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The incidence of infections due to multidrug-resistance pathogens, such as 
Enterobacteriaceae, Pseudomonas aeruginosa or Acinetobacter spp. has been 
increasing. The paucity of antimicrobials active against multidrug- resistance 
strains are an important challenge. Novel anti-Gram-negative agents from 
old antimicrobial classes include b-lactamase inhibitors, cephalosporins, 
carbapenems, aminoglycosides, polymyxin analogs, tetracycline and mono-
bactams. Among them, b-lactamase inhibitors seem the most promis-
ing as they might restore the activity of already known b-lactams against 
 b-lactamase-producing strains. New classes of antimicrobials include bis-
indoles, boron-containing antibacterial protein-synthesis inhibitors, outer 
membrane synthesis inhibitors, antimicrobial peptides and antibiotics 
 targeting novel sites of the 50S ribosomal subunit. Although promising, they 
are still far from being introduced into clinical practice. Therefore, optimizing 
the use of  current antibiotics and infection control policies are mandatory.

Keywords: antimicrobial peptides • ESKAPE • extended-spectrum b-lactamases 
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Multidrug resistance (MDR) is defined as nonsusceptibility to one or more 
antimicrobials in three or more antimicrobial classes, while strains nonsusceptible 
to all antimicrobials, including polymyxins and tigecycline, are classified as 
extreme drug-resistant strains [1]. MDR Gram-negative bacteria pose a serious 
and rapidly emerging threat to patients in healthcare settings and are especially 
common and problematic in some intensive care units [2]. Both in Europe and the 
USA, a significant increase in prevalence of resistant strains has been reported, 
as outlined in Figures 1 & 2, respectively [1,3,4]. This phenomenon of growing 
resistance has been resumed with the word ‘ESKAPE’, to explain the more frequent 
MDR microorganisms, including both Gram-positive (Enterococcus faecium 
and Staphylococcus aureus) and Gram-negative bacteria (Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) [5]. In 
addition, MDR Escherichia coli is another important pathogen causing not only 
healthcare-associated infections, but also community-acquired [6]. Moreover, 
MDR has a significant impact on mortality, hospital length of stay and hospital 
costs [7].

Numerous classes of antimicrobials are currently available for physicians to treat 
patients with Gram-negative infections, although the pace of antibiotic drug develop-
ment has slowed during the last decade (Figure 3), and the pharmaceutical pipeline of 
antibiotics active against MDR Gram-negative is very limited. During the last few 
years, research has focused on methicillin-resistant S. aureus (MRSA), while multiple 
mechanisms of resistance of Gram-negative bacteria make them a more difficult 
target for drug development than Gram-positives [8]. Therefore, clinicians are forced 
to rediscover older drugs, such as polymyxins and fosfomycin, and to optimize the 
use of already existing molecules. 
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Numerous agencies and societies have tried to draw 
attention to this significant lack of new antibiotics 
for MDR Gram-negative pathogens and since 2004 
repeated calls for reinvigorating pharmaceutical invest-
ment in antibiotic research and development have been 
made by the Infectious Diseases Society of America 
(IDSA) and the US FDA [9]. Recently, IDSA supported 
an initiative of developing ten new systemic antibacte-
rial drugs through the discovery of new drug classes, as 
well as exploring possible new molecules from already 
existing classes of antibiotics, the ‘10×´20’ initiative [10].

The profile of antibiotic resistance to currently used 
antimicrobial agents and new anti-Gram-negative 
agents will be discussed.

Importance of MDR Gram-negative bacteria in 
clinical practice
The urgent need for new antibiotics active against resis-
tant Gram-negatives is fuelled by an increase of the inci-
dence, morbidity and mortality in infections caused by 
these pathogens. 

 ■ Enterobacteriaceae
Extended-spectrum b-lactamases (ESBL)-producing 
E. coli and Klebsiella spp. are common in the health-
care setting, but pandemic clones, such as E. coli 
ST131, also cause community-acquired infections [6]. 
In addition, Enterobacter spp., which are frequently 
responsible for healthcare-acquired infections, are 
commonly resistant to multiple antibacterials (it was 
found that in 5206 strains, resistance to ceftazidime 
was 22%, to aztreonam 19%, to piperacillin/tazo-
bactam 10% and to ciprofloxacin it was 11%) [11]. 
Moreover, carbapenem-resistant Enterobacteriaceae 
are increasingly recognized as a cause of sporadic 
infections and outbreaks worldwide [12–14]. In all 
these bacteria, the presence of MDR might have an 
important influence on mortality. For example, in a 
meta-ana lysis of 16 studies including 1682 infections, 
bacteremias caused by ESBL-producing pathogens 
were significantly associated with delayed initiation 
of effective therapy and an almost twofold increase 
in crude mortality [15]. 

Figure 1. Resistance rates among Gram-negative bacteria in France, Italy, Spain and the UK.
Data taken from [2,3].
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   ■ Nonfermenting rods 
Pseudomonas aeruginosa and Acinetobacter harbor 
frequent resistance to multiple antibiotics. A recent 
US study reported that in 2008 as much as 17% of 
P. aeruginosa and 74% of A. baumannii strains were 
MDR [1]. Indeed, the incidence of infections due to 
MDR Acinetobacter spp. continues to increase glob-
ally, in particular, carbapenem-resistance increased 
from 9% in 1995 to 40% in 2004 [16]. Inappropriate 
empirical therapy has been associated with increased 
mortality in P. aeruginosa infections, and the risk of 
using an inactive antibiotic is higher if MDR strains 
are present. Thus, worse clinical outcomes and higher 
costs of prolonged hospitalization might be associated 
with MDR  infections [17].

Mechanism of resistance to currently 
used antimicrobial agents in MDR 
Gram-negative bacteria
Numerous mechanisms of drug resistance have devel-
oped in Gram-negative bacteria against available 
antimicrobials, and they include b-lactamases, efflux 
pumps, porin mutations and binding-site mutations. 
Moreover, the rapid emergence of resistance in human 
and veterinary medicine is partly caused by the hori-
zontal transfer of clusters of genes conferring combined 
resistance to multiple drugs. 

 ■ Resistance to b-lactams
b-lactamase-mediated resistance is the most impor-
tant and efficient method of resistance to b-lactams in 
Gram-negative bacteria. The origin 
of b-lactamases development is pre-
sumably ancient and has evolved to 
fight natural b-lactams, produced 
by bacteria such as Streptomyces or 
Lysobacter, or filamentous fungi, 
such as Penicillium or Acremonium 
[18]. However, resistance has been 
heavily influenced over the years by 
the widespread administration of 
antibiotics in clinical practice. For 
example, the rapid increase in resis-
tance to widely used ampicillin in 
the early 1960s turned out to be due 
to a plasmid-mediated b-lactamase, 
one of the first described in Gram-
negative bacteria, known as TEM 
(the TEM 1 enzyme was originally 
found in E. coli isolated from a 
patient named Temoniera, hence 
named as TEM) [19]. The further 
selection of resistant mutants led 
to the appearance of ESBLs that 

now compromise the use of third-generation cepha-
losporins. In the 1990s, pharmaceutical industries 
introduced carba penems, which are extremely stable 
to degradation by b-lactamases. However, a variety 
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Figure 2. Resistance rates among Gram-negative bacteria in the USA.
Data taken from [1].
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Figure 3. New antibacterial agents approved in the USA, 1983–2009 (as reported by 
Infectious Diseases Society of America’s Antimicrobial Availability Task Force).
Reproduced with permission from [202].
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of b-lactamases capable of hydrolyzing these antibi-
otics, including IMP, VIM, K. pneumoniae carbap-
enemases (KPC) and OXA are increasingly seen in 
Gram-negative isolates [20]. Different classifications 
of b-lactamases have been proposed, but the Ambler 
classification is the most widely used and divides 
b-lactamases into four classes (A, B, C and D) based 
upon their amino acid sequences (Table 1) [21–23]. 
Briefly, class A enzymes are mostly plasmid-mediated 
penicillinases, such as those belonging to TEM and 
SHV subclasses. However, some of the evolved class A 
b-lactamases accept cephalosporins as substrates and 
are known as ESBLs, even though there are ESBL 
enzymes belonging to other classes as well. Class B 
enzymes are metallo-b-lactamases (MBL) with broad 
substrate specificity that includes not only penicillins 
and cephalosporins, but also carbapenems. Class C 
enzymes are primarily chromosomally encoded 
cephalosporinases and are often referred to as AmpC 
b-lactamases resistant to inhibition by commercially 
available b-lactamase inhibitors. Finally, class D 
 b-lactamases have a substrate preference for oxacil-
lin and are therefore called oxacillinases. Of note, 
this classification is based on molecular sequence of 
enzymes and the same antibiotic can be inactivated 
by b-lactamases from different classes. For example, 
carbapenems can be inactivated by enzymes belonging 
to class B (MBL), class A (KPC) and class D (OXA-23 
and -48). This enzyme diversity is a crucial aspect of 
antimicrobial resistance. Recently, a new plasmidic 
MBL, the New Delhi MBL termed NDM-1, has been 
identified in K. pneumoniae and E. coli recovered from 
a Swedish patient who was admitted to a hospital in 
New Delhi, India [13]. Of particular concern is that 
NDM-1 enzymes were present in E. coli, a common 
cause of community-associated urinary tract infec-
tions (UTIs) and bloodstream infection in humans 
of all ages [6]. The NDM-1-producing bacteria are fre-
quently resistant to many groups of antibiotics, includ-
ing fluoroquinolones, aminoglycosides and b-lactams 
(especially carbapenems), remaining susceptible only 
to colistin and tigecycline [13]. Nevertheless, even these 
two agents might lose their activity. 

 ■ Resistance to colistin
Colistin acts by binding to lipid A moiety of the bacte-
rial lipopolysaccharide and subsequently disintegrat-
ing the bacterial membranes [24]. The chromosomal 
AmpC cephalosporinase, the outer membrane porin 
OprD and a multitude of efflux pumps are particularly 
relevant to confer resistance to colistin in P. aerugi-
nosa strains [25]. A detailed review of various resis-
tance mechanisms to polymyxins has been recently 
published [24]. 

 ■ Resistance to tigecycline
As far as resistance to tigecycline is concerned, low 
concentrations attained in the serum are probably the 
driving force for the development of resistance while 
on treatment, particularly when the MICs of the tar-
geted pathogen exceed the Cmax of the drug, which is 
almost the rule for all targeted A. baumannii strains [26]. 
The genetic basis for the development of resistance 
have been investigated in molecular studies and efflux 
pumps seem to be the most important mechanism. 
Various efflux pumps have been reported in E. coli, 
Enterobacter cloacae, K. pneumoniae and Acinetobacter 
calcoaceticus–baumannii [27].

 ■ Resistance to fluoroquinolones 
Fluoroquinolones act by binding to DNA gyrase and 
topoisomerases IV [28]. Numerous bacteria have devel-
oped several resistance mechanism, both chromosomal 
and plasmidic. Chromosomal resistance include target 
mutations, such as GyrA/GyrB for DNA gyrase and 
ParC/ParE for topoisomerase IV and augmented expres-
sion of efflux pumps [29]. Among plasmidic-mediated 
resistance mechanisms are acetylation, efflux pumps and 
the production of fluoroquinolones-resistant proteins, 
which protect the quinolone targets from inhibition [30].

 ■ Resistance to aminoglycosides 
Aminoglycosides kill bacteria by inhibiting protein syn-
thesis as they bind to the 16S rRNA and by disrupting the 
integrity of bacterial cell membrane [31]. Bacterial resis-
tance to aminoglycosides is driven by three major mecha-
nisms: inactivating aminoglycoside-modifying enzymes, 
regulation of intracellular concentration by o verexpression 
of efflux pumps and target modification [32]. 

 ■ Resistance to fosfomycin 
Fosfomycin has a mechanism of antimicrobial action 
that involves the inhibition of an enzyme that catalyzes 
the first step in bacterial cell-wall synthesis within the 
cell [33]. The most commonly described mechanism of 
resistance to fosfomycin in E. coli is the overexpression of 
the plasmidic genes FomA and FomB, leading to phos-
phorylations of fosfomycin and fosfomycin monophos-
phate [34]. However, fosfomycin seems to be spared from 
the effect of various mechanisms of multiple resistance to 
antimicrobials owing to its unique chemical structure and 
mechanism of action. High levels of antimicrobial activ-
ity of fosfomycin have been reported in fluoroquinolone-
resistant and ESBL-producing Enterobacteriaceae (97% of 
1657 E. coli strains and 81% of 748 K. pneumoniae i solates 
producing ESBL were susceptible to fosfomycin) [24]. 
Fosfomycin could be an old, but important alternative 
for the treatment of UTIs caused by MDR  pathogens, 
although further research is needed.
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 ■ Spread of multiple-resistance genes 
The rapid emergence of resistance to various anti biotics 
in human medicine and animal husbandry is partly 
due to horizontal transfer of resistance genes, which 
is a successful mechanism for the transmission and 
dissemination of MDR among bacterial pathogens [35]. 
The impact of horizontally transmitted genetic deter-
minants in the evolution of resistance is particularly 
evident when resistance genes are physically associated 

in clusters and transferred together to the recipient 
cell [36]. Integrative and conjugative elements are a 
diverse group of mobile genetic elements found in 
both Gram-positive and Gram-negative bacteria, that 
can be responsible for horizontal transfer antimicrobial 
resistance [37]. These mechanisms of spread of resis-
tance are not without serious clinical consequences, 
as indicated by the novel case of K.  pneumoniae 
 carbapenemases [38].

Table 1. Classification schemes for bacterial b-lactamases.

Molecular class 
(subclasses)

Bush–Jacoby 
group (2009)

Distinctive 
substrate(s)

Defining characteristic(s) Representative enzyme(s)

A 2a Penicillins Greater hydrolysis of benzylpenicillin  
than cephalosporins

PC1

A 2b Penicillins, early 
cephalosporins

Similar hydrolysis of benzylpenicillin  
and cephalosporins

TEM-1, TEM-2, SHV-1

A 2be Extended-
spectrum 
cephalosporins, 
monobactams

Increased hydrolysis of oxyimino-b-lactams 
(cefotaxime, ceftazidime, ceftriaxone, 
cefepime and aztreonam)

TEM-3, SHV-2, CTX-M-15, 
PER-1, VEB-1

A 2br Penicillins Resistance to clavulanic acid, sulbactam 
and tazobactam

TEM-30, SHV-10

A 2ber Extended-
spectrum 
cephalosporins, 
monobactams

Increased hydrolysis of oxyimino-b-lactams 
combined with resistance to clavulanic acid, 
sulbactam and tazobactam

TEM-50

A 2c Carbenicillin Increased hydrolysis of carbenicillin PSE-1, CARB-3

A 2ce Carbenicillin, 
cefepime

Increased hydrolysis of carbenicillin, 
cefepime and cefpirome

RTG-4

A 2e Extended-
spectrum 
cephalosporins

Hydrolyzes cephalosporins 
Inhibited by clavulanic acid but  
not aztreonam

CepA

A 2f Carbapenems Increased hydrolysis of carbapenems, 
oxyimino-b-lactams and cephamycins

KPC-2, IMI-1, SME-1

B (B1) 3a Carbapenems Broad-spectrum hydrolysis including 
carbapenems but not monobactams

IMP-1, VIM-1, CcrA, IND-1

B (B2) 3b Carbapenems Preferential hydrolysis of carbapenems CphA, Sfh-1

B (B3) L1, CAU-1, GOB-1, FEZ-1

C 1 Cephalosporins Greater hydrolysis of cephalosporins than 
benzylpenicillin; hydrolyzes cephamycins

Escherichia coli AmpC, P99, 
ACT-1, CMY-2, FOX-1, MIR-1

C 1e Cephalosporins Increased hydrolysis of ceftazidime and 
often other oxyimino-b-lactams

GC1, CMY-37

D 2d Cloxacillin Increased hydrolysis of cloxacillin  
or oxacillin

OXA-1, OXA-10

D 2de Extended-
spectrum 
cephalosporins

Hydrolyzes cloxacillin or oxacillin and 
oxyimino-b-lactams

OXA-11, OXA-15

D 2df Carbapenems Hydrolyzes cloxacillin or oxacillin  
and carbapenems

OXA-23, OXA-48

Adapted from [22].
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New antimicrobials
Novel antimicrobials with potential activity against 
Gram-negative bacteria include new b-lactamase inhibi-
tors (Table 2), cephalosporins, carbapenems (Table 3) and 
single agents belonging to different classes (Table 4). The 
MIC values of some novel agents and their comparators 
are reported in Table 5.

New b-lactamase inhibitors
In the combination of b-lactam agents with b-lactamase 
inhibitors, the latter potentates the action of the former 
by protecting it from enzymatic hydrolysis. Currently 
used b-lactam/b-lactamase inhibitor compounds are 

highly active against class A enzymes and various ESBLs, 
while activity against class C and class D is poor and they 
are not active against class B b-lactamases [39]. Details 
of both old and new b-lactam inhibitors are outlined 
in Table 2. Several compounds are now under investi-
gation as potential b-lactamase inhibitors, in different 
stages of preclinical and clinical trials, but the results of 
Phase I and II trials were not published in peer-reviewed 
journals. These compounds can be classified accord-
ing to their molecular structure as b-lactams and non-
b-lactams. Their main advantage over the older avail-
able b-lactamase inhibitors is conferred by the ability to 
inhibit class C and D enzymes. MIC of various currently 

Table 2. Old and new b-lactamase inhibitors and specific activity against different classes of b-lactamases.

Inhibitor Class A Class B Class C Class D US FDA status

Inhibitors with b-lactam structure

Clavulanic acid + - + + Approved

Tazobactam + - + + Approved

Sulbactam + - + + Approved

BLI-489 + ? + + Phase I†

BAL 30376 ? + + ? Phase I†

LK-157 + ? + ? Preclinical

Oxapenems + ? + + Preclinical

Inhibitors without b-lactam structure

NXL104 + + + + Phase I and II†,‡

ME1071 ? + ? ? Phase I (Japan)†

MK7655 + ? + ? Phase I†

†Complete results not published. ‡In combination with ceftaroline and ceftazidime, respectively.
+: Active; -: Nonactive; ?: Unknown. 
Data taken from [39–55].

Table 3. Status and pharmacokinetic characteristics of new carbapenems.

Drug Status Dose Administration Half-
life (h)

Activity against

Enterobacteriaceae Pseudomonas 
aeruginosa

Acinetobacter 
spp.

MRSA

Ertapenem FDA approved 1 g q.d. iv. 4 + - - -

Doripenem FDA approved 500 mg t.i.d. iv. 1 + + + -

Panipenem Approved in 
Japan, China 
and Korea

0.5/0.5 g b.i.d. iv. 1.1–0.7 + - ? -

Biapenem Phase II 300 mg b.i.d. iv. 1.03 + + + -

Tomopenem Phase II 750–1500 mg 
t.i.d.

iv. 1.7 + + + +

Razupenem Phase II ? iv. ? + + ? +

Tebipenem Phase II 4–6 mg/kg 
b.i.d.

Oral ? + - ? -

+: Active; -: Nonactive; ?: Unknown; b.i.d.: Twice daily; iv.: Intravenously; MRSA: Methicillin-resistant Staphylococcus aureus; q.d.: Every day; t.i.d.: Three-times daily.
Data taken from [65–79].
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used b-lactams, such as piperacillin or ceftazidime, is 
decreased when administered together with a novel b-lac-
tam inhibitor, and these antibiotics reactivate against 
ESBL-producing strains. Moreover, the combined use 
of some new  b-lactamase inhibitors with carbapenems 
makes the latter active against MBL-producing strains. 
Although no large clinical studies on usefulness of new 
b-lactam inhibitors have been performed, they seem 
 particularly promising as  therapeutic agents. 

 ■ Inhibitors with b-lactam structure
Imidazole-substituted  
6-methylidene-penem molecules
The unique structure of these compounds imparts 
potent activity against class A and C b-lactamases, such 
as AmpC, which is not observed with the currently 
used inhibitors. Several novel compounds demon strated 
excellent in vitro inhibition of the TEM-1 and AmpC 
enzymes with significantly higher activity compared 
with tazobactam, which already has better class C activ-
ity than clavulanic acid [40,41]. In vitro and in vivo tests 
showed synergistic activity of these compounds when 
combined with piperacillin (90% of the tested strains 
were susceptible and a synergistic effect was observed 
in animal models) [40,42]. Among these agents, BLI-489 
is the compound with the most promising clinical 
data. It has shown activity against class A, C and D 
enzymes, including ESBL and some ESBL-producing 
strains nonsusceptible to piperacillin/tazobactam were 
susceptible to piperacillin/BLI-489 [43,44].

Monobactam-based structure compounds
BAL 30376 is a b-lactamase inhibitor and is a com-
bination of BAL 19764 (a siderophore monobactam), 
BAL 29880 (a bridged monobactam which is a class C 

inhibitor) and clavulanic acid [45]. BAL 30376 is active 
against various Gram-negative bacteria and MICs were 
observed in a range of at most 0.06–4 mg/l, includ-
ing most carbapenem-resistant strains, while higher 
MICs were observed for a few strains of Acinetobacter 
spp., Enterobacter spp. and P. aeruginosa [44]. It was 
found active at 4 mg/l against MBL-producing strains 
and some isolates of Burkholderia cepacia and carba-
penemase-producing A. baumannii; however, it was 
in active against KPC-producing strains [45].

Trinems 
LK-157 is a tricyclic carbapenem inhibitor of class A 
and C b-lactamases [46]. LK-157 decreased the MICs 
of aztreonam, ceftazidime and cefuroxime for B. fra-
gilis and a wide range of b-lactamases-producing 
Enterobacteriaceae members. However, it was noted 
that LK-157 did not affect the MICs of aztreonam, 
ceftazidime or cefuroxime against CTX-M-producing 
strains [44]. In combination with various antibiotics, it 
restored the activity against ESBLs, except for CTX-M 
and KPC-producing strains [46]. 

Oxapenems
Four b-lactamase inhibitors, members of oxapenems, 
are being developed (AM-112–115), and they express 
activity against class A, C and D enzymes [47]. AM-114 
and -115 displayed the most potent activity against 
class A, comparable to that of clavulanic acid. Activity 
against class C and class D enzymes was similar for 
all four agents and was superior to that of clavulanic 
acid. A synergistic activity of ceftazidime with the oxa-
penems was demonstrated against SHV- and TEM- 
producing E. coli [48]. Ceftazidime alone was also less 
effective than ceftazidime plus AM-112 against a strain 

Table 4. US FDA status and antimicrobial activity of novel antimicrobials against multidrug-resistant  
Gram-negative strains.

Drug FDA status Antimicrobial class In vitro activity against MDR Gram-negative bacteria

Escherichia 
coli

Klebsiella 
pneumoniae

Pseudomonas 
aeruginosa

Acinetobacter 
baumannii

ACHN-490 Phase II Aminoglycosides + + + +

KB001 Phase II Antibody fragment - - + -

CB-182804 Phase I Polymyxins + + + +

AN3665 Phase I Protein-synthesis inhibitors + + + +

TP-434 Phase I Tetracyclines + + + +

MBX agents Preclinical Bis-indoles ? + ? ?

BAL30072 Preclinical Monobactams + + + +

CHIR-090 Preclinical LpxC inhibitors + ? + ?
+: Active; -: Nonactive; ?: Unknown; MDR: Multidrug resistant. 
Data taken from [8,83–107]
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Table 5. MIC90 of some new agents and comparators against Gram-negative rods in different studies.

Bacteria (number of isolates) MIC90 (range), µg/ml Ref.

Novel b-lactams inhibitors

Piperacillin + tazobactam Piperacillin + BLI-489 [43]

Escherichia coli (52) 2 (0.5–128) 2 (0.25–64)

E. coli ESBL-A† (31) >128 (1–>128) 16 (1–32)

E. coli AmpC (17) 32 (2–64) 16 (1–16)

Enterobacter cloacae (52) >128 (0.5–>128) 16 (0.5–16)

Klebsiella pneumoniae (54) 16 (1–>128) 8 (1–16)

K. pneumoniae ESBL-A (36) >128 (2–>128) 2–128 (32)

K. pneumoniae AmpC (30) >128 (8–>128) >128 (4–>128)

Acinetobacter spp. (30) 32 (≤0.12–>128) 16 (0.5–32)

Pseudomonas aeruginosa (54) >128 (4–>128) 64 (4–>128)

 Meropenem Meropenem + ME1071 [51]

MBL-producing P. aeruginosa (174) >64 (0.5–>64) >64 (0.25–>64)

Non-MBL-producing P. aeruginosa (16) 64 (0.12–64) 64 (0.5–64)

Novel carbapenems

 Imipenem Tebipenem [77]

E. coli (42) 0.125 (≤0.063–0.25) ≤0.063 (≤0.063)

K. pneumoniae (34) ≤0.063 (0.125–0.5) 0.25 (≤0.063–0.5)

P. aeruginosa (53) 25 (0.39–25) 100 (3.13–>100)

 Meropenem Tomopenem [72]

E. coli (25) ≤0.03 (≤0.03–0.25) ≤0.03 (≤0.03–0.12)

K. pneumoniae (25) ≤0.03 (≤0.03–0.06) 0.06 (≤0.03–0.12)

P. aeruginosa (100) 16 (0.06–>32) 4 (0.06–32)

Imipenem ME-1036 [78]

E. coli (27) 0.125 (0.063–0.25) 0.125 (0.031–0.25)

K. pneumoniae (26) 0.125 (0.063–0.25) 0.063 (0.031–0.125)

P. aeruginosa (27) 32 (1–32) 1024 (256–1024)

Novel monobactams

Meropenem BAL-30072 [80]

P. aeruginosa (265) 16 4

Acinetobacter spp. (40) 16 8

Novel polymyxins

Colistin CB-182804 [92]

E. coli (80) 0.5 2

K. pneumoniae (81) 2 4

P. aeruginosa (100) 2 2

Acinetobacter spp. (81) 4 4
†Class A extended-spectrum b-lactamases.
MBL: Metallo-b-lactamases; MIC90: Minimum inhibitory concentration required to inhibit the growth of 90% of organisms.
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of E. coli containing TEM-1 and CTX-M-1 [49]. An 
enhanced activity of oxapenems in combination with 
ceftazidime was also noted against Pseudomonas strains 
and MRSA [48].

 ■ Inhibitors with no b-lactam structure
NXL104
NXL104 is a non-b-lactam compound that inhibits 
b-lactamases through the formation of a stable cova-
lent carbamoyl linkage. It showed a four- to 8000-fold 
increase in the activity of ceftazidime and cefotaxime 
against CTX-M-producing Enterobacteriaceae [44]. 
NXL104 showed a stronger inhibition of P99 (class C) 
than tazobactam, while clavulanic acid was inactive. 
Moreover, the combination with NXL104 restored 
the activity of ceftazidime and cefotaxime against 
isolates producing the class A carbapenemases [50]. 
NXL104/ceftazidime combination is currently under-
going clinical trials: NXL104/ceftazidime plus met-
ronidazole versus meropenem in complicated intra-
abdominal infections (study completed, results not 
published yet) and NXL104/ceftazidime versus imi-
penem/cilastin in UTIs (trial ongoing).

Maleic acid derivates 
ME1071, previously known as CP3242, is a inhibitor of 
MBL that competitively inhibits both IMP-1 and VIM-2. 
It significantly lowered the MICs of biapenem in a con-
centration-dependent manner against MBL-producing 
P. aeruginosa [51]. This effect was also observed for IMP or 
VIM producing E. coli, Serratia marcescens, P. aeruginosa, 
A. baumannii and K. pneumoniae [44,51].

MK-7655 
MK-7655 is active against class A and class C carba-
penemases and has a good in vitro and in vivo activity in 
combination with imipenem [52–54]. A Phase I, random-
ized, double-blind, placebo-controlled study showed 
that MK-7655 was generally well tolerated following 

a single intravenous dose and it demonstrated a favor-
able pharmacokinetics profile when  administered in 
combination with cilastin and  imipenem [55]. 

New cephalosporins
New cephalosporins (ceftobiprole, ceftaroline and 
CXA-101) are very resistant to penicillinases and the 
first two are also active against MRSA. Although they 
have some activity against Gram-negative bacteria, there 
is no evidence of an enhanced activity against MDR 
strains when compared with older cephalosporins.

 ■ Ceftobiprole
Ceftobiprole (formerly BAL-9141) is an active com-
ponent of the prodrug named ceftobiprole medocaril 
(formerly BAL-5788), and in comparison to older 
compounds, expanded activity against Gram-positive 
bacteria was observed. A randomized, double-blind 
trial published in 2008, reported that ceftobiprole 
monotherapy was as effective as vancomycin com-
bined with ceftazidime for treating adults with com-
plicated skin and skin-structure infections (SSSIs) 
due to Gram-positive and Gram-negative bacteria [56]. 
Following these results, ceftobiprole has been approved 
for this indication in Canada and Switzerland, but the 
US and European approval procedures are ongoing. 
Ceftobiprole has a low potential for inducing chro-
mosomal AmpC b-lactamases, but it is hydrolyzed by 
most ESBLs and MBLs [57].

 ■ Ceftaroline
Ceftaroline is a novel semisynthetic anti-MRSA 
cephalo sporin with a broad-spectrum activity, approved 
by the FDA in 2010 for the treatment of acute bacterial 
SSSIs and community-acquired bacterial pneumonia 
(CAP) [58]. In vitro, ceftaroline was synergistic with 
tazobactam against MDR Gram-negative pathogens 
such as ESBL-producing E. coli and K. pneumoniae [59]. 
Nevertheless, in Phase III clinical trials, ceftaroline 

Table 5. MIC90 of some new agents and comparators against Gram-negative rods in different studies (cont.).

Bacteria (number of isolates) MIC90 (range), µg/ml Ref.

Bis-indole agents

Meropenem MBX 1196 [96]

A. baumannii (30) >8 (0.5–>8) 1 (0.06–1)

Protein-synthesis inhibitors

 Imipenem AN3365 [98]

P. aeruginosa (101) >64 (0.25–>64) 8 (1–16)

Acinetobacter spp. (25) >64 (8–>64) 16 (4–32)
†Class A extended-spectrum b-lactamases.
MBL: Metallo-b-lactamases; MIC90: Minimum inhibitory concentration required to inhibit the growth of 90% of organisms.
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was less active than currently used antimicrobial agents 
against Gram-negatives, as a combination of vanco-
mycin plus aztreonam demonstrated higher favorable 
microbiological response rates (86.3 vs 93.6%) [60]. 
In particular, the efficacy of ceftaroline against non-
ESBL-producing E. coli and K. pneumoniae was com-
parable to that of aztreonam, but was lower against 
P. aeruginosa and Proteus mirabilis infection [60].

 ■ CXA-101
CXA-101 (previously FR264205), is a novel cephalo-
sporin of particular interest in the treatment of Gram-
negative infections. It has a potent activity against 
P. aeruginosa, which is not diminished by AmpC 
over expression, porin mutations or efflux pumps [61]. 
CXA-101 is under development as a single agent and 
in  combination with tazobactam (Phase II) [62]. 

New carbapenems
Carbapenems are a class of broad-spectrum b-lactams 
identified in the late 1970s. The main advantage of this 
class of antibiotics is due to their stability to hydrolysis 
by many ESBLs. At present, meropenem and imipenem/
cilastatin are widely used and recommended for treat-
ment of severe infections. Imipenem is hydrolyzed by 
renal dehydropeptidase I (DHP-I) and this process pro-
duces a nephrotoxic compound; consequently cilastatin, 
the DHP-I inhibitor without antibacterial activity, is 
always coadministered with imipenem with a 1:1 ratio. 
Apart from panipenem, older and new carbapenems do 
not require DHP-1 inhibitors. Several mechanisms of 
resistance to  carbapenems are known: 

 ■ Carbapenemases or other b-lactamases with weak 
hydrolyzing activity;

 ■ Changes in membrane permeability through the loss 
of specific porins;

 ■ Efflux pumps;

 ■ Structural changes in protein-binding proteins; but 
the resistance phenotype is usually a result of an 
i nterplay involving more than one mechanism [63].

Following evaluation of pharmacokinetic–pharmaco-
dynamic properties, clinical data and MIC distributions 
that include recently described carbapenemase-pro-
ducing strains, the Clinical and Laboratory Standards 
Institute (CLSI) established revised interpretative crite-
ria for carbapenems (Table 6) [201]. The method currently 
endorsed by the CLSI is the modified Hodge Test, but 
it may not be the ideal phenotypic confirmatory test for 
KPCs since false positive results have been reported [64].

Over ten novel compounds are reported in dif-
ferent phases of clinical development; two of them 

are currently marketed and available (ertapenem and 
doripenem), others are in Phase II clinical trials, while 
several are still being investigated in preclinical studies. 
Of note, tebipenem is a novel carbapenem that can be 
administered orally.

 ■ Ertapenem
Ertapenem was licensed in the USA in 2001 and in 
Europe in 2002, with indications including: intra-
abdominal infections, complicated SSSIs, complicated 
UTIs, acute pelvic infections and CAP. The main limi-
tation of ertapenem is its poor activity against nonfer-
menting Gram-negative bacteria, such as P. aeruginosa, 
Acinetobacter spp and B. cepacia [65]. The role of ertap-
enem in the treatment of ventilator-associated pneumo-
nia was investigated and a pilot study found ertapenem 
useful for treating early-onset ventilator-associated 
pneumonia due to ESBL producers, with clinical suc-
cess achieved in 80% of patients and microbiological 
success in 75% of cases [66].

 ■ Doripenem
Doripenem is a new broad-spectrum, recently marketed, 
parenteral carbapenem. It is as active against Gram-
positive cocci such as methicillin-susceptible S. aureus 
(MSSA) and coagulase-negative staphylococci, but 
activity against MDR Enterobacteriaceae is similar to 
that of meropenem, and two- to three-fold superior to 
imipenem [67–69]. 

 ■ Biapenem
Biapenem was approved in Japan in 2002 and its 
prominent feature is related to its high concentration 
in respiratory tissue and other body fluids. It has a broad 
spectrum of activity including Gram-positive bacteria 
such as S. pneumoniae (also penicillin-resistant strains), 
MSSA and Gram-negatives including A. baumannii, 
and ESBL-producing Enterobacteriaceae, while, mod-
erate activity (median MIC 8 mg/l) was found against 
P. aeruginosa [70,71].

 ■ Tomopenem
Tomopenem (CS-023) seems to have a very low rate of 
spontaneous emergence of resistance and in vitro activ-
ity against b-lactam-susceptible and -resistant strains, 
including MRSA, ceftazidime-resistant P. aeruginosa 
and ESBL-producing Enterobacteriaceae [72]. Its activ-
ity against Gram-negatives was found to be similar or 
better than meropenem [68]. It seems more effective 
than imipenem and meropenem against MRSA (with 
a MIC of 4 mg/l) and is characterized by a low protein 
binding ratio, a feature that can be useful since the plas-
matic active fraction achieves rapid equilibrium with 
 intracellular fluid [44].
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 ■ Razupenem
Razupenem (previously know as SMP-601) is a novel 
compound in Phase II of evaluation. In vitro, razupe-
nem was found active against ESBL-producers, but its 
activity was significantly reduced by AmpC enzymes 
and carbapenemases [73].

 ■ Panipenem/betamipron
The combination of panipenem with betamipron, 
similar to imipenem/cilastatin, is necessary because 
betamipron inhibits the renal uptake of panipenem. 
It is approved in Asia for the treatment of lower respi-
ratory tract infections, UTIs, obstetrical/gynecologi-
cal and surgical infections. The clinical efficacy of 
panipenem/betamipron was demonstrated in three 
large, randomized, Phase III clinical trials compar-
ing this drug with imipenem/cilastatin in adults with 
respiratory and UTIs [74]. Its spectrum of activity 
includes Enterobacteriaceae and common respiratory 
tract pathogens, although meropenem remains the 
most active carbapenem against Haemophilus influen-
zae [75]. Panipenem is not active against E. faecium, and 
Stenotrophomonas maltophilia and P. aeruginosa seem to 
be resistant, showing MIC

90
 values of 12.5–25 mg/l [75].

 ■ Tebipenem
Tebipenem pivoxil is a prodrug of an oral carbapenem 
with a high degree of stability to DHP-I. While tebi-
penem is inactive against MBL-producing pathogens 
and MRSA, good activity against K. pneumoniae and 
E. coli has been reported [67]. It might become a specific 
antibiotic for the treatment of persistent otitis media, 
UTI and bacterial pneumonia in pediatric patients, 
given its favorable pharmacokinetic profile and oral 
administration [76,77].

 ■ ME1036
ME1036, previously named CP5609, is a novel par-
enteral carbapenem, active against Enterobacteriaceae 
and Gram-positives [78]. Recently, the activity of 
ME1036 and comparators was evaluated against clini-
cal blood culture isolates from patients with bacter-
aemic CAP requiring hospitalization, and ME1036 
had an  excellent activity against all isolates, including 
MRSA [79].

The latter three carbapenems, similarly to ertapenem, 
are all inactive against P. aeruginosa. Particular advan-
tages of tebipenem include good oral bioavailability and 
activity against Acinetobacter spp. 

Novel monobactams
BAL30072 is a monosulfactam with siderophore side 
chain and penicillin-binding protein affinities. Good 
activity against MDR nonfermenting rods has been 

reported [80], and activity against MDR Acinetobacter 
spp. is further enhanced by iron limitation, the natural 
condition in the human body. Such enhanced activity 
results from induction of the siderophore receptors in 
Acinetobacter [81,82].

Novel aminoglycosides
In this old class of antibacterials, ACHN-490 is a 
novel compound that evades plasmid-mediated amino-
glycoside-modifying enzymes and is currently under-
going a Phase II evaluation in complicated UTI [32,83]. 
Compared to currently used aminoglycosides, it has 
shown better activity against 82 carbapenem-resistant 
Enterobacteriaceae. However, 16 of 17 isolates with 
NDM-1 enzyme were resistant to ACHN-490 (with 
MICs ≥64 mg/l) and all the other currently used 
amino glycosides [83]. Recently, antimicrobial activity 
of ACHN-490 has been tested against clinical isolates 
of A. baumannii, P. aeruginosa, E. coli and K. pneu-
moniae [84,85]. The MICs of ACHN-490 for A. bauman-
nii were lower than those of traditional aminoglycosides, 
whereas against P. aeruginosa the activity was similar 
to that of amikacin [84]. ACHN-490 was active against 
most isolates of E. coli and K. pneumoniae, including 
MDR strains, and MIC

90
 values for ACHN-490 were 

four-times lower than for amikacin [85].

Novel tetracyclines
TP-434 is a broad spectrum fluorocycline with in vitro 
antimicrobial activity against all major pathogens 
(except for P. aeruginosa) and efficacy in animal mod-
els against MDR Gram-negatives [86]. TP-434 and 
comparator agents were tested against 398 clinical 
strains of Gram-negatives [87]. An intravenous for-
mulation of TP-434 is currently undergoing Phase I 
trial, while an oral formulation is in preclinical 
 development [8].

Table 6. New carbapenem breakpoints for Enterobacteriaceae.

Susceptible Intermediate Resistant

New carbapenem breakpoints, MIC (µg/ml)

Doripenem ≤1 2 ≥4

Ertapenem ≤0.25 0.5 ≥1

Imipenem ≤1 2 ≥4

Meropenem ≤1 2 ≥4

Old carbapenem breakpoints, MIC (µg/ml)

Ertapenem ≤2 4 ≥8

Imipenem ≤4 8 ≥16

Meropenem ≤4 8 ≥16
MIC: Minimum inhibitory concentration.
Adapted from [201].
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Novel polymyxin analogs
CB-182804 is a novel polymyxin B analog currently in 
Phase I of clinical development, which is active against 
MDR P. aeruginosa, A. baumannii, K. pneumoniae and 
E. coli [88,89]. Similarly to polymyxin B, CB-182804 
has been shown to bind to lipopolysaccharide leading 
to an increase in cell membrane permeability, leak-
age of cell contents and cell death [90]. Resistance to 
CB-182804 in A. baumannii may result from altera-
tions in membrane structure and permeability, since 
these mutants also show increased susceptibilities to 
other antibiotics [91]. Recently, CB-182804 has been 
tested against colistin-susceptible and -resistant iso-
lates, and was very active against colistin-susceptible 
strains that were resistant to all other currently avail-
able antimicrobials, but cross-resistance with colistin 
was observed in the colistin-resistant bacteria [92]. 
Moreover, the addition of rifampicin was reported to 
lower MICs of CB-182804 more than MICs of poly-
myxin B and to restore activity against resistant iso-
lates [93]. In monkeys, CB-182804 demonstrated less 
nephrotoxicity when compared with polymyxin B [94].

Bis-indole antibiotics
The bis-indole antibiotics enter bacterial cells and 
interact with DNA, resulting in inhibition of DNA 
and RNA synthesis, ssDNA breaks and induction of 
the SOS response. Therefore, it is likely that the DNA 
binding activity of these compounds is directly related 
to their mechanism of antibacterial action [95]. Eight bis-
indole agents have shown potent in vitro activity against 
K. pneumoniae, including MDR and carba penem-
resistant strains, but further studies are w arranted to 
determine their potential for clinical use [96]. 

Boron-containing antibacterial protein  
synthesis inhibitors
The novel boron-containing antibacterial, AN3365, 
inhibits protein synthesis by inhibiting tRNA-syn-
thetase [97]. An excellent in vitro activity against vari-
ous Gram-negative bacteria, including ciprofloxacin- 
resistant isolates, was reported [98,99], as well as a 
favorable pharmacokinetic profile in mice [100].

Novel outer membrane synthesis inhibitors
LpxC is a deacetylase involved in the biosynthesis of 
lipopolysaccharide in cell of Gram-negatives and it 
is a validated target for developing novel antimicro-
bial agents such as CHIR-090, a potent inhibitor of 
LpxC [101,102]. These agents have a novel mechanism of 
action and are active against MDR P. aeruginosa and 
MDR E. coli. (MIC <1 mg/ml) [8]. Moreover, they 
have the potential to be administered orally as well as 
 intravenously [8].

Antibiotics targeting novel sites of the 50S 
ribosomal subunit
Following a novel approach to antibiotic research and 
development, the Rc-04 program has identified 1400 
crystal structures of known and new antibiotics bound 
to the 50S ribosome, thereby defining an available anti-
biotic design space in a large ribosomal binding site [8]. 
Among 100 new analogs, several showed activity against 
E. coli and P. aeruginosa, including MDR strains [103].

Novel antimicrobial peptides
Antimicrobial peptides are a group of molecules pro-
duced by all types of living organisms, considered to be 
part of the host innate immunity. The ability of these 
natural molecules to kill MDR microorganisms has 
gained them considerable attention and clinical interest 
[104]. Among them, a group of peptides was investigated 
as antibacterial agents against A. baumannii, and one 
of these compounds, mastoparan, showed good activity 
against both colistin-susceptible and -resistant strains, 
suggesting that the mechanism of action of this antimi-
crobial peptide may be different than that used by colis-
tin [105]. For more details on this interesting new class 
of antimicrobial, see a review recently published [104]. 

Antibody fragments
Using antibodies as antimicrobial agents is another 
novel field to be exploited in the research for solu-
tions against MDR bacteria. KB001 is a high-affinity 
antibody fragment in the development of a treatment 
for P. aeruginosa infections [106]. The type-III secre-
tion system is responsible for the delivery of exotoxins 
to target mammalian cells. KB001 binds to the PcrV 
protein of this secretion system, inhibits its activity and 
thereby reduces the pathogenicity of P. aeruginosa and 
its toxicity to host immune and epithelial cells [107]. 

Optimizing the use of already existing agents  
& limiting the spread of MDR strains
Pending the release of new drugs active against these 
MDR bacteria, the Probability of target attainment 
of Antibacterial agents Studied for Susceptibility and 
Pharmacodynamic Optimization in Regional Trials 
(PASSPORT) study demonstrated that, especially for 
nonfermenting Gram-negative bacilli such as A. bau-
mannii and P. aeruginosa, high-dose prolonged infusions 
of cefepime, ceftazidime, doripenem and meropenem 
have higher probabilities of achieving bactericidal expo-
sure compared with standard 30-min infusion regimens, 
reducing the risk of treatment failure [108]. For example, 
prolonged infusion of doripenem has been reported to 
increase its efficacy, particularly against strains with 
higher MIC values: doripenem 500-mg dose infused 
over 1 h every 8 h would be expected to be effective 
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for bacilli with MICs to doripenem of 1 µg/ml or less, 
while a 4-h infusion time improved target attainment for 
pathogens with a MIC as high as 4 µg/ml [109]. Thus, pro-
longed infusion seems to partially restore the efficacy of 
b-lactams against strains with decreased susceptibility. 

Given the increase in MDR strains and limited 
therapeutic options available, containing the spread 
of resistant pathogens is crucial. Infection control 
policies should be revised and implemented to avoid 
 transmission of MDR Gram-negatives [110]. 

Future perspective
Infections due to MDR Gram-negative bacteria, such as 
ESBL or carbapenemase-producing Enterobacteriaceae 
and A. baumannii or P. aeruginosa are a serious and 
emerging problem in healthcare and community set-
tings, respectively. Although some promising novel mol-
ecules are in the late-stage of development, few new 
antibiotics have been advanced into clinical practice 
for the treatment of most of the ESKAPE pathogens. 
Moreover, among them, only few are active against 
MDR organisms. 

Novel anti-Gram-negative agents include  b-lactamase 
inhibitors, cephalosporins, carbapenems and other com-
pounds belonging to old and new classes of antimicrobi-
als. Fifth-generation cephalosporins acquired activity 
against MRSA, but except for CXA-101, they offer no 
advantage against MDR Gram-negatives. While some 
novel carbapenems are active against resistant Gram 
positives, when difficult Gram-negatives are involved 
their activity is similar to that of meropenem. Thus, 
b-lactamase inhibitors seem the most promising group 
of new compounds, as they might restore the activity of 
already known b-lactams against b-lactamase-producing 

strains. Although some of them seem to inhibit carbap-
enemases as well, their real clinical utility will be known 
only after results of clinical trials are available. 

Innovative strategies against diff icult Gram-
negatives, such as P. aeruginosa have been proposed: 
antibody fragments can inhibit virulence factors 
reducing pathogenicity and are currently undergoing 
Phase II studies. Other novel antimicrobials include 
bis-indoles, boron-containing antibacterial protein 
synthesis inhibitors, outer membrane synthesis inhibi-
tors and antimicrobial peptides. However, they are 
still undergoing preclinical or Phase I studies, so truly 
new therapeutic options against MDR strains are still 
far from clinical practice.

Finally, appropriate surveillance of infections due to 
MDR pathogens and antimicrobial stewardship pro-
grammers in human medicine, agriculture and ani-
mal husbandry are mandatory. This goal is achievable 
with the coordination between healthcare profession-
als, to ensure thorough surveillance and to optimize 
 prescribing the most suitable antibiotic therapy. 
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Executive summary

 ■ A worldwide increase in antimicrobial resistance of Gram-negative bacteria has been noted, probably owing to the widespread 
use of antibiotics.
■ b-lactamase inhibitors seem promising agents in restoring activity of already existing b-lactams, although few of them are active 
against carbapenemases.

 ■ New cephalosporins and carbapenems offer little advantage against multidrug-resistant Gram-negative strains.
 ■ New groups of antimicrobials include bis-indoles, boron-containing antibacterial protein synthesis inhibitors, outer membrane 
synthesis inhibitors and antimicrobial peptides. 

 ■ Very few agents will be shortly available for clinical practice.
 ■ Hopefully, based on the growing knowledge of resistance mechanisms, other agents with a novel mechanism of action, designed 
specifically against resistant strains, will be developed.
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