast activity [154]. 
Src also has a negative effect on osteoblast formation, 
and inhibition in mice leads to enhanced activity of 
osteoblasts [155]. Src has a tumor-promoting effect and 
increased Src activity can be observed in prostate can-
cer, particularly CRPC [156,157]. Inhibition in preclinical 
trials results in decreased in vitro and in vivo tumor 
growth [158]. In bone metastases, Src shows increased 
activity [157,159]. Inhibition of Src by antibodies, such as 
dasatinib or saracatinib, significantly reduced growth of 
bone metastases in animal prostate cancer models [160]. 
Owing to its positive effects on tumor growth and bone 
metabolism, Src kinase inhibitors are currently being 
investigated in clinical studies for their suitability for 
the treatment of prostate cancer. In a Phase II study, the 
application of dasatinib to patients with CRPC (n = 47) 
led to a reduction of progression (defined as tumor pro-
gression by RECIST or by at least one definite new 

lesion on bone scan) in 20 of 47 patients. Bone turn-
over markers were decreased in the majority of patients 
and even normalized in 53% of the patients, who had 
elevated urinary Ntx at the baseline of the study [108]. 
However, this study with a relatively low number of 
patients included was not placebo controlled, and other 
important end points, such as PSA decline ≥ 50% were 
only observed in a relatively low proportion of patients 
(three out of 47). A possible additive effect of dasat-
inib and docetaxel in patients with CRPC is tested in 
a randomized Phase III trial [206]. There is still lack of 
evidence whether decreased bone resorption achieved by 
dasatinib and a possible antiproliferative effect influence 
the clinical course of patients with prostate cancer. More 
clinical studies are needed to evaluate its potential for 
the treatment of metastatic bone disease. Src-inhibition 
still has to be considered as experimental therapy with 
low level of evidence.

Endothelin-A receptor antagonists
Other proteins, which are currently under investigation 
as specific targets for the treatment of bone metastases, 
are ET-1 and its receptors ET-A and ET-B. ET-1 is pro-
duced by a wide array of cells, including endothelial, 
mammary, endometrial and prostatic epithelial cells. 
ET-1 binds two receptors with different functions, the 
ET-A and ET-B receptor. Activation of the ET-A recep-
tor promotes proliferation and survival, both in tumor 
cells and osteoblasts, and thereby promotes formation 
of osteoblastic bone metastases [161–163]. Activation of 
the ET-B receptor leads to cell death and apoptosis. 
After showing promising results in preclinical studies, 
atrasentan was the first ET-A receptor antagonist to be 
evaluated for effectiveness in CRPC. In a randomized, 
placebo-controlled Phase II study (n = 288), admin-
istration of atrasentan to patients with asymptomatic 
metastatic CRPC led to significantly prolonged time to 
progression in evaluable patients. Median time to PSA 
progression was twice as long as the placebo group (155 
vs 71 days, p = 0.002). However, median time to pro-
gression in intent-to-treat patients was not prolonged 
significantly [164]. In a Phase III study (n = 809) the 
increase from baseline to final BAP and PSA levels was 
significantly lower in patients treated with atrasentan 
without meeting the relevant primary end point of pro-
longed time to progression (determined according to 
radiographic and clinical measures) [165]. Similar effects 
were seen in a Phase III trial of atrasentan for patients 
with nonmetastatic CRPC (n = 941). PSA doubling 
time could be lengthened and the increase of BAP 
slowed down without having a significant effect on 
time to progression [166]. Zibotentan is another ET-A 
receptor antagonist that shows no antagonistic activ-
ity at the proapoptotic ET-B receptor in contrast to 
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atrasentan [167]. The use of zibotentan in patients with 
CRPC and bone metastases was shown to lengthen 
OS (24.5 for the zibotentan 10  mg group vs 17.3 
with placebo; p = 0.008) in a Phase II trial (n = 312). 
Zibotentan again did not show a significant effect on 
time to progression as primary end point  [168]. Owing 
to these results, the zibotentan ENTHUSE Phase III 
trial program was initiated. This program consists 
of several clinical trials and evaluates the effect of 
zibotentan alone and in combination with docetaxel 
in patients with nonmetastatic and metastatic pros-
tate cancer [207–209]. In September 2010, the sponsor 
announced that zibotentan alone (added to standard 
of care treatment) does not have a significant effect on 
OS of patients with metastatic CRPC. The final results 
of the complete study program will have a significant 
impact on the understanding of therapeutic effects of 
endothelin receptor antagonists and will enable the 
estimation of future perspectives on the use of these 
drugs in prostate cancer.

Radiopharmaceuticals
Besides external beam radiation therapy, bone-seek-
ing radiopharmaceuticals, such as strontium-89 and 
samarium-153 have proven to significantly reduce 
bone pain in patients with metastatic bone disease 
[169–172]. In patients with widespread skeletal metas-
tases, extended-field radiation may be useful, but is 
accompanied by serious side effects. In these cases, 
radiopharmaceuticals are a promising tool for pallia-
tion of pain, which are particularly effective in patients 
with osteoblastic bone metastases [173]. Strontium-89 
and samarium-159 are incorporated as b-emitters into 
sclerotic bone metastases and their short-range radia-
tion kills prostate cancer cells in bone. In general, these 
agents are well tolerated. Similarly to the extended field 
external beam radiation therapy, they can cause bone 
marrow suppression (external beam radiation with nor-
mal size field usually does not cause bone marrow sup-
pression) [174] resulting in thrombocytopenia, which led 
to the widespread opinion that these agents should not 
be used in patients who are candidates for second-line 
chemotherapy. However, in a recently published Phase I 
study, repeated administration of samarium-153 with 
docetaxel in metastatic CRPC demonstrated manage-
able hematologic toxicity [175]. Consolidation therapy 
with samarium-153 after docetaxel chemotherapy 
could not reach the primary end point of prolonged 
PFS, but resulted in significantly improved pain con-
trol [176]. Radiopharmaceuticals have demonstrated 
benefits beyond pain relief. In a randomized Phase II 
trial (n  =  72), bone-targeted consolidation therapy 
with Sr-89 plus doxorubicin once weekly for 6 weeks 
given to patients with stable or responding advanced 

CRPC after induction chemotherapy improved overall 
survival [177]. However, a positive effect of radiophar-
maceuticals on clinical end points of patients with 
prostate cancer has not been confirmed in a Phase III 
study yet. Therefore, radiopharmaceuticals still lack 
enough clinical evidence to become standard treatment 
in metastatic prostate cancer in the near future. 

Conclusion
Bone metastases and antihormonal treatment-induced 
bone loss have a significant impact on the clinical course 
and quality of life of patients with prostate cancer. In 
both cases, increased risk of fractures and other SREs 
are particularly caused by dysregulation of osteoclast 
activity and decreased bone stability. The imbalance of 
several molecular pathways regulating bone resorption 
and bone formation has been identified as the main 
reason for metastatic bone disease and osteoporosis 
due to iatrogenic hypogonadism, with the RANKL 
pathway being one of the important targets. The diag-
nosis of bone metastases remains a complex process 
with PSA representing a main indicator for disease 
progression and several imaging techniques compet-
ing for the highest hit rate and best ability to measure 
treatment response. Serum and urine markers are under 
intense investigation and are a valuable tool for the 
diagnosis of bone disease and evaluation of treatment 
response, although there are still important limitations 
that reduce their routine use in clinical practice. Either 
for ADT-induced bone loss and metastatic bone dis-
ease, bisphosphonates are able to decelerate reduction 
of bone mass. However, no data exist on whether its 
use can reliably prevent the development of fractures 
in nonmetastatic prostate cancer. Clinical results indi-
cate that the RANKL antibody denosumab provides 
a valuable alternative to bisphosphonates. Both zole-
dronic acid and denosumab can prevent patients with 
bone metastases from fractures and other SREs. The 
inhibition of other molecular targets playing a key role 
in the interaction of tumor cells and bone microenvi-
ronment, such as ET-A and Src, is being investigated 
in clinical trials after providing promising results in 
preclinical studies. However, current results of ET-A 
receptor antagonism for metastatic CRPC indicate no 
benefit in OS. 

Future perspective
The diagnosis and treatment of prostate cancer-related 
bone disease will remain a complex field with an 
increasing number of diagnostic and therapeutic tools 
available. As ADT is a major tool for the treatment of 
prostate cancer, which is increasingly used in earlier 
stages, effective strategies for the reduction and preven-
tion of ADT-induced bone loss will become more and 
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more important. One strategy for preventing complica-
tions caused by ADT is intermittent androgen block-
ade, which has been shown to prevent bone loss [175], as 
testosterone recovery in the interval can provide time to 
bone recovery. With denosumab and toremifene, two 
drugs are available on the market that are not only able 
to reduce bone turnover markers but also improve the 
clinical course of patients by preventing skeletal com-
plications during androgen deprivation therapy. Since 
most drugs targeting bone metabolism have major side 
effects, it is possible that their dose could be adjusted 
according to bone turnover markers measured in the 
patients’ serum or urine. Bone turnover markers will 
gain importance both in early diagnosis, follow-up and 
indication for the therapy of bone metastases. Several 
markers have shown their ability to reliably reflect the 
patient’s bone status. A better understanding of the 
complex interaction between host and tumor cells will 

lead to the development of new drugs for the treatment 
and prevention of bone metastases. Whether bisphos-
phonates and RANKL inhibitors are able to prevent 
the development of bone metastases, is currently under 
investigation in clinical trials. The results of these stud-
ies are likely to have a major impact on the treatment of 
prostate cancer especially in patients with early stages 
of the disease.
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Executive summary

Pathophysiology of androgen deprivation therapy-induced bone loss & metastatic bone disease
■■ Both androgen deprivation therapy (ADT)-induced osteoporosis and bone metastases have a significant effect on morbidity and 
mortality in prostate cancer.

■■ Increased bone turnover due to activation of osteoclasts is essential for the development of ADT-induced bone loss and 
bone metastases.

■■ RANKL is an important player in the interaction between tumor cells and microenvironment of the bone.

Diagnosis of ADT-induced bone loss
■■ Patients undergoing ADT should be screened for bone loss.
■■ Bone mineral density measurement alone is not sufficient to estimate fracture risk.
■■ Fracture risk models deliver a valuable tool to estimate the need for therapy.

Diagnosis of metastatic bone disease
■■ Bone scintigraphy is still the measure of choice for the detection of bone metastases.
■■ MRI can visualize bone metastases earlier and has a better sensitivity and specificity than bone scintigraphy.
■■ CT is the best technique to evaluate compromise of mechanical stability.
■■ Hybrid techniques combine functional and structural data but incur high cost.
■■ Serum and urine markers deliver a valuable tool for the detection of bone metastases.
■■ Marker levels correlate with therapy response.
■■ Bone turnover markers can be used for therapy decision.
■■ Interindividual variation and the variability of markers due to analytic and biologic factors reduce the routine use of bone 
turnover markers in clinical practice.

Strategies for the treatment of ADT-induced bone loss
■■ General measures to reduce fracture risk during ADT include cessation of smoking and alcohol consumption, exercise training 
and dietary intake of vitamin D and calcium.

■■ Bisphosphonates, denosumab and selective estrogen receptor modulators can reduce ADT-induced bone loss.
■■ Denosumab and toremifene significantly decrease incidence of skeletal-related events during ADT.

Bone-relevant strategies for the treatment of metastatic bone disease
■■ Bisphosphonates have shown efficacy in the reduction of skeletal-related events in patients with metastatic hormone-resistant 
prostate cancer and might improve overall survival in patients with hormone-sensitive metastatic prostate cancer.

■■ Denosumab delays time to first skeletal-related event in patients with metastatic castration-resistant prostate cancer.
■■ Ongoing studies evaluate, whether bisphosphonates and denosumab can prevent bone metastases in patients with 
nonmetastatic prostate cancer.

■■ Src inhibitors and Endothelin-A receptor antagonists result in clear biologic responses and are currently being investigated in 
clinical studies. Current results from a Phase III trial indicate, that in patients with metastatic prostate cancer, the endothelin-A-
receptor antagonist zibotentan alone does not improve overall survival.

■■ Radiopharmaceuticals can palliate pain in patients with metastatic bone disease.
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