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The incidence of meningococcal carriage and disease is, or will soon be, 
declining in many countries as the result of effective vaccination campaigns. 
The low incidence of disease requires the use of surrogate markers of 
protection in clinical trials of meningococcal vaccines. Assays of serum 
bactericidal activity (SBA) remain the primary efficacy outcome. Evidence that 
SBA assays are predictive of immune protection in an individual derives from 
prospectively studied epidemics; evidence that SBA assays are predictive 
of protection at the population level come from vaccine efficacy studies. 
Other immune mechanisms also play important roles, particularly in the 
large and possibly increasing proportion of meningococcal cases occurring 
in individuals with complement deficiencies. The declining incidence of 
asymptomatic carriage will result in less natural boosting of meningococcal 
immunity with a resulting shorter duration of protection. Our changing 
epidemiologic circumstances should prompt an ongoing re-assessment of 
our approach to evaluating vaccine efficacy.
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The impact of disease epidemiology on the conduct of meningococcal 
vaccine trials
The development of vaccines for meningococcal disease should reflect the current 
and potential future epidemiologic situations in which Neisseria meningitidis 
is likely to cause disease. Unfortunately, our understanding of meningococcal 
epidemiology is incomplete. While molecular epidemiologic techniques have 
done much to elucidate mechanisms behind the emergence of meningococcal 
strains, reasons for the decline or disappearance of pathogenic strains are less 
clear [1] and our ability to predict future pathogenic strains is limited [2]. While the 
incidence of meningococcal disease in the USA is at an all-time low, successful 
vaccination campaigns in other parts of the world seem poised to bring us into 
a new era of declining disease burden globally.

The meningococcus appears to have made its first appearance in Geneva, 
Switzerland, in 1805 [3]. The predilection for those under the age of 30 years in 
this epidemic suggests that older individuals were protected, perhaps by previous 
exposure to a similar organism. However, the subsequent pattern of ‘epidemic 
cerebrospinal meningitis’, particularly its spread among soldiers in garrison 
rather than on campaign [4] and its spread to neighboring civilian populations 
in times of peace [5,6] as well as war [7], distinguish it from typhus, typhoid and 
other camp fevers, and suggest that this was indeed a new pattern of disease if 
not a new organism altogether. 

The global spread of meningococcal disease and the successful use of capsular 
and outer membrane vesicle (OMV)-based vaccines to combat it are familiar 
success stories that are still being written about [8,9]. Due to the rapid clinical 
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course and high-case fatality rate of meningococcal 
disease, prevention of disease will continue to be the 
preferred approach, and vaccination strategies will 
continue to be pursued even in low-incidence areas, 
as the experience in the USA suggests. 

The incidence of meningococcal disease has been 
declining in the USA for several decades [10]. This 
decline began prior to the introduction of routine 
meningococcal vaccination, making it difficult to mea-
sure the impact of this intervention [11]. Presumably, 
this has been accompanied by a decline in the rate of 
asymptomatic colonization, in part due to the use of 
conjugate vaccines, though other behavioral factors 
have also been postulated [10]. 

The characteristics of the population at risk for 
meningococcal disease may also be changing. One 
recent study in Tunisia [12] supports earlier studies 
in Europe [13] and the USA [14], which showed the 
prevalence of complement deficiency among adults 
with sporadic meningococcal disease at 15–25%. The 
current prevalence in the USA may actually be higher 
because of the overall decline in disease incidence. 
Over two decades ago, Figueroa and Densen proposed 
that as the population incidence of meningococcal 
disease declines, the proportion of cases occurring 
among those with inherited or acquired deficiencies 
of the complement system should increase. Based on 
several studies done under varying epidemiologic 
circumstances, they constructed a curve predicting 
that when the incidence of meningococcal disease 
drops below one case per million per year, the pro-
portion of those cases occurring in individuals with 
complement deficiencies could exceed 50% (Figure 1) 
[15]. The estimated incidence of meningococcal disease 
in the USA in 2009 was 3.2 per million [16]. If one goal 
of further meningococcal vaccine development is to 
decrease the incidence of disease further, as opposed 
to merely preventing future epidemics, it may be 
prudent to consider the nature of the population at 
greatest risk and the vaccine-inducible mechanisms 
available to protect them. 

Disease epidemiology has a strong influence on 
the conduct of meningococcal vaccine trials. Early 
vaccine trials were carried out in attempts to abort 
epidemics. In the era before chemoprophylaxis, vac-
cines of unproven efficacy were used out of despera-
tion and efficacy was inferred by comparing disease 
incidences before and after the vaccination campaign 
[17], or by comparing the incidences in vaccinated and 
unvaccinated populations in an uncontrolled fash-
ion [18]. By the time effective meningococcal vaccines 
were developed in the USA, the incidence of group A 
disease had declined dramatically [19], necessitating 
the use of in vitro markers of vaccine efficacy against 

this serogroup [20]. Surrogate markers of vaccine effi-
cacy have continued to provide a pathway for vaccine 
development [201,202], with demonstrations of clinical 
efficacy deferred until after licensure and large-scale 
vaccination [21,22], if at all.

Clinical trials of meningococcal vaccines currently 
proceed along several fronts. Trials of experimental 
vaccines are conducted along the path to licensure 
for group B [23,24] and other serogroups that may be 
emerging [25]. The safety and efficacy of new vaccine 
preparations must be defined in anticipation of large-
scale vaccination campaigns [26]. Trials of licensed 
vaccines are also required to determine how best to 
incorporate them into the vaccine schedule in order 
to protect infants [27] and the immunocompromised 
[28,29], and to confirm their efficacy and safety when 
administered in combination with other vaccines 
[30,31]. How these end points are measured is the sub-
ject of this review.

Defining efficacy in meningococcal vaccine trials
The gold standard for determining efficacy for any 
vaccine is a reduction in the number of cases in vac-
cinated versus unvaccinated individuals in a con-
trolled field trial [32]. It was feasible to collect such 
clinical efficacy data for a group C meningococcal 
vaccine in US Army recruits in the late 1960s, when 
the incidence of disease reached 0.5 per 100 per 
4-week training period [33]. Inferences about the 
efficacy of a group A vaccine were initially based on 
in vitro tests [20], but efficacy was clinically demon-
strated soon thereafter when controlled field trials 
were carried out in Sudan and Egypt, where the inci-
dence of group A disease was significantly higher 
[34,35]. Licensure of the original group C and group A 
polysaccharide vaccines was therefore based directly 
on clinical efficacy [36]. The circumstances under 
which the efficacy of other meningococcal vaccines 
could be demonstrated have been more limited, and 
therefore licensure has been based on in vitro data, 
under the assumption that the same surrogate mark-
ers of protection that were used for groups A and C 
polysaccharide vaccines should apply [37–39].

Serum bactericidal activity assays
The serum bactericidal activity (SBA) assay, in one form 
or another, has been the accepted surrogate marker for 
meningococcal vaccine efficacy since the mid-1970s 
[40,201]. A lack of SBA against circulating strains of 
meningococcus was associated with an increased risk 
of infection by Goldschneider et al. [33] based on two 
key types of data: ecological and predictive. 

 ■ Ecological studies associate SBA with immune 
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protection
The first key observation of Goldschneider et al. was 
based on seroprevalence data. They determined the 
age-specific prevalence of SBA to groups A, B and C 
meningococci in children (newborn to 12 years of 
age) and from Army recruits (19–26 years of age). 
When graphed along with the age-specific incidence 
of meningococcal disease in the general population 
at the time, the two curves seemed to vary inversely, 
implying that the presence of SBA was associated 
with protection against meningococcal disease. 
This is the basis for the ‘ecological argument’ for 
SBA being a principle mechanism of immune pro-
tection. Similar studies performed in the UK showed 
an inverse relationship between the prevalence of 
SBA and the incidence of group C disease, although 
this was less pronounced [41]. For group B disease, 
an inverse relationship was even less evident [42] and 
for groups Y and W-135, an inverse relationship was 
not seen [43]. On its own, therefore, this argument is 
not compelling.

Additional ecological evidence for a protective role 
for SBA has also been sought based on clinical and 
serologic responses to vaccination. Following vacci-
nation campaigns against groups B and C in various 
countries, age-dependent vaccine efficacy has been 
shown to match the age-specific efficacy predicted by 
measurement of SBA in clinical trials and these data 
have been used to establish the minimum SBA titer 
considered protective [44–46]. For the conjugate group 
C vaccine in the UK, SBA titers in infants were shown 
to decline significantly within a year of vaccination 
[47] and vaccine effectiveness in children initially also 
appeared to decrease after a year [22]. As the overall 
incidence of disease has declined in the UK, so too 
has the incidence of vaccine failures [48]. Herd immu-
nity now appears to be obscuring the ecological rela-
tionship between seroprevalence and the incidence 
of disease.

 ■ SBA predicts immune protection
The second key observation made by Goldschneider  
et al. was that baseline SBA predicted immune pro-
tection from meningococcal disease during basic 
military training (Table 1) [33]. Among three train-
ing companies, five out of 13 individuals who lacked 
bactericidal activity and became colonized with the 
epidemic group C strain developed disease compared 
with 0 out 11 who became colonized but had bacte-
ricidal activity at baseline. Based on these numbers, 
it can therefore be said that the SBA lacks sensitiv-
ity in identifying individuals who are putatively 
immune (only 11/19, or 58% of putatively immune 
individuals were SBA positive), but is highly specific 

(5/5, or 100%, of individuals who were infected were 
SBA negative). Considering the entire population of 
recruits to be at risk of disease without assessing col-
onization, three out of 54 cases had detectable SBA at 
baseline, giving a slightly lower specificity of 94% [33]. 
Although these numbers are small, this is the basis 
for the ‘predictive argument’ for SBA being a primary 
mechanism of immunity, by which is meant that SBA 
status can be used to predict clinical outcome for an 
exposed individual. The particular circumstances of 
very high incidence over a short duration in a defined 
community have not occurred since this study, and 
attempts to replicate these findings in other epidemi-
ologic circumstances have yielded data that are much 
less robust due to significantly lower colonization 
rates and the small number of epidemic cases that 
occur in an era of effective chemoprophylaxis [49]. 

A predictive argument in favor of SBA as a primary 
mechanism of immune protection can also be made 
by the observation that individuals who lack SBA 
because of inherited or acquired defects of the ter-
minal complement cascade are at a greatly increased 

Table 1. Clinical outcome of recruits colonized with the epidemic 
strain according to baseline serum bactericidal activity titer. 

SBA titer Putatively immune 
(colonized, not infected)

Susceptible 
(infected)

≥1:4 11 0

<1:4 8 5
SBA: Serum bactericidal activity. 
Data taken from [33].

Figure 1. Relationship between prevalence of complement deficiency 
and incidence of meningococcal disease.  
Reprinted with permission from [15]. 
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risk of meningococcal disease [13]. While this experi-
ment of nature dramatizes the importance of SBA, the 
fact that individuals with terminal cascade defects do 
benefit from vaccination [50,51] also suggests that other 
vaccine-induced immune mechanisms can protect 
from meningococcal disease.

Performance of the SBA assay
The SBA assay involves combining serial dilutions 
of test sera (potentially containing bactericidal anti-
bodies) with meningococci in liquid media. To this, 
complement is added from a source that lacks intrinsic 
bactericidal activity against the strain being investi-
gated. After a defined incubation time, the mixture is 
plated out, further incubated (typically overnight) and 
the resulting colonies counted. The lowest dilution of 
sera that decreases colony counts by at least 50% com-
pared with a control culture incubated without serum 
defines the bactericidal titer [202]. Various methods are 
published that vary with respect to the number of col-
ony-forming units of bacteria per well, buffers used, 
assay incubation times, sources of complement, com-
plement concentrations and starting dilutions of serum 
[52]. A high-throughput partially automated version of 
the assay has been described [53].

There are several factors to consider when choos-
ing what titer or increase in titer should be considered 
indicative of a vaccine response. When serial twofold 
dilutions of test sera are used in the assay, results can 
vary by a factor of two when repeated under the same 
conditions. Therefore, a fourfold increase in titer is 
considered the minimum criterion for establishing a 
response to vaccination [201] and some investigators 
increase this further to ensure this degree of protec-
tion falls within a margin of error [24]. The ecologi-
cal and predictive arguments of Goldschneider et al. 
considered bactericidal activity to be present if their 
SBA assay gave a titer of 1:4 or greater [33]. A number 
of individuals possess protective SBA titers prior to 
vaccination; whether or not such individuals should 
be considered vaccine failures if they do not increase 
their titers further, may be an academic question, but 
one that can have implications for research invest-
ment and vaccination policy. When using the abso-
lute postvaccination titer rather than the increase in 
titer as a marker of immune protection, a titer of 1:8 
is often preferred, since it allows for some margin of 
error [54]. 

While Goldschneider et al. showed that a titer of 1:4 
predicted immunity to meningococcal infection over 
the subsequent 8-week training period of the recruits 
in his study, a longer duration of protection is expected 
from routine vaccination. Individuals who mount a 
higher initial response to vaccination have been shown 

to retain protective titers longer [55]. While age at vacci-
nation is an important factor in determining the dura-
bility of the immune response [44,56], asymptomatic 
colonization with meningococci also plays a role in 
boosting immunity [57]. As the incidence of asymp-
tomatic colonization declines, the duration of SBA 
persistence and therefore vaccine efficacy may be less 
than what has been observed in the past. Higher post-
vaccination titers may become necessary to maintain 
long-term protection. 

Sources of complement for the SBA assay
Early studies measuring SBA froze blood soon after 
phlebotomy to preserve the complement activity in 
the sample being assayed (intrinsic human comple-
ment) [58]. However, because complement proteins 
are heat-labile, variations in collection techniques 
and sample handling can affect the resulting bacte-
ricidal titers [59]. The method used by Goldschneider 
et al. added sera from human donors that were pre-
screened to rule out intrinsic bactericidal activity 
and processed in a standardized fashion (human 
SBA [hSBA]) [33]. Prescreening  the human sera used 
as a complement source is necessary because most 
adults have developed antibodies to various menin-
gococcal antigens, if not by vaccination, then by 
prior colonization with N. meningitidis [60], Neisseria 
lactamica [61], or other bacteria expressing crossre-
acting antigens [62]. Such antibodies may, by them-
selves, or in combination with antibodies in the test 
sera, fix complement and result in bacterial lysis, 
increasing SBA titers and yielding false-positive 
results. Screening donor sera for bactericidal activ-
ity must be done for each strain of meningococcus 
to be tested and should be repeated with subsequent 
donations since the donor may become colonized 
and develop antimeningococcal antibodies at any 
time. Some strains may not be killed by sera from 
multiple donors when tested separately, but may 
be killed when they are pooled together. For some 
strains, a compatible human source of complement 
cannot be identified [63].

Using animal sources of complement, specifically 
baby rabbits, has become a standard practice since 
this is more amenable to standardization [40,201]. 
Serum from adult rabbits has also been used [64], 
though with less success. Even though rabbits are 
not natural hosts for meningococci, adult rabbit 
serum may have intrinsic bactericidal activity, per-
haps due to crossreactivity with other bacterial spe-
cies. In general, SBA titers generated using rabbit 
as a source of complement (rabit SBA [rSBA]) cor-
relate with the hSBA, but tend to give significantly 
higher titers [65]. After the use of baby rabbit sera 
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had become standard practice for polysaccharide 
vaccines for groups A and C [201], it was discovered 
that antibodies induced to the group B polysaccha-
ride could give a positive SBA reaction when using 
rabbit, but not human, complement and could sig-
nificantly overestimate vaccine efficacy [66]. This is 
due in part to the fact that meningococci possess a 
factor H binding protein (fHbp) that down regulates 
complement activity on the outer membrane. 
Meningococcal fHbp is specific for human factor H 
and is not able to down-regulate rabbit complement 
activity, making the meningococci more susceptible 
to killing in the rSBA assay [67,68]. Studies of group B 
vaccines currently rely solely on the hSBA assay, but 
even for the other serogroups, a significant number 
of individuals, including unexposed and presum-
ably susceptible infants, are consistently found who 
are negative by the hSBA but have detectable rSBA 
activity [65,69,70]. 

As the rSBA assay consistently gives higher titer 
results than the hSBA [46 ,202], one approach to 
improving its specificity has been to use a higher 
titer as a cutoff to indicate a vaccine response [67,65]. 
This approach still leads to categorizing a significant 
number of vaccinees as vaccine responders who do 
not have detectable hSBA [71], but the resulting effi-
cacy rates predicted by this model have agreed with 
the ecological data on vaccine efficacy in the UK [48]. 

Due to the weight of predictive versus ecological 
evidence, the hSBA can be regarded as the ‘gold stan-
dard’ for defining immune protection in an indi-
vidual vaccine recipient [71]. If regarded as merely 
a marker for hSBA against group C, the sensitiv-
ity and specificity of the rSBA are not particularly 
impressive [71]. In a recent analysis, results generated 
in parallel from matched patient sera for serogroups 
A, W-135 and Y showed the correlations between 
hSBA and rSBA to be even weaker than for group 
C [70]. However, in the ecological setting of a large 
vaccination campaign, the application of popula-
tion-based data is more appropriate. Furthermore, 
the commercial availability of baby rabbit sera as a 
complement source makes standardization of the 
assay on a large scale feasible. In this context, the 
rSBA assay has become associated with considerable 
success and may be considered now to have a track 
record independent of the hSBA assay. 

Candidate group B vaccines continue to be evalu-
ated using hSBA [24] and conjugated polysaccharide 
vaccines for group C are tested with rSBA [203]. Clinical 
trials of a conjugate group A vaccine, in anticipation 
of large-scale administration in sub-Saharan Africa, 
are also measuring rSBA [26,72]. Recently, licensed 
tetravalent conjugated polysaccharide vaccines have 

been evaluated using either the hSBA exclusively [39] 
or the hSBA in children and the rSBA in adults [38,73]. 

Opsonophagocytic activity assays
The number of recruits in the study by Goldschneider 
et al. with putative immunity to the epidemic strain 
who lacked SBA and the clinical benefit comple-
ment-deficient individuals derive from meningococ-
cal vaccination, suggest that additional mechanisms 
of immune protection exist. A more sensitive test or 
combination of tests to determine vaccine efficacy 
must be theoretically possible. 

The opsonophagocytic activity (OPA) assay is 
analogous to the SBA assay but quantifies the abil-
ity of activated neutrophils to engulf and destroy 
bacteria that have been opsonized [74]. In this assay, 
meningococci are incubated with sera along with 
a prescreened complement source and neutrophils 
purified from the test patient or another donor. 
Following incubation, the degree of opsonaphagocy-
tosis can be determined microscopically or with the 
use of flow cytometry [75]. The use of a complement 
source that has been depleted of C6 and is therefore 
incapable of generating a bactericidal response, has 
been used to measure OPA that is independent of 
SBA [74].

OPA assays measure both antibody- and comple-
ment-mediated phagocytosis. They require a stan-
dardized source of complement (lacking intrinsic 
opsonophagocytic or bactericidal antibody activity), 
as well as a standardized source of human neutro-
phils. Neither condition is easily met. While this 
assay allows assessment of this pathway of pro-
tection, it is neither simpler nor any more readily 
standardized than the SBA assay and has not been 
validated with either ecological or predictive data.

Whole-blood activity assays
The whole-blood activity (WBA) assay is analogous 
to the SBA assay but uses Whole-blood instead of 
serum. The assay is performed by inoculating strains 
of meningoocci into Whole-blood and incubating 
them together. Early versions of this assay used blood 
‘as it comes from the vessel’ [76]. More recent inves-
tigators have used fresh blood anticoagulated with 
lepirudin, which, unlike other anticoagulants, does 
not cause intrinsic activation of complement. [77]. 
The decrease in the concentration of colony-form-
ing units from the inoculated blood after incubation 
is compared with that from before and the propor-
tion killed is estimated [78]. This assay determines 
total antimeningococcal activity due to bactericidal 
activity, opsonophagocytosis and cytokine produc-
tion, and serial samples of the culture can be further 
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analyzed to estimate the relative contributions of 
these different mechanisms [79]. One comparative 
study showed significantly more adults possessed 
WBA against a strain of group B meningococcus 
than SBA [80]. In studies of children convalescing 
from meningococcal disease [81] and in vaccine clin-
ical trials [82], the WBA assay shows a greater pro-
portion of individuals increase their ability to kill 
meningococci than the SBA assay. 

A version of the WBA assay, the passive protec-
tion assay, uses Whole-blood from a donor to assess 
immune protection in previously collected sera. This 
assay also shows a greater increase in the ability to 
inhibit meningococcal growth than the SBA or OPA 
alone [77]. Neither the WBA nor the passive protec-
tion assay is simpler than the SBA nor are they readily 
standardized. 

Immunoassays for antibody measurement
Goldschneider et al. chose the SBA assay because it 
was a sensitive means of detecting specific antibod-
ies, not because bactericidal activity was considered 
the only means by which antibodies confer protec-
tion [33]. A number of field trials conducted soon 
thereafter, including some by the same investigators, 
used other assays to measure the antibody response 
to vaccination [83]. These included the radioactive 
precipitin method of Gotschlich [83], the radioac-
tive antigen binding test of Farr [83] and latex agglu-
tination [84]. More recent clinical trials have used 
ELISA [26] and bead-based assays are also described 
[85]. Depending on the vaccine construct, antibody 
levels may be measured to whole bacteria [33], cap-
sular polysaccharide [26], outer membrane proteins 
[86], OMV [87] or individual subcapsular antigens [88]. 

Levels of anticapsular antibody have at times cor-
related well with the hSBA and a number of early 
studies used them as the primary end point of efficacy 
[89,90]. However, they have not always correlated with 
protection in field trials [91]. When levels of antibody 
to polysaccharide and hSBA do not correlate, this 
is presumably due to the presence of low avidity or 
subclass-restricted antibodies that are detectable by 
ELISA, but are not efficient at fixing complement [92]. 
Purified polysaccharide vaccines, as T-independent 
antigens, particularly when used in infants, may not 
produce enough of an increase in antibody avidity 
to provide acceptable correlation with the hSBA and 
may explain why such trials have shown poor correla-
tion between antibody levels and clinical outcome [91]. 

For conjugated vaccines, measurements of anti-
capsular IgG after a single dose do not correlate 
well with SBA but after the full series and a booster, 
the correlation improves, reflecting an increase in 

antibody avidity [93]. The addition of a ‘chaotropic’ 
agent, such as ammonium thiocyanate, which inhib-
its antigen–antibody interactions in a dose-depend-
ent fashion, has been used to inhibit binding of low-
avidity antibodies to antigen. This results in a better 
correlation between ELISA and SBA assays [94]. Low-
avidity antibodies may also affect the correlation 
between antibody to OMV and hSBA. Figure 2 shows 
the correlation between IgG to OMV measured by 
ELISA and hSBA in volunteers from a clinical trial 
of a group B native OMV vaccine [87]. Prevaccination 
antibodies, possibly induced by colonization with 
crossreacting organisms and of low avidity for OMV 
from the vaccine strain, correlate poorly with the 
hSBA (Figure 2A). After vaccination, the correlation 
improves visibly (Figure 2B). This degree of correlation 
with SBA is comparable to what has been reported 
for antibodies to polysaccharide induced by polysac-
charide vaccines [95]. 

Apart from its limited role as a marker for func-
tional antibody activity, antibody measurement 
allows levels of antibody to specific antigens to be 
quantified, which allows specific vaccine character-
istics to be compared without the need to replicate 
SBA assays. 

Selection of meningococcal strains for efficacy 
testing
Strain selection for immunogenicity assays of vac-
cines based on capsular polysaccharides is relatively 
straightforward. Group C capsular vaccines that 
protect from one group C organism should protect 
against others expressing the same capsular poly-
saccharide. However, differences in immunogenicity 
do exist and have been shown to depend in part on 
the acetylation status of the polysaccharide, with 
O-acetylated strains being more immunogenic 
[96,97]. Other features of capsule structure that may 
vary with culture conditions are also important [52], 
as is the strain lipooligosaccharide  type, which can 
affect the degree of natural immunity induced by 
crossreacting bacteria [98,99]. Generally, the use of 
reference strains from which the vaccine polysac-
charide is derived is preferred, as this allows stan-
dardization of the assay and comparisons between 
vaccines and between laboratories [71]. 

Evaluating vaccine efficacy directly against all 
pathogenic group B strains is not possible [204]. 
Subcapsular antigens, and therefore susceptibility to 
bactericidal activity, vary naturally in both sequence 
and expression levels between strains. In addition, 
expression levels can vary significantly as a result of 
slight differences in how the organisms are cultured or 
in how the reaction is mixed [100,101]. Geographically 
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distinct strains that appear phenotypically similar 
can give very different results with the same sera 
in SBA assays [102]. Instead of pursuing a large and 
constantly changing panel of pathogenic isolates, 
immunogenicity testing for subcapsular vaccines is 
directed toward characterizing the performance of 
individual vaccine antigens. Correlations can then 
be drawn between antigen reactivity (a function of 
both expression levels and degree of homology with 
the vaccine antigen) and susceptibility to postvacci-
nation SBA. Disease isolates can then be character-
ized with respect to their expression of these vaccine 
antigens and susceptibility can be predicted accord-
ingly [204]. One such method is the Meningococcal 
Antigen Typing System, which was developed for 
the Novartis group B vaccine [103]. Transferring this 
method to national reference laboratories in advance 
of large-scale vaccination will allow predicted strain 
coverage to be monitored in real-time [205]. For this 
approach, threshold levels of antigen expression that 
predict bactericidal killing have to be recalculated for 
every new vaccine construct. This method is yet to be 
validated clinically. 

Measuring vaccine response in 
complement-deficient individuals
Many of the complement deficiencies associated with 
susceptibility to Neisseria infections do not have other 
apparent immune deficits and may not be diagnosed 
until they, or a family member, develop meningococ-
cal infection. Meningococcal infections associated 
with complement deficiencies are more likely to occur 
in adolescence or young adulthood [104], so these cases 
could theoretically be prevented by routine childhood 
meningococcal vaccination if such vaccines induced 
an appropriate protective response. 

Deficiencies of factors proximal to C3 (mannose 
binding lectin, C2, C4, factor D, factor B) compro-
mise specific recognition pathways. Recurrent dis-
ease is unusual with these deficiencies, implying 
effective immunity can develop and one recognition 
pathway can compensate for a defect in another [104]. 
Deficiencies of properdin, which is required for the 
alternative pathway lytic cascade, as well as ampli-
fication of the classic pathway bactericidal response, 
is occasionally associated with recurrent disease [104]. 
Deficiencies of components of the late pathway, from 
C3 (including factor H and factor I) through the for-
mation of the membrane attack complex (C5–C9), 
are disorders of complement-mediated killing. These 
individuals with terminal complement component 
deficiencies (TCCD), even with intact meningococ-
cal recognition, are at risk of recurrent disease and 
vaccine failure, demonstrating the importance of 

bactericidal activity in defense from Neisseria. 
The fact that complement-deficient individuals 

derive clinical benefit from meningococcal vacci-
nation is one reason to suspect that immune mecha-
nisms other than bactericidal activity can be protec-
tive. One open trial compared clinical outcomes in 
31 vaccinated TCCD patients with 14 unvaccinated 
TCCD patients. Three episodes of meningococcal 
disease with serogroups included in the vaccine 
developed in each group. Survival analysis showed a 
significant benefit from vaccination [51], although the 
incidence of disease in vaccinated TCCD patients 
is still significantly higher than that of vaccinated 
individuals without TCCD [105]. Measuring OPA and 
antibody levels in this population shows significant 

Figure 2. Serum IgG as determined by ELISA to outer 
membrane vesicles from the vaccine strain versus 
reciprocal human serum bactericidal activity titers to 
the same strain. Both axes are shown on a logarithmic 
scale. (A) Prevaccination, where antibodies presumably 
have low avidity, there is no correlation (n = 34). 
(B) Postvaccination with a native OMV vaccine, the 
correlation improves significantly. Serum was drawn 
2 weeks after each of three vaccinations (n = 101) of the 
same 34 volunteers (one patient withdrew prior to the 
last sample being drawn). 
hSBA: Human serum bactericidal activity; OMV: Outer 
membrane vesicle. 
Details of this vaccine and clinical trial are provided in [87].
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vaccine responses, but also greater variability and 
more rapid loss of OPA and anticapsular antibody 
levels than nondeficient controls [50]. It has been 
suggested that measuring anticapsular antibody in 
postvaccination sera is an effective way to screen 
for immune protection in this population, with 
some suggesting 1–2 μg/ml [106] and others 5 μg/
ml as the lower limit of protection [51]. The assump-
tion is that anticapsular antibodies are more reli-
ably opsonophagocytic than they are bactericidal, 
and that a sufficiently high level should correlate 
with protection via the opsonophagocytic pathway. 
However, when compared side-by-side, OPA assays 
and antibody levels do not correlate well [50,105]. 
Neither measurement has robust ecological or pre-
dictive data as a marker for immune protection in 
TCCD.

Partial complement component deficiencies [107] 
or complete deficiencies of some complement com-
ponents [108] may retain some residual hemolytic 
function. For such individuals, a WBA with intrinsic 
complement may be a more relevant in vitro measure 
of efficacy. Indeed, one early investigator using a WBA 
discovered that his own blood consistently lacked the 
ability to inhibit growth of meningococci by this tech-
nique, and he later succumbed to meningococcal dis-
ease [76], providing evidence that this assay can detect 
a clinically significant lack of protection. Neither 
WBA nor OPA assays are widely available, however, 
and ELISA as the sole measure of vaccine response in 
complement-deficient individuals remains unproven. 

This group of individuals would benefit from a vac-
cine that induces protection from all serogroups of 
meningococci to which they are susceptible. Ideally, 
such a vaccine would have a predictable, if not indef-
inite, duration of protection. In the short term, pur-
suing such unique immunogenicity criteria may seem 
like an ‘orphan vaccine’ project, but one outer mem-
brane protein known to specifically elicit opsono-
phagocytic killing has already been identified as a 
vaccine component [54,109]. A vaccine that adequately 
protects individuals with TCCD could plausibly be 
incorporated into vaccines administered routinely.

Current guidelines from the US Centers for 
Disease Control and Prevention recommend that 
individuals with complement deficiencies receive a 
two-dose primary series of meningococcal conju-
gate vaccine followed by boosting every 5 years [110]. 
Whether or not this will be adequate for this popu-
lation remains to be seen [111]. Since many comple-
ment deficiencies are also associated with infection 
by serogroups not represented in currently licensed 
vaccines [112], additional strategies, such as anti-
biotic prophylaxis or self-treatment of prodromal 

symptoms, seem prudent. 

Future perspective
N. meningitidis has been a burden on mankind for 
over 200 years [3] and vaccines have been pursued for 
over a century [113]. The use of effective vaccines, in 
combination with other factors, has decreased the 
incidence of meningococcal disease in many areas. 
As the incidence of meningococcal disease declines, 
the resources allocated to reduce the incidence further 
will likely decline as well. Meningococcal vaccines 
already represent a considerable proportion of the 
total cost of routine immunization in the USA [114], 
and adding a vaccine for group B or introducing a 
multidose regimen into the infant vaccine schedule 
would increase that proportion even further. As the 
epidemiology of meningococcal infection changes, 
so do the relevant questions and our resources for 
answering them. Determining vaccine efficacy in 
clinical trials is an ongoing challenge. 

The relatively low incidence of meningococcal dis-
ease in most countries requires surrogate markers to 
be used in clinical trials as measures of vaccine effi-
cacy. The ideal surrogate would identify all individ-
uals who are immune from meningococcal disease, 
be amenable to standardization, and be technically 
and financially feasible to use on a large scale. Both 
ecological and predictive evidence supports use of 
SBA assays. These appear to underestimate protection 
and require complement sources to be prescreened. 
The hSBA is considered the gold standard for defin-
ing immune protection in an individual; considerable 
ecological evidence has associated the rSBA with suc-
cessful large-scale vaccination campaigns for group C 
in the UK and now group A in sub-Saharan Africa. 
Measurement of antibodies via ELISA performs well 
as a marker for SBA in some limited circumstances and 
allows the immunogenicity of specific vaccine anti-
gens to be compared without replicating the SBA assay. 
WBA using intrinsic complement may be more sen-
sitive than SBA assays by measuring all mechanisms 
of immune protection, and may be useful in defining 
immunity in complement-deficient individuals. More 
widespread use of this assay in ecological studies and 
clinical trials would allow its performance character-
istics to be better understood and perhaps set the stage 
for automation and standardization on a larger scale. 
Such assays would not only further the development of 
an orphan vaccine, capable of providing long-lasting 
protection against the broad range of serogroups that 
infect individuals with complement deficiencies, but 
may also improve on the sensitivity with which we can 
define any individual as immune from meningococcal 
disease. 
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Executive summary

The impact of disease epidemiology on the conduct of clinical vaccine trials
 ■ The current incidence of meningococcal disease in the USA is at an historic low. The incidence in many other areas is also 
decreasing as a result of vaccination. 

 ■ The low incidence of meningococcal disease requires us to rely on surrogate markers of vaccine efficacy.
 ■ As meningococcal disease incidence declines, the proportion of cases occurring among individuals with complement 
deficiencies may increase. Such individuals are incapable of developing serum bactericidal activity (SBA).

Defining efficacy in meningococcal vaccine trials
 ■ Polysaccharide vaccines for groups A and C were demonstrated to be effective using clinical end points in field trials in areas 
where the incidence of disease made this possible.

 ■ Tetravalent vaccines covering groups Y and W-135, and conjugated polysaccharide vaccines, have been licensed based on 
surrogate markers of efficacy.

SBA assays
 ■ The evidence for SBA being the primary means of immune protection derives from ecological and predictive data.
 ■ As originally reported, the sensitivity of the SBA as a marker of meningococcal immunity was only 58%. 
 ■ Other immune mechanisms likely play important roles.

Performance of the SBA assay
 ■ The titer of SBA considered protective may depend on whether immediate or long-term protection is required.
 ■ The duration of vaccine-induced protection may decrease with a decline in asymptomatic colonization.

Sources of complement for the SBA assay
 ■ The SBA can be performed using prescreened human sera as a source of complement (hSBA), or sera from baby rabbits 
(rSBA).

 ■ Based on predictive data, the hSBA may be considered the gold standard for defining immune protection in an individual.
 ■ The rSBA has been associated with successful vaccination campaigns against groups C and A. 

Opsonophagocytic activity assays
 ■ An assay measuring opsonophagocytosis by neutrophils is described.

Whole-blood activity assays
 ■ An assay using whole-blood accounts for bactericidal, opsonophagocytic and cytokine activity against meningococci.

Immunoassays for antibody measurement
 ■ Antibody levels do not correlate with clinical outcomes in polysaccharide vaccination of infants.
 ■ In cases where high-avidity antibodies are induced, antibody levels may correlate with SBA.

Selection of meningococcal strains for efficacy testing
 ■ Strain differences in capsular structure may lead to differences in immunogenicity. 
 ■ For subcapsular vaccines, strains used in efficacy testing are chosen to demonstrate specific features of immune protection. 
 ■ A meningococcal antigen typing system has been developed to predict strain coverage by a group B vaccine based on 
multiple subcapsular antigens without requiring postvaccination serum. 

Measuring vaccine response in complement-deficient individuals
 ■ Antibody levels and opsonophagocytic assays have both been used as measures of vaccine response in complement-deficient 
individuals.

 ■ Whole-blood assays using intrinsic complement may be the most relevant measures of efficacy in this population.
 ■ Current US CDC guidelines for meningococcal vaccination in complement-deficient individuals are for a two-dose primary 
series followed by boosting every 5 years.

Future perspective
 ■ The declining incidence of disease may result in fewer resources being allocated to meningococcal vaccine research, a 
greater proportion of cases occurring in complement-deficient individuals and a shorter duration of protective titers as a 
result of decreased natural boosting. 

With widespread vaccination of the meningitis 
belt against group A [9] and vaccines for group B 
approaching licensure [24], future prospects for control 
of meningococcal disease look bright. Though talk of 
global eradication of meningococcal disease may be 
premature, progress is being made on the fronts we 

can control, and trends are encouraging on those we 
cannot. As the end-game approaches, there is poten-
tial for the rules to change regarding the populations 
at greatest risk of disease and the immune mecha-
nisms that are available to protect them, as well as 
the duration of protection that can be expected in the 
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absence of natural boosting from asymp-
tomatic colonization. With diminishing 
resources allocated to the prevention of 
meningococcal disease in areas of low 
incidence, significant challenges remain.
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