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Mammalian cell culture media used for the manufacture of therapeutic protein have 
advanced systematically from serum-containing into animal-free, protein-free and 
chemically defined formulations over the past decades. Initially driven by patient 
safety concerns associated with the use of animal-derived medium components, and 
later by inconsistent cell culture performance due to variability in plant-derived raw 
material lots, many biologics manufacturers redirect their focus on the development 
of proprietary media formulations and implementation of well-controlled chemically 
defined raw materials in all cell culture media and feeds for production processes. This 
article will provide an overview of current trends and objectives of industrial medium 
development efforts for therapeutic protein production.

Global market shares of protein biologics 
have continued to rise despite small molecule 
therapeutics dominance. Forecast for the 
global biologics market has been projected 
to reach over US$200 billion by 2016 and 
$250 billion by 2020 [1,2] out of more than 
$1 trillion of total global pharmaceutical 
market [3].

Cell lines
More than 90 biologics have been approved 
by the US FDA as of September 2014 [4]. The 
cell expression systems responsible for cur-
rent approved biologics include mammalian, 
microbial and yeast cells. Greater than 50% of 
these biologic products are expressed in mam-
malian cells, with Chinese hamster ovary 
(CHO) cells as the predominated expression 
system [5,6]. Two CHO expression systems 
commonly used in biologics manufacture 
utilize the dihydrofolate reductase (DHFR) 
and the glutamine synthetase (GS) selec-
tion principles. Both expression systems have 
resulted in multiple grams per liter produc-
tivity in 10–21 day fed-batch processes [7–13]. 
The history of their development has been 
described in detail by Wurm [14] (Figure 1). 
CHO-K1 and CHO-DG44 cell lines were 
resulted from further subcloning from their 

progenitor CHO-ori cell line. CHO-K1 cells 
were subsequently used to generate the CHO-
DXB11 and CHOK1 SV cell lines. The 
CHO-DXB11 host cell system has a deleted 
DHFR locus and a mutated second DHFR 
locus. The CHO-DG44 host cell system has 
both DHFR loci deleted. When the gene of 
interest (GOI) is transfected with the DHFR 
gene into DHFR deficient cells, cells that can 
successfully express the GOI are those that 
demonstrate methotrexate resistance [15–17]. 
The CHO-K1 SV host system expressing low 
level of GS is termed CHO-GS (or GS-CHO) 
cell line. In the CHO-GS system, untrans-
fected CHO cells having low level of endoge-
nous GS are unable to grow in the presence of 
methionine sulfoximine, a GS inhibitor and 
glutamate analogue. When these CHO host 
cells are transfected with a vector carrying GS 
gene with the GOI, the cells (CHO-K1 SV) 
are able to synthesize glutamine from gluta-
mate in the presence of methionine sulfoxi-
mine and express the protein of interest. The 
objective of cell line development is to ensure 
the production cell line stability through the 
end of production cell age. When therapeu-
tic protein expressing cell lines are selected, 
preparation and testing of the manufacturing 
cell banks [18–21] are necessary to ensure the 
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Figure 1. Development history of Chinese hamster ovary cell lines.  
CHO: Chinese hamster ovary.
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production host cell lines are free of adventitious agents 
prior to GMP manufacturing. The cell culture media 
and feeds that are used to propagate the cells and pro-
duce the final therapeutic protein products must also 
meet these testing requirements.

Cell culture medium development history
Cell culture media provide nutrients for the cells to 
propagate and produce proteins. Typical cell culture 
media contain 50–100 components that can be grouped 
as trace elements, inorganic salts, energy source, amino 
acids, vitamins, nucleic acid derivatives, fatty acids 
and lipids, and others [22,23]. Due to their ease of use, 
complex medium components such as serum which 
served as cellular protectants against shear stress have 
been favored by the development groups in the past. In 
the 1950–1960s, polio vaccines produced in adherent 
monkey kidney cells were manufactured with serum-
containing media. CHO and mouse myeloma NS0 pro-
cesses included bovine serum to protect cultures from 
shear, pH and nutrient stress in bioreactors. However, 

concerns of undefined raw material potentially asso-
ciated with presence of adventitious agents, bac-
terial endotoxin, immunogenic contaminants, fungi, 
prions, bacteria and mycoplasmas began to surface 
and have been acknowledged by the regulators and 
drug manufacturers. The subsequent mycoplasma 
scare in the 1970s, endotoxin incidence in the 1980s 
and bovine spongiform encephalopathy/transmissible 
spongiform encephalopathy (BSE/TSE) concerns in 
the 1990s have placed a priority to the regulators and 
the drug manufacturers to actively remedy these safety 
issues with the replacement of defined raw material in 
the manufacturing processes. In the 1950–1960s, viral 
contamination in polio vaccine was identified in the 
SV40 contaminated cell source. This finding resulted 
in the establishment of production standards for drugs 
for human use. In the 1990s, Genentech’s parvovirus 
Minute virus of mice contamination which affected 
CHO-based processes, led to the use of parvovirus, a 
nonenveloped single-stranded rodent virus, as the cur-
rent standard model virus to demonstrate viral removal 
and inactivation. Vesivirus contamination in 2009 at 
Genzyme resulted in CHO cell growth inhibition [24]. 
The viral contamination subsequently was traced to 
a nutrient additive. This incident led to the develop-
ment of PCR-based detection methods for vesivirus to 
support in-process sample analysis and viral clearance 
studies. These experiences and concerns are responsible 
for the continued refinement of the ICH guidelines on 
quality (Table 1).

The initial concern on raw material was primar-
ily replacing animal-derived components with non-
animal derived but complex counterparts, such as 
nonanimal hydrolysates. Common marketed protein 
hydrolysates are produced from soybean, rice, wheat, 
pea, cotton and yeast. The hydrolysates, which are low 
cost substitute to serum, serve as cellular protectants 

Key terms

Chinese hamster ovary cells: Most common mammalian 
expression system used in the manufacture of protein 
therapeutics. The two most prevalent Chinese hamster 
ovary systems utilize the dihydrofolate reductase and 
the glutamine synthetase selection principles for protein 
production. Both expression systems have resulted in 
multiple grams per liter productivity in 10–21 day fed-batch 
processes.

Adventitious agents: Contaminants that pose safety 
concerns in the therapeutic products. In mammalian cell 
culture, adventitious agents include viruses, TSE/BSE, DNA, 
mycoplasma, endotoxin and bacteria. Adventitious agents 
may come from medium component source, cell lines, 
manufacture facility and any steps in manufacture. Drug 
manufacturers must demonstrate their products are free of 
adventitious agents prior to human use.
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against shear stress and enhance cell mass and viability 
(Table 2). However, as production demand increases, 
lot-to-lot variations in hydrolysates not only have 
impacted product purification and yield, but also have 
hampered cell culture production consistency. This, 
in turn, triggers strategic work in blending different 
hydrolysate lots to ensure comparable culture batch 
performance.

Cell culture media for mammalian cells also have 
progressed from formulations containing complex, 
animal-derived components to those of protein-free 
and chemically defined nature. The current preferred 
medium formulations for drug manufacture are those 
with completely chemically defined components. This 
strategy minimizes potential safety concerns associated 
with animal-derived raw material and reduces raw 
material lot-to-lot inconsistency. Moreover, drug 

manufacturers have insisted on higher degrees of 
animal-free origin raw material for all medium com-
ponents. Those with primary degree of animal-free 
origin designation are expected as they are in contact 
with therapeutic products. Some medium vendors have 
implemented raw material qualification sourcing strat-
egy to identify and source raw material with secondary 
and tertiary degrees of animal-free origin. Such exten-
sive efforts are pursued to ensure the final therapeutic 
products are free from animal-derived components 
throughout the history of the raw material origin and 
manufacture.

As a part of life cycle management, raw material 
in legacy media that contain serum and undefined 
components are being phased out to support today’s 
standards. To meet drug demand as well as ensure 
patient safety and regulatory acceptance, raw material 

Table 1. Safety concerns that changed manufacture practices.

Time Concern Mitigation Guidance

1950s–1960s  Virus contaminant from 
monkey cells used in 
production of polio vaccine

•	 Consistent GMP manufacturing
•	 Demonstrate drug effectiveness 

and safety

•	 Division of Biologics Standards 
created in 1955 within NIH

•	 Kefauver-Harris Drug 
Amendments in 1962 to Food, 
Drug and Cosmetic Act of 1938 

1970s Mycoplasma contamination 
due to sera products 

•	 Raw material, cell bank testing •	 Bureau of Biologics transferred 
from NIH to FDA 

1980s Endotoxin contamination in 
cell culture

•	 Raw material control (sera, media 
components, water, labware)

•	 Endotoxin testing limit setting

•	 USP <85> Bacterial endotoxins 
test:

 – 1980: USP XX. pp. 888-889
 – 1984: USP XXI. pp. 1165-1167
 – 1989: USP XXII. pp. 1493-1495

•	 FDA 1987: Guidance on 
validation of the Limulus 
Amebocyte Lysate test as an 
end product endotoxin test for 
human and animal parenteral 
drugs, biological products and 
medical devices

1990s Potential contamination of 
bovine-derived materials 
linked to BSE/TSE 

•	 Stringent requirement for serum 
and raw material from animal-
derived sources 

•	 1993: Points to consider in the 
characterization of cell lines used 
for the production of biologics 

2000s Viral contamination •	 Use of raw material free of 
animal-derived sources and 
protein-free

•	 Raw material testing

•	 1996: ICH Q5A: quality of 
biotechnology products: viral 
safety evaluation of 
biotechnology products derived 
from cell lines of human or 
animal origin

•	 1997: Points to consider in the 
manufacture and testing of 
monoclonal antibody products 
for human use

BSE: Bovine spongiform encephalopathy; ICH: International conference on harmonisation; TSE: Transmissible spongiform encephalopathy; USP: US pharmacopeia. 
Data taken from [25–30].
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and production processes are valued as critical com-
ponents as much as biologic productivity. Assessment 
plans are staged to compare and bridge products 
manufactured with new and previous raw material in 
preclinical and clinical settings.

General medium development strategies
In addition to mitigate potential introduction of adven-
titious agents through the use of undefined raw mate-
rial, developing chemically defined media provides 
opportunities to establish a common set or ‘platform’ 
media that target selected expression host systems and 
specific product quality profiles, and meet production 
operations setup.

Medium design
Most therapeutic proteins especially monoclonal anti-
bodies (mAb) are produced from CHO cells trans-
fected with the genes of interest. Minor cell handling 
variations over the years for the same CHO strain in 
different laboratories have rendered some differences 
observed from the original CHO host. Therefore, it 
is not unusual that specific preferences in growth con-
ditions or performance are observed for the cell lines 
by different laboratories. The typical medium design 
starts with a medium of known compositions. Early 
chemically defined media are formulated with amino 
acids, vitamins, antioxidants, trace metals, lipids, inor-
ganic buffers and salts and others. The impact of the 
new media was evaluated for their cell culture perfor-
mance in a number of cell lines. Initial medium formu-
lations are typically liquids derived from mixtures of 
component groups defined from historical experience 
and literature review. Multiple medium compositions 
can be formulated to establish a medium library for 

component screening of specific performance profiles 
for cell lines of interest. The library can be further 
expanded with additional cell lines evaluated. Spent 
medium analyses are conducted to refine the media 
through multiple rounds of optimization. When a 
number of internal mAb-expressing cell lines are eval-
uated under a fixed procedure, a common set of media 
and feed can be established. This common medium set 
is termed the ‘platform media’ and the fixed procedure 
becomes the ‘platform process’ (Figure 2). The plat-
form system allows development organization to move 
biologic programs that utilize the same CHO host sys-
tem and platform production process through develop-
ment into the clinic rapidly. Additional refinement to 
media and feed concentration can be optimized at a 
later stage.

The development focus is to ensure nutrient bal-
ance to improve growth rates and maintain high cell 
viability. The growth media contain 50–100 compo-
nents where the concentrations have been optimized 
and balanced with feed media for production. Tra-
ditionally, the compositions are optimized one fac-
tor at a time which can be labor-intensive and time-
consuming. Today, statistical designs have dominated 
medium screening strategies to reduce workload and 
enhance statistical power and speed to formulation 
identification. Plackett–Burman [31,32], factorial [33,34], 
central composite and response surface [35] designs 
coupled with multivariate analysis [36] have supported 
development of successful chemically defined 
formulations.

In addition to support high productivity, the techni-
cal focus of these chemically defined media includes: 
ensuring genomic stability and viability [37], confirming 
proper cell cycle to progression [38,39], reducing potential 

Table 2. Considerations in cell culture medium development.

 Considerations Complex components Chemically defined components

Advantages    •	 Cost effective
•	 Promote high cell mass and 

viability
•	 Enhance production titers
•	 Cellular protectant 

•	 Elemental composition known
•	 Facilitate medium development and 

optimization
•	 Opportunity to identify specific raw 

material sourcing suppliers
•	 Meet regulatory guidelines 

Disadvantages     •	 High raw material variability
•	 May be animal derived
•	 Potential presence of 

contaminants
•	 Potential process and product 

inconsistencies
•	 Potential presence of growth 

inhibitors
•	 Impede medium development 

and optimization

•	 Can be expensive and may have limited 
sourcing suppliers

•	 May not have cellular protectant 
properties as complex components

•	 Reduced growth rate or viability
•	 Potential decreased titers  
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Figure 2. Platform medium development.
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apoptotic pathway activation [40–43], minimizing pro-
duction of toxic metabolites [44–46], maintaining effi-
cient metabolic enzyme activities [47–49] and minimiz-
ing cell stress [50–53]. Consideration of ‘nutrient shift’ 
during cell growth and protein production indi-
cates a modification of components in the media and 
feed composition as the production batch progresses. 
The nutrient shift is designed to convert cultures from 
one metabolic state to another. For example, cultures 
in lactate producing state can be shifted to lactate 
consuming state by changing pH control parameters 
or modifying feed rates. Cell cycle G1/S phase arrest 
has been a target for production medium and feed 
development [54,55]. Fed-batch cultures in exponential 
growth phase can be converted to stationary phase 
with appropriate feed supplementation and process 
conditions. The intention of feed development is to 
enhance specific productivity with reduced focus on 
significant nutrient balance. Other supplementation 
includes the glutamine-based peptides [46,56], or tricar-
boxylic acid cycle intermediates [49,57] to reduce rate of 
inhibitory metabolite formulation. Ideal growth media 
ultimately allow continued cell expansion from vial 
thaw to support expansion of highly viable inoculum, 
and production media and feeds focus on enhancing 
specific productivity.

Protein quality profiles
Product quality such as degree and profile of charge 
distribution and glycan moieties of therapeutic pro-
teins can have a significant role in determining efficacy 
in animal and/or human PK [58–60]. Cell culture media 
and feeds and process strategy have an important effect 
on product quality. Copper in cell culture medium has 
been shown to enhance cell viability and facilitates 
disulfide bond formation [61]. Sodium butyrate, an 
inhibitor of histone deacetylase activity that mediates 
cell proliferation arrest [62], has been demonstrated to 
enhance gene accessibility leading to observed increase 
in specific productivity [63]. In addition, sodium butyr-
ate has been shown to improve mAb assembly [64] and 
to reduce protein sialylation [65,66]. Undefined compo-
nent such as serum in media supplemented in CHO 
cells produced proteins with higher level of terminal 
galactosylation than serum-free media [67,68]. Amino 
acid supplementation typically used to enhance cell 
growth and productivity has been shown to reduce 
sialylation [69]. Supplementation of N-acetylman-
nosamine to CHO cells increases the intracellular 
precursor pool of CMP-sialic acid [70]. Glycosylation 
predictive strategies employing visualization tool to 
monitor glycan distribution due to culture condition 
changes [71], mathematical model linking cell growth 
and metabolism to glycosylation [72] and statistically 

designs for on-line glycosylation control [73] can be 
utilized to support media development for both novel 
biologics and biosimilars.

Medium manufacture considerations
Medium development scientists tend to work with con-
centrated liquid stocks where components of similar 
properties are grouped together in stock solutions. 
These stocks easily facilitate selected mixing and blend-
ing to generate new formulations. While blending of 
formulations is common at lab scale, it is operation-
ally challenging at large-scale. Therefore, liquid media 
are usually implemented early in development where 
concentrated stock solutions can be combined to gen-
erate different formulations. Liquid media tend to have 
shorter shelf life than powder media, and large volume 

Key terms

Chemically defined formulations: All components in 
medium formulations are chemically synthesized or purified 
to homogeneity, and free of animal-derived material.

Protein production: Process by which specific proteins 
are produced in Chinese hamster ovary or mammalian 
cells under control conditions. The controlled production 
processes require cell culture media and feed supplements 
to propagate the cells and trigger the release of the 
proteins of interest.
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of liquid are more difficult to be shipped. When media 
become finalized, formulations in powder formats in 
general are preferred at large-scale. The preference of 
powder media over liquid media is due mainly for their 
low cost, long shelf lives and ease of transport (Table 3). 
Although the same media formulation was used to 
manufacture both liquid or powder formats, the final 
prepared liquid or powder-hydrated media may be dif-
ferent to the original theoretical component composi-
tion and have different cell culture performance. Phys-
iochemical variations in the same formulation exist [74] 
when the manufacture is not well defined. Differences 
in color, pH, osmolality, particle size distribution, 
humidity have been detected from lot-to-lot of powder 
media and have resulted in variability in cell culture 
performance. To mitigate these potential issues, many 
media manufacturers are including control steps to 
monitor raw material quality to ensure consistency in 
raw material selected and their suppliers audited, and 
explore better milling and blending and new powder 
manufacturing technology. Raw material degradation 
or stability monitoring has led to the implementation 
of sophisticated analytical methods to detect amino 
acid concentrations in the formulation using NMR- or 
UPLC-based technology and monitor chemical integ-
rity using NIR. These analytical results and profiles 
obtained from these preventive steps further ensure 
newly manufactured lots are consistent with those of 
historical lots. The combination of media storage sta-
bility analyses and end-user cell culture testing provide 
confidence on media integrity prior to their use.

Ball milling technology which has been used to 
produce powder media, requires extensive cleaning 
and sanitization and generates debris residues resulted 
from continued pulverization of medium components 
with ceramic balls. In addition, this milling process 
has posted a number of challenges in: ensuring trace 
component homogeneity in the final formulation, 

reducing heat generation especially for heat-sensitive 
components and maintaining reconstitution solubility 
in powder media after milling. As such the ball milling 
process is mostly reserved for legacy products and has 
very limited use for powder media manufacture today. 
Currently hammer mills or jet mills with micronization 
eliminate most of these concerns, and are the more prev-
alent milling devices to generate powder media. Particle 
size monitoring technologies, such as laser diffraction, 
have a role in understanding the mixing effects, solubil-
ity, oxidation, microbial degradation and air jet sieving. 
These quality checks together form the ‘fingerprint’ of 
the powder formulation. Fluid bed granulation technol-
ogy has further simplified liquid reconstitution without 
the need for pH adjustment. However, this technology 
remains proprietary to specific media vendors.

Medium development driven by therapeutic 
protein production strategy
Production processes and manufacturing capacity 
and facilities play an important role in the direction 
of medium development strategies. In general, the 
two main cell culture process steps are cell inocu-
lum scale-up and production (Table 4). Growth or 
base media support inoculum scale-up stage with the 
goal of generating high quality, viable cells that are 
necessary for high productivity. Production media 
and feeds support production stage with the goal of 
producing high therapeutic protein titer. For most 
fed-batch processes, the media component typically 
is consisted of a set of growth and concentrated pro-
duction feed media for each cell line. For continuous 
perfusion processes, one medium is usually required. 
More recently, a mix of these two traditional pro-
cesses have become more common. One process 
which includes a combination of a fed-batch inocu-
lum scale-up step and a fed-batch production step 
utilizes a growth medium and 1–2 production feed 

Table 3. Properties of liquid and powder media.

 Considerations Liquid media Powder media

Stage of implementation  •	 Starting point of development •	 After stage-defined formulation identified  

•	 Easy to modify formulations 
with concentrated stock 
solutions 

Formulation consistency  
•	 Component ‘fingerprinting’  
•	 Cell culture performance

•	 Shelf life stability sensitive to 
storage conditions  

•	 Sensitive to manufacture process, storage 
condition and hydration process  

Shelf life •	 Typically limited •	 Typically long

Shipping and transfer  
•	 Temperature excursion
•	 Quantity logistics

•	 More challenging  •	 Preferred  
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media. Another process which requires a perfusion 
step for inoculum scale-up and a fed-batch produc-
tion step uses a growth medium for perfusion and a 
production feed media.

Most commercial facilities can support batch and 
fed-batch processes which require low medium prepara-
tion and storage capacities. Concentrated feeds are ideal 
for fed-batch processes with feed volume constraint. 
Perfusion processes also have a long history in protein 
production. These processes are primarily supporting 
adherent cultures to produce early biologics [75–77] and 
stability labile proteins and enzymes [78,79]. However, 
perfusion processes have large medium requirements. 
Continuous processing strategy where culture perfus-
ate is continuously purified in small batches also neces-
sitates large medium volume preparation and storage. 
These large medium volume requirements would neces-
sitate medium cost to be low, and liquid media stabil-
ity to be adaptable to medium preparation schedule. A 
production strategy that utilizes a combination of per-
fusion for inoculum scale-up and fed-batch production 
processes falls into the intermediate medium needs. 
Strategic focus for medium and feed development is 
expected to be different for fed-batch, perfusion and 
the combination of perfusion and fed-batch processes. 
The compatibility of growth media to feed media sup-
porting the multitude of processes requires substantial 
stepwise and targeted development strategic focus.

Media for routine inoculum scale-up
In general, inoculum scale-up requires continued 
propagation and expansion of seed train to a target cell 
density until the production stage. Typically, target cell 
inoculation densities of less than 1 × 106 cells/ml and 
inoculum quality from each scale-up stage is expected 
to be similar to inocula from previous scale-up steps. 
As such, robust inoculum expansion is expected to 
include optimized procedures for vial thaw with high 
cell viability recovery, seed density having low doubling 
time to reach higher peak cell densities and culture pH 
that aligns with CO

2
 concentration set-points of the 

process [80]. Each scale-up step has the duration of 3–4 
days. Therefore, growth media only require sufficient 
nutrient levels to support cell expansion of 3–4 cell 
doublings of high quality cell inoculum. The focus of 
medium development for growth media would be 
to support high specific cell growth rates with high cell 
viability and minimize lag phase of growth.

Media for fed-batch inoculum preparation
Fed-batch inoculum preparation tends to be targeted at 
the N-1 and/or N-2 stages with the goal to increase cell 
density by 1–2 folds that of traditional cell expansion 
step but in 5–6 days. In order to support N-production 
strategies that require high inoculation cell densities (>3 
× 106 cells/ml), the challenge is developing feed media 
formulations that ensure high growth in high quality 
cell inoculum for the production bioreactors. Increase 
in time integral viable cell concentration (IVCC) is an 
area for media development targeting for prolonging 
culture longevity, increasing specific growth rate, and 
maximizing viable cell density [81]. The feed media for 
N-1 fed-batch stage require richer nutrients than rou-
tine growth media in order to sustain high viable cell 
density and balanced with components that contribute 
minimal level of toxic metabolites, such as lactate and 
ammonium.

Media for perfusion preparation
In the N-1 perfusion and intensification step, the goal 
in maintaining high quality of the cell inocula and 
steady productivity through the removal of poten-
tial toxic metabolites with medium exchanges, and 
thereby achieving high cell mass. The challenge, 

Key term

Medium development: Process by which critical 
nutrients necessary for mammalian cell growth and 
protein production are combined in final formulations. The 
formulations may exist in a powder format that requires 
hydration before use or in a liquid format that can be used 
immediately.

Table 4. Roles of media and feeds in different process steps and production strategies.

Process step Operation Cell density Cell quality Medium/feed 
demand

Inoculum scale up 
•	 High quality cell mass  

Standard assage Low High Low

Fed-batch Medium Medium Low

Perfusion 
intensification

High High High

Production 
•	 High protein productivity 

Fed-batch Medium Medium Low/medium

Perfusion 
intensification

High High High
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however, will be controlling media cost and volume 
exchanges.

Media for N-stage production
Medium development for N-stage fed-batch produc-
tion is designed to improve specific productivity by: 
enhancing biosynthetic pathway for therapeutic pro-
tein production through nutrient supplements neces-
sary for cell proliferation and protein translation, main-
taining favorable metabolic pathways that enhance cell 
performance and ensuring newly synthesized therapeu-
tic proteins are efficiently traversed through secretory 
pathway and released into the extracellular milieu. Fed-
batch production efficiency is driven by feed media and 
process control strategies to generate the final produc-
tion titers. The formulations of production media and 
feeds tend to be highly enriched in order to support 
biosynthesis of proteins through the entire produc-
tion stage. As technologies for studies at the genomic, 
transcriptomic, proteomic and metabolomic levels have 
been more prevalent; cell culture scientists are leverag-
ing these tools to gain a better understanding in cel-
lular physiology. The availability of the CHO genome 
database provides a direct path to re-engineering of the 
CHO cells for improved cellular characteristics [82–84]. 
Metabolite balance in high production cell culture 
can be achieved through a combination of metabolic 
flux and metabolite analyses [85,86]. Microarray and 
proteomics expression profiles have identified cellular 
proteins that are involved in regulating cell growth 
and viability [87,88]. A complete molecular profile of the 
CHO culture generated from a combination of these 
omics-based approaches will contribute significant cel-
lular understanding of CHO cells, and provide a better 
path for predictive cell culture performance.

Another challenge to these highly nutrient enriched 
formulations is solubility of the media and feeds. The 
highly concentrated formulations not only need to be 
readily solubilizable from powder but also maintain 
as stable liquids upon hydration. Additional challenge 
is that drug manufacturers would prefer single or a 
few solution types in neutral pH to reduce operational 
complexity. While it is typical that multiple medium 
and feed solutions with both high and low pH are used 
during early media development and may be manage-
able at small scale, this approach is not compatible to 
a streamlined single feed solution strategy, and would 
demand comprehensive mixing studies to ensure these 
supplements are introduced appropriately prior to imple-
menting at large-scale. To address these concerns, a 
number of laboratories have developed concentrates of 
chemically defined media (with solubility >100 g/l) by 
supplementing surfactants, such as polysorbates (PS80, 
PS20, P188) to the formulations [89,90]. Enhanced amino 

acid solubility in media was also achieved with amino 
acid analogs in the forms of peptides [91,92] and modi-
fied amino acids [93]. The ongoing development trend for 
highly concentrated feed medium formulations includes 
to refine and develop media concentrates at neutral 
pH that can be supplemented into the culture without 
significantly volume or osmolality increase to the final 
production batch, and to reduce the number of liquid 
formulations to enhance drug manufacture operations.

A strategic consideration in the medium develop-
ment should also include a patent review on compo-
nents in medium formulations as well as component 
uses associated with production processes. These 
challenges may require modification to medium design 
and process development.

Conclusion & future perspective
Future medium development for the next five to 10 years 
will be driven by drug demand, manufacturing process 
development strategy and facility selection. Biopharma-
ceutical manufacturers are considering facilities of mod-
ular designs having plug-and-play functionalities where 
different process steps are interchangeable. The drivers 
for this flexibility concept are to support the growth of 
personalized medicine, producing smaller batches, decen-
tralize single manufacturing location, enabling modules 
to be deployed regionally, allow frequent new technology 
introduction, implementing new process improvements 
in plug-and-play modules that do not interfere with other 
modules and enable multiproduct manufacturing, maxi-
mizing facility capacity and reducing overall costs [94–96]. 
Flexibility in manufacture capability emphasizes agile 
facility having small footprint requirement, reduced 
location restriction, short set up time to support rapid 
manufacture of critical medicine [97]. Platform media 
and platform manufacturing processes are expected to be 
a part of the modular manufacture design. Future media 
would be in modular platform units to meet the produc-
tion of multiple therapeutic products. The media and 
feeds would need to be highly stable concentrated liq-
uids and easily solubilizable powder formulations that are 
insensitive to environmental fluctuation. Current devel-
opment strategies to meet this demand should focus on 
better understanding of cellular responses to differences 
in medium components on biomolecule productivity.
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Executive summary

Cell culture medium development history
•	 Cell culture media support Chinese hamster ovary (CHO) and other mammalian cell culture for continued 

propagation and protein production. Early in history medium components included complex animal-derived 
supplements to protect the production cells from environmental stress during manufacture. However, safety 
concerns due to contamination from adventitious agents in medium components have limited their usage. 
Chemically defined, animal-material-free components are preferred for biopharmaceutical manufacture 
today.

Chemically defined (CD) medium development strategies
•	 In addition to including components such as amino acids, vitamins, lipids, trace metals, salts and buffers in the 

CD formulations, the developed CD media should support cell line stability, improve overall cellular physiology 
and metabolism, meet protein quality expectation, as well as ensure medium manufacturability.

Medium development driven by protein production strategies
•	 The developed CD media should be compatible to production strategies. Common ‘platform’ media may 

be applicable for rapid therapeutic protein production. Complex production processes would necessitate 
significant medium development efforts.
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