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Review: Clinical Trial Outcomes

Metastatic bone disease has a major impact on both the morbidity and 
mortality of patients. Antiresorptive bisphosphonates have revolutionized 
treatment and outcomes for patients with bone metastases, but pain and 
other skeletal complications still occur, adversely affecting quality of life 
and survival. Recent understanding of the bone microenvironment has 
highlighted the importance of RANK, its ligand (RANKL) and the decoy 
receptor OPG in the vicious cycle of bone resorption and destruction. 
Exploiting this triad led to the development of denosumab, a fully-human 
monoclonal antibody to RANKL. The success of this bone-directed agent 
in early clinical trials and favorable safety and tolerability profile led to the 
conduct of large multi-center randomized trials in breast, prostate, myeloma 
and other advanced cancers. In this review, we discuss the development 
of denosumab, the data that led to its licensing for patients with bone 
metastases and the future for bone-directed therapies.

Keywords: bisphosphonate • bone-directed therapy • bone metastases • denosumab 
• OPG • RANK • RANKL.

Metastatic bone disease
Many patients with advanced cancer develop skeletal involvement in the course 
of their disease. Untreated, bone metastases can result in a substantial burden of 
bone pain and other skeletal complications, which have a major impact on quality 
of life [1] and possibly also survival [2]. Up to 70% of patients with advanced pros-
tate or breast cancer will develop bone metastases and the figure approaches 100% 
in myeloma. However, survival in patients with bone metastases is often longer 
than in patients with metastases at other sites and may be measured in years. For 
example, in a population of women with bone metastases from breast cancer, 
median survival was approximately 2–3 years [3] and, indeed, in patients with 
bone only metastases, approximately 20% of patients survive for 5 years or more 
[4]. Great efforts have therefore been made to prevent, minimize and treat com-
plications related to osseous metastases, termed skeletal-related events (SREs): 
fracture, spinal cord compression, hypercalcemia and surgery or radiotherapy to 
bone for bone pain. Without bone-directed therapy, a patient with breast cancer 
and bone metastases can experience up to an average of 4 SREs per year [5]. 

The occurrence of SREs is primarily due to the increased bone resorption that 
occurs as metastatic tumors develop. Although bone pain is commonly treated 
on a multi-disciplinary basis, which may involve analgesic medications, chemo-
therapy, endocrine therapy, external beam radiotherapy and surgery, pain can 
be refractory to these measures and it is now accepted that drug-based therapies 
that reduce bone resorption (antiresorptive drugs) are a crucial component of 
the management of such patients. Several biomarkers that are readily measured 
in urine or serum have been developed to ‘report’ on the bone resorption status 
of patients. Examples are urinary (u) N-telopeptide of type I collagen (NTX) and 
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C-telopeptide of type I collagen, which are formed 
during the degradation of type I collagen during nor-
mal bone turnover, but which may be substantially 
elevated in metastatic bone disease under the influ-
ence of the vicious cycle. Another bone resorption 
biomarker, TRAP-5b is sometimes used as a more 
direct measure of osteoclast activity and is unaffected 
by renal dysfunction. Such biomarkers have found 
increasing use in the prediction of risk of SREs and 
in monitoring the effectiveness of anti-bone resorptive 
drugs in clinical trials.

Bisphosphonates
Bisphosphonates are a class of bone antiresorptive 
drugs that have revolutionised the management of bone 
meta stases and have become established in routine clin-
ical practice, based on extensive clinical studies in a 
variety of cancer types. Nitrogen-containing bisphos-
phonates such as zoledronic acid and ibandronate are 
significantly more potent bone resorption inhibitors 
than the earlier non-nitrogen agents such as clodro-
nate [6]. In breast cancer, for example, oral ibandronate 
significantly reduced the risk of SRE compared with 
placebo (Hazard ratio [HR] 0.62; 95% CI: = 0.48, 0.79, 
p = 0.0001) while zoledronic acid has shown superiority 
over the less potent pamidronate (4 mg zoledronic acid 
vs 90 mg pamidronate; time to first SRE 310 days vs 
174 days; p = 0.0134) [7]. In hormone-refractory pros-
tate cancer, zoledronic acid 4 mg reduced SREs by 11% 
(p = 0.021) and median time to first SRE (p = 0.011) 
compared with placebo [8]. Intravenous (iv.) zoledronic 
acid 4 mg significantly increased time to first SRE (230 
vs 163 days; p = 0.023) compared with placebo in a 
group of mixed solid tumors [9,10]. 

Despite the benefits of bisphosphonates, SREs still 
occur with consequential impact on morbidity and 
mortality. Therefore, research has been directed at 
the development of alternative agents that can further 
improve the reduction of SREs. Denosumab is a new 
bone-modifying drug that has shown much promise 
in this setting. 

Development of denosumab
 ■ The vicious cycle

Healthy bone is not an inert organ, but is constantly 
being remodeled within a dynamic, but tightly con-
trolled microenvironment containing osteoblasts 
(responsible for bone formation), osteoclasts (respon-
sible for bone resorption) and other cells such as osteo-
cytes, along with mineral ized bone matrix. Metastatic 
tumor growth within this environment causes disrup-
tion of the balanced remodeling, resulting in increased 
bone resorption [11,12]. Tumor cells secrete a great vari-
ety of proteins that interact with the local cells and 

pathways, increasing resorption, which releases further 
growth factors into the system. This is turn feeds tumor 
growth in the so-called ‘vicious cycle’ of resorption and 
bone destruction [13]. An understanding of these inter-
actions is crucial to the development of bone-directed 
therapies with several emerging treatments exploiting 
the array of potential targets [14].

 ■ RANK/RANKL/OPG triad
The communications between osteoclasts and osteo-
blasts have been studied extensively, identifying the 
RANK/RANKL/OPG triad as having a principal 
role. RANKL, expressed by bone marrow stromal 
cells, activated T cells and osteoblasts, is essential 
for promoting osteoclastogenesis, committing a pre-
cursor to the osteoclast phenotype [15]. Its receptor, 
RANK, a member of the TNF receptor superfam-
ily, is found on the surface of osteoclast precursors, 
chondrocytes and mature osteoclasts [16]. The bind-
ing of RANKL to RANK induces osteoclast differ-
entiation, fusion and formation of mature osteo-
clasts, increases their activity and blocks apoptosis. 
OPG, also a member of the TNF family, is the decoy 
receptor for RANKL, blocking the RANKL–RANK 
interactions and the aforementioned processes [17]. 
The RANK/RANKL/OPG pathway is an integral 
component of bone turnover, regulated by several 
cytokines and chemokines secreted within the bone 
microenvironment. Therefore, targeting the RANK–
RANKL interaction as the principal driver of bone 
turnover became an attractive opportunity.

Preclinical evidence for targeting RANK and its 
ligand
Early work in vitro using hematopoietic bone mar-
row precursors co-cultured with T cells confirmed 
the ability of RANKL to induce osteoclastogenesis, 
which could be blocked in the presence of OPG [18]. 
Further studies in vivo went on to show how inhibition 
of OPG manifests across many tumor sites (predomi-
nately prostate, myeloma and breast cancer cell lines). 
Blockade of OPG using soluble recombinant OPG 
(ligand-binding domain of human OPG fused to the 
Fc domain of human IgG; rOPG-Fc) inhibited tumor 
growth in bone [19,20], inhibited osteoclastogenesis 
[19,21–24], increased bone mineral density (BMD) [23,24] 
and increased tibial cancerous bone [23,24]. Several 
studies showed this to be a dose-dependent effect. 
Additionally, it has been shown that administration 
of rOPG-Fc can improve survival [20,25]. There was also 
some early evidence that OPG may be superior to zole-
dronic acid in terms of its effects on osteoclastogensis 
[26]. Alternative agents of inhibition were investigated 
by means of soluble murine RANK-Fc (sRANK-Fc) in 
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a prostate cancer model [27]. sRANK-Fc diminished 
osteoblastic lesions, suppressed bone turnover mark-
ers and decreased tumor burden in bone.

The above studies all highlighted the therapeutic 
potential of OPG blockade and subsequently further 
investigation in combination with chemotherapy was 
undertaken [28,29]. These studies suggest that the com-
bination results in increased tumor cell apoptosis and 
decreased tumor burden in bone compared with either 
treatment alone.

The first clinical study to incorporate this approach 
was a Phase I trial of a recombinant OPG molecule [30]. 
Dose-dependent inhibition of bone resorption was 
demonstrated but development was halted because of 
the occasional development of antibodies to synthetic 
OPG, which had the potential to inhibit endogenous 
OPG as well.

In an alternative approach, denosumab (AMG162) 
was developed as a fully humanized synthetic, spe-
cific IgG2 antibody [28]. It binds with a high affinity 
to RANKL and, critically for clinical development, 
does not induce a host antibody reaction [31]. Using 
‘knock-in’ methods, exchanging murine RANKL for 
human RANKL, studies showed that treatment with 
subcutaneous (sc.) denosumab decreases trabecular 
osteoclast surfaces, increases bone density and volume, 
and decreases resorption [28]. In preclinical primate 
studies, denosumab showed a specific, dose-dependent 
inhibition of bone resorption and increase in BMD 
[32]. Owing to the actions of denosumab in potently 
inhibiting mature osteoclast function as well as osteo-
clast differentiation, it was anticipated that denosumab 
would inhibit the interactions between tumor cells and 
osteoclasts, suppress bone turnover and potentially 
inhibit the development of malignant bone lesions [33]. 

Clinical trials with denosumab
 ■ Phase I & early Phase II studies

The initial toxicity and dose-limiting effects of deno-
sumab were investigated amongst postmenopausal 
women and reported effective serum NTX suppres-
sion with a single sc. injection [34]. The toxicity pro-
file was very favorable with no serious adverse events. 
The first study of efficacy and safety in cancer patients 
(24 myeloma and 29 breast cancer patients with bone 
metastases), compared denosumab and pamidronate in 
a randomized, double-blind, double-dummy trial [35]. 
In the denosumab arm, maximum suppression of bone 
resorption (70%) from a single dose (1 or 3 mg) was 
attained after 7 days and maintained for the 84 days of 
the study. Although a similar suppression was seen with 
pamidronate, it was not maintained beyond 28 days. 
The ability of denosumab to suppress uNTX and serum 
NTX was confirmed, as was its tolerability profile.

These encouraging first-in-human studies gave rise 
to a randomized Phase II trial in 255 patients with 
bone metastases from breast cancer [36]. Within these 
255 patients, five cohorts were treated with varying 
doses of denosumab (4 weekly sc. 30, 120 or 180 mg or 
12 weekly 60 or 180 mg) blinded to dose and frequency, 
while one cohort received open-label iv. bisphospho-
nate four-times weekly weekly (pamidronate, iband-
ronate or zoledronic acid). Significant reductions in 
uNTX were reported in 74% patients receiving denos-
umab compared with 63% receiving bisphosphonate. 
For first on-study SRE, 9 versus 16% experienced an 
SRE for denosumab and bisphosphonate respectively. 
Regarding safety, hypocalcemia was more common 
and more severe amongst those patients receiving 
denosumab compared with bis phosphonate. Taking 
into account the need to maximize bone resorption as 
measured by uNTX, this study led to the selection of 
sc. administration of 120 mg denosumab every 4 weeks 
as the dose for subsequent Phase III studies in patients 
with metastatic bone disease.

In a population of prostate patients with bone meta-
stases, denosumab significantly suppressed the bone 
turnover markers uNTX and TRAP5b, regardless 
of previous bisphosphonate exposure [37,38]. Similar 
effects on bone turnover markers (in this case serum 
C-telopeptide of type I collagen) were reported in a 
Phase II study of myeloma patients, again regardless 
of previous iv. bisphosphonate exposure [39].

 ■ Randomized Phase III trials
Three identically designed Phase III trials for treat-
ment of bone metastases from breast cancer, from cas-
tration-resistant prostate cancer and from other solid 
tumors and myeloma have each compared denosumab 
to zoledronic acid 4 mg iv., using the current standard 
of treatment, as an active control. Trials of zoledronic 
acid versus placebo (or, in the case of breast cancer vs 
pamidronate) in the same settings have already been 
referred to. Stopeck et al. randomized 2046 breast can-
cer patients with radiologically-confirmed bone metas-
tases to receive either sc. denosumab 120 mg and iv. 
placebo or iv. zoledronic acid 4 mg and sc. placebo every 
4 weeks [3]. Patients were allowed cancer-specific ther-
apies except for iv. bisphosphonates (previous oral bis-
phosphonates were allowed) and were strongly recom-
mended to be prescribed nutritional supplement ation 
with calcium and vitamin D. The primary end point 
was to confirm noninferiority of denosumab in time 
to first on-study SRE; superiority was a secondary end 
point. Denosumab significantly delayed time to first 
on-study SRE by 18% compared with zoledronic acid 
(HR: 0.82; 95% CI: 0.71–0.95; p = 0.001 noninferiority; 
p = 0.01 superiority). The median to first on-study SRE 
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was 26.4 months in the zoledronic acid group and was 
not reached by the denosumab group.

In a similar study conducted in men with castra-
tion-resistant prostate cancer and bone metastases 
(n = 1904), superiority of denosumab over zoledronic 
acid in time to first on-study SRE was confirmed 
(median time to first on-study SRE was 20.7 months 
[95% CI: 18.8–24.9] with denosumab compared with 
17.1  months [15.0–19.4] with zoledronic acid [HR: 
0.82, 95% CI: 0.71–0.95; p = 0.0002 for noninferiority; 
p = 0.008 for superiority]) [40]. Both studies also report 
greater suppression of bone turnover markers with the 
monoclonal antibody.

A third trial in cancer patients with solid tumors (non-
breast, nonprostate, n = 1596) or myeloma (n = 180), 
found that denosumab was noninferior to zoledronic 
acid (HR: 0.84; 95% CI: 0.71–0.98; p = 0.0007), but 
just failed to meet statistical significance to confirm 
superiority (p = 0.06) [41].

Because the three studies had identical design, it was 
possible to perform a preplanned integrated ana lysis, 
including the evaluation of safety and efficacy. Overall, 
denosumab was superior to zoledronic acid in reducing 
risk of a first SRE by 17% (HR: 0.83; 95% CI: 0.76–0.90; 
p < 0.0001), with a median delay of 8.2 months [42].

These large Phase III studies have now led to mar-
keting authorization by the US FDA and European 
Medicines Agency for denosumab (as XGEVA) for 
the prevention of SREs in patients with bone metas-
tases from solid tumors (but not myeloma). A further 
larger trial looking only at the benefits of denosumab 
in myeloma patients is currently underway.

 ■ Denosumab in other oncology indications
Although this review is focused on metastatic bone dis-
ease, denosumab is also being developed for other areas 
of oncological bone disease. In a study of 252 women 
with early breast cancer, receiving aromatase inhib-
itor therapy, denosumab (60 mg sc., every 6 months) 
produced significant increases in BMD compared 
with placebo [43]. Denosumab is currently being fur-
ther evaluated in this setting in approximately 3400 
postmenopausal women in the ongoing ABCSG-18 
(NCT00556374). This study will yield information on 
the effects of denosumab treatment on fracture rate, dis-
ease recurrence rates and long-term safety. Similarly, in 
men with prostate cancer receiving androgen depriva-
tion therapy, which is known to produce a rapid fall in 
BMD and increase in fracture rate, denosumab, 60 mg 
sc. every 6 months, reduced the incidence of new verte-
bral fractures (1.5 vs 3.9%; RR: 0.38; 95% CI: 0.19–0.78; 
p = 0.006) and induced an increase in BMD compared 
with placebo [44]. Denosumab (Prolia) has now been 
approved by the FDA for cancer treatment-induced 

bone loss.
Denosumab (120 mg, sc. every 4 weeks) has also been 

investigated in early cancer trials for the prevention 
of development of metastases. In a study of 1432 men 
with nonmetastatic prostate cancer, but at high risk 
of developing bone metastases, denosumab signifi-
cantly increased the bone-metastasis-free survival 
by a median of 4.2 months compared with placebo 
(HR: 0.85; 95% CI: 0.73–0.98; p = 0.028) [45]. Although 
there are not yet any corresponding data for preven-
tion of metastases by denosumab in breast cancer, a 
large placebo-controlled study is currently underway 
(D-CARE – EUDRACT 2009-011299-32). A summary 
of key clinical studies with denosumab is included in 
Table 1.

Safety profile
In recent years, osteonecrosis of the jaw (ONJ) has 
emerged as the most significant adverse event associ-
ated with bisphosphonate therapy. The Phase III studies 
of denosumab compared with zoledronic acid offered a 
key opportunity to better define the incidence of ONJ 
and to prospectively study this using rigorously defined 
procedures to compare denosumab with zoledronic 
acid. All three studies reported cases of ONJ with a total 
over 3 years of 52 in the denosumab arms (1.8%) and 37 
(1.3%) in the zoledronic acid arms, but the difference 
was not significant (p = 0.13) [46,47]. These data were 
reassuring, since some literature data from smaller, less 
well-controlled studies had reported higher rates for 
bisphosphonates. Also, most cases were relatively mild 
and >95% were able to be treated conservatively, that 
is, without invasive surgery.

Owing to renal toxicity, zoledronic acid requires 
monitoring for renal function before each treatment. 
In this respect, denosumab offers a distinct advantage, 
since it is not associated with renal toxicity and no such 
monitoring is necessary. Also, in the Phase III studies, 
denosumab exhibited fewer acute phase reactions in 
the first three days of drug initiation (8.7% of patients) 
than zoledronic acid (20% of patients). Whilst hypocal-
cemia was more frequent in the denosumab arm than 
the zoledronic acid arm (9.6 vs 5.0%), in most cases 
this was mild or asymptomatic, easily managed and 
caused no deaths. 

Future perspective
The field of research into bone-directed therapies is 
particularly dynamic, especially in breast and pros-
tate cancer, with the bisphosphonates well-estab-
lished and denosumab now entering routine clinical 
practice for the treatment of bone metastases. While 
the bone-metastasis prevention trials investigating 
bisphosphonates have recently reported interesting 
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Table 1. Summary of denosumab clinical trials in cancer patients.

Study Study design Cancer site Enrolled 
patients (n)

Primary end point result Refs

Yonemori 
et al. 2008

Phase I open-label, 
dose-ascending

Breast 19 Incidence of AE: one treatment-related SAEs (G4 
myositis). Common AEs were fatigue, anorexia, 
headache, malaise and nausea

[48]

Body et al. 
2006

Randomized 
double-blind, 
double-dummy, 
active-controlled 
(pamidronate)

Breast
Myeloma

54 (29 
breast, 25 
myeloma)

Safety: no drug-related SAEs. 20–25% reported 
fatigue in the breast cancer stratum and 20% 
reported asthenia in the multiple myeloma stratum.
Efficacy: confirmed suppression of u and sNTX

[35]

Lipton et al. 
2007

Phase II 
randomized, active-
controlled multi-
dose (iv. BP)

Breast 255 Median % change from baseline to week 13 of uNTX: 
71% denosumab arms versus 79% iv. BP arm

[36]

Vij et al. 2009 Phase II open-label, 
single-arm

Myeloma 96 (53 
relapse, 43 
plateau-
phase)

Suppression of serum M-protein levels: no CR, PR, MR
Suppression of serum CTX: relapsed patients median 
69.5% at cycle 4; plateau patients median 46.5% at 
cycle 4

[39]

Fizazi et al. 
2009

Phase II 
randomized open-
label (iv. BP)

Advanced 
carcinoma or 
myeloma

111 Proportion of patients with uNTX <50 at week 13: 71% 
denosumab arm versus 29% BP (p < 0.001)

[37]

Ellis et al. 
2008

Phase III 
randomized 
double-blind, 
placebo-controlled 

Early breast, 
receiving AI with 
low BMD

252 % Change from baseline LS BMD at 12 months: 
+4.8% denosumab arm versus -0.7% placebo arm; 
p < 0.0001)

[43]

Smith et al. 
2009

Phase III 
randomized 
double-blind, 
placebo-controlled

Non-metastatic 
prostate cancer 
on androgen-
deprivation 
therapy

1468 % Change from baseline LS BMD at 12 months: +5.6% 
denosumab arm versus -1.0% placebo arm; p < 0.001)

[44]

Stopeck et al. 
2010

Phase III 
randomized, 
double-blind, 
double-dummy 
(zoledronic acid)

Bone metastatic 
breast cancer

2046 Time to first on-study SRE (noninferiority): HR: 0.82; 
95% CI: 0.71–0.95; p < 0.001)

[3]

Fizazi et al. 
2011

Phase III 
randomized, 
double-blind, 
double-dummy 
(zoledronic acid)

Bone metastatic 
castration-
resistant 
prostate cancer

1904 Time to first on-study SRE (noninferiority): HR: 0.82; 
95% CI: 0.71–0.95; p = 0.0002)

[40]

Henry et al. 
2011

Phase III 
randomized, 
double-blind, 
double-dummy 
(zoledronic acid)

Non-breast, 
nonprostate 
bone metastatic 
carcinoma or 
myeloma

1776 Time to first on-study SRE (noninferiority): HR: 0.84; 
95% CI: 0.71–0.98; p = 0.0007)

[41]

Smith et al. 
2011

Phase III 
randomized 
double-blind versus 
placebo

Prevention 
of SREs in 
nonmetastatic 
prostate cancer

1432 Bone metastasis-free survival increased by 4.2 months 
versus placebo

[45]

AE: Adverse event; AI: Aromatase inhibitor; BP: Bisphosphonate; BMD: Bone mass density; CR: Complete response; CTX: C-telopeptide of type I collagen; G: Grade; 
HR: Hazard ratio; iv.: Intravenous; LS: Lumbar spine; MR: Minimal response; PR: Partial response; SAE: Serious adverse event; sNTX: Serum N-telopeptide of type I 
collagen; SRE: Skeletal-related events; uNTX: Urinary N-telopeptide of type I collagen.
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Executive summary

Metastatic bone disease
 ■ Bone metastases are common, especially among advanced breast and prostate cancer and myeloma patients. They carry a 
significant burden of pain and other complications. 

 ■ Skeletal-related events (SREs) comprise spinal cord compression, fracture, bone pain, hypercalcemia and radiotherapy or 
surgery to bone.

 ■ SREs are treated with a multidisciplinary approach that now includes bone antiresorptive drugs.
 ■ Bisphosphonates (BPs) have revolutionised the management of bone metastases.
 ■ Nitrogen-containing BPs (zoledronic acid and ibandronate) are more potent than non-nitrogen containing BPs (e.g., 
clodronate). 

 ■ BPs can significantly reduce the risk of skeletal-related events (SREs) and the time to SRE in many solid tumors and myeloma.

Development of denosumab
 ■ Understanding the bone microenvironment and vicious cycle has been the key to the development of new bone-directed 
therapies.

 ■ RANKL, expressed by osteoblasts, promotes osteoclastogenesis when bound to its receptor RANK, found on the surface of 
osteoclasts.

 ■ OPG blocks the RANKL–RANK interaction and osteoclastogenesis.
 ■ In vivo studies show that the blockade of OPG inhibits tumor growth in bone and increases bone mineral density.

Early phase studies
 ■ Denosumab (AMG162) was developed as a fully humanized antibody to RANKL that increases bone mineral density and 
suppresses bone resorption. 

 ■ The toxicity profile from early studies was favorable, with no evidence of renal toxicity and decreased acute phase reactions 
compared with other bone resorptive agents.

 ■ Randomized Phase II studies reported significant reductions in bone turnover markers including N-telopeptide of type I 
collagen, C-telopeptide of type I collagen and TRAP5b.

Phase III studies
 ■ Phase III studies in breast cancer, prostate cancer and other advanced malignancy confirmed denosumab’s noninferiority to 
zoledronic acid (primary end point was time to first on-study SRE), and superiority in breast and prostate cancer.

 ■ These studies led to approvals from the US FDA and European Medicines Agency of the use of denosumab for the prevention 
of SREs in patients with bone metastases from solid tumors.

Bone metastasis prevention
 ■ In prostate cancer, denosumab increased the bone metastasis-free interval by 4.2 months compared with placebo.
 ■ Bone metastasis prevention studies are underway in early breast cancer. 

Safety profile
 ■ Osteonecrosis of the jaw incidence was low in both zoledronic acid (1.3%) and denosumab (1.8%) arms in patients 
participating in the three Phase III bone metastasis trials and there was no statistically significant difference in the two arms. 

 ■ Denosumab is not associated with renal toxicity.
 ■ Hypocalcemia occurred in 9.6% of denosumab-treated patients participating in the three Phase III bone metastasis trials. This 
was usually mild and often asymptomatic.

results, further prevention trials admin-
istering denosumab will report in the 
next few years with eagerly awaited 
results. Of further interest will be the 
results of studies of other bone-targeted 
agents including cathepsin K inhibitors, 
endothelin-receptor antagonists, SCR 
and other tyrosine kinase inhibitors and 
the radiopharmaceutical radium-223. So 
far they show varying degrees of prom-
ise and all must be scrutinized for their 
clinically-relevant outcomes and safety 
profiles, but there is undoubtedly an 

encouraging future in this area. 
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