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Sensitivity analyses are commonly requested as part of the analysis of longitudinal 
clinical trials when data are missing. There are many ways in which such sensitivity 
analyses can be constructed. This article focuses on one particular approach, so-
called controlled imputation. This combines two statistical ingredients, pattern-
mixture models and multiple imputation. The aim is to assess sensitivity of the 
original conclusions to alternative assumptions about the statistical behavior of 
the patients’ outcomes following dropout and withdrawal. Such assumptions must 
reflect postulated treatment compliance when intention-to-treat-like inferences are 
required. Many such scenarios could be considered, depending on the clinical setting. 
The advantage of this approach is that it makes such assumptions explicit in the 
sensitivity analysis and hence readily accessible to the user.
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A recent article in this journal [1] provided 
a review of the handling of missing data in 
longitudinal clinical trials. One important 
recent development discussed there was the 
need for coherent sensitivity analysis in such 
settings. Several possible approaches to this 
were outlined, and it is likely that others will 
appear in the future. One of the approaches 
discussed, sometimes called controlled impu-
tation, is becoming more widespread in its use 
and it is the purpose of this article to provide 
an overview of this type of sensitivity analy-
sis that is based on existing developments. It 
is first necessary to provide sufficient back-
ground to the general problem of sensitivity 
analysis in longitudinal clinical trials, and for 
this the main points from [1] will be revisited. 
This article will then turn to the method 
itself, first providing a nontechnical descrip-
tion which it is hoped will clarify some of the 
key points. There is an almost limitless range 
of conditions and treatments for which trials 
may be run, and no single sensitivity analysis 
can possibly be appropriate for them all. To 

reflect this, the overall approach of controlled 
imputation provides a method for framing 
and conducting sensitivity analyses, which 
can accommodate a wide range of possible 
settings. Some examples will then be used 
to illustrate this, emphasizing the point that 
these may be of value for certain trials, but 
many other possibilities exist which may well 
be more appropriate in other settings. Within 
the range of alternatives there are some 
important distinctions to be made that are 
not always fully appreciated, and these are 
closely bound up with computational imple-
mentations. An attempt is made to shed light 
on these. Finally, reference is made to some of 
the currently available software implementa-
tions that may be of value to those wishing to 
use these methods.

It is now widely appreciated that missing 
data introduce ambiguity into the statisti-
cal analysis of data that are different from 
so-called ‘statistical uncertainty’ (e.g., [2,3]). 
One way to view this distinction is through 
the property that such ambiguity does not 
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diminish as the sample size increases. As a consequence 
there are many ways to approach the problem of miss-
ing data, and the size of the total literature on missing 
data is now vast, and probably too great for any one 
individual to absorb. Even within the special setting 
of clinical trials the literature is very large and rapidly 
expanding. The appropriate handling of missing data 
in this setting has been of particular concern to the 
regulatory authorities, and in 2010 two key publica-
tions appeared. One, from the US National Research 
Council (NRC) of the National Academies [4], was 
sponsored by the US FDA. This is a comprehensive 
document, amounting to a monograph on the subject, 
that has already had considerable influence on practice. 
The other [5] is from the European regulators and was, 
in contrast to the NRC, produced by the regulators 
themselves. For a discussion of these two documents, 
in particular of their differences in viewpoint, see for 
example [6].

The estimand
To make meaningful judgments about the compet-
ing merits of different statistical analyses it is essential 
that the aims of the analyses are set out unambigu-
ously. Failure to do this has led to considerable fruitless 
debate in the missing value literature. In the light of 
this, the NRC document uses the concept of an esti-
mand. We can think of this as the target of the analysis, 
it may be a quantity to be estimated, or about which a 
statistical test is to be conducted. Another distinction 
is also useful at this point: the occurrence of a missing 
value may be treated in two ways, leading to two very 
different types of estimand. First, the missing value 
may itself be regarded as part of the patient response. 
A good example of this is dropout being defined as 
treatment failure. In such cases the missing data have 
been defined away, and essentially this is no longer a 
missing data problem. This can be contrasted with the 
second situation in which the occurrence of missing 
data is a nuisance to be accommodated in the analy-
sis, in other words, if all the data were available the 
analysis would be comparatively straightforward. This 
second case is the one with which we are concerned 
here. One implication is that the definition of a miss-
ing value depends on the aims of the statistical analy-
sis, in other words, the estimand. To avoid ambiguity, 
the term recorded will be used for a measurement that 
has a value assigned to it in the trial database. All unre-
corded measurements are missing, while a recorded 
value may or may not be missing. In the light of this, 
two types of estimand are now introduced that origi-
nate from [7]. For this the explanation from [1] is used: 
“We call these de-jure and de-facto estimands. A de-jure 
estimand is one that compares the effects of treatments 

that are taken strictly according to the protocol, while a 
de-facto estimand compares the effects of the treatments 
actually taken irrespective of randomized treatment. Note 
that the former may well be counter-factual such as when 
some subjects cannot tolerate a treatment. These two esti-
mands are clearly connected to the commonly used terms 
‘pre-protocol (PP)’ and ‘ intention to treat (ITT)’, but it 
is important not to confound them. De-jure and de-facto 
are definitions of estimands, in themselves they are not 
methods of estimation or analysis, while PP and ITT typi-
cally refer to groups of patients (possibly all) in a trial, and 
partly define what analysis is to be used.”

It is clear from this that the definition of a missing 
value requires consideration of the treatment taken by 
the patient. Or, more generally, whether or not there 
has been a protocol deviation, which will be shortened 
in the following to just deviation. If an intended mea-
surement is not recorded then obviously it is missing 
whichever of the two types of estimand is being used. 
However, if an intended measurement is recorded, but 
not under the regime specified by the protocol, then 
it is missing for the de jure estimand but not for the 
de facto one. Another crucial implication is that when 
we target the de facto estimand, and measurements are 
not recorded, to address the estimand it is necessary 
to incorporate into the analysis the actual treatment 
regime, either assumed or known, to apply when those 
measurements should have been collected. By contrast, 
for a de jure estimand, when data are not recorded, we 
must assume in the analysis that the protocol was fol-
lowed, whether this was the case or not. This points to 
an interesting contrast. When all data are recorded, we 
can ignore actual treatment allocation in the analysis 
for a de facto estimand but not for a de jure estimand. 
When data are not recorded the opposite is true for a de 
facto estimand: it is necessary to specify the treatment 
regime taken, while, by contrast, we can simply assume 
no deviations for the de jure estimand, setting to miss-
ing any measurements recorded following a deviation. 
We use the term scenario to refer to the supposed (or 
known) treatment regimens followed by patients with 
missing data. Any analysis that targets a de facto esti-
mand when data are missing must be making assump-
tions about the scenario assumed, either explicitly or 
implicitly. One problem with simpler ad hoc analyses is 
that they do not make these assumptions clear.

Missing data mechanisms
As a final step before considering the general approach 
of reference-based imputation, it is necessary to link 
the ideas set out in the previous paragraph with 
Rubin’s classification of missing data mechanisms [8]. 
These are described here from a frequentist perspec-
tive, which differs to some extent from Rubin’s original 
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exposition. Here, and in the remainder of this article, 
we consider only missing data caused by dropout or 
first deviation, that is, monotone missing data in the 
longitudinal setting. From a statistical perspective, a 
missing data mechanism is the probability model that 
governs the occurrence of missing data. With dropout, 
as here, it is a mechanism that specifies the probability 
that dropout (or first deviation) will happen at some 
time, quite possibly unknown, following a measure-
ment time up to and including the following time. 
Such a mechanism is said to be missing completely at 
random (MCAR) if this probability does not depend 
on any of the variables involved in the analysis: out-
comes, treatment taken, baseline covariates and so on. 
Under an MCAR mechanism, those patients remain-
ing in the trial at the end, the so-called completers, rep-
resent a genuine random sample of those randomized, 
and so can be validly analyzed as if they were the only 
subjects randomized. Unfortunately, such an assump-
tion is very implausible. Moreover, although in prac-
tice, using only the data under analysis, MCAR can 
be shown not to hold when it does not, the converse is 
false: it cannot be shown to hold when in fact it does. 
The second class of mechanism, missing at random 
(MAR), plays a pivotal role in missing data methodol-
ogy, but not necessarily because it is plausible. It can be 
regarded in the current setting as the least restrictive 
set of assumptions that allows a valid analysis from the 
observed data only. To define this we use the idea of 
the patient’s history. Define the history of a patient at 
a given time of measurement as the collection of all 
observed data on that patient up to that time, includ-
ing treatment allocation, baseline covariates and pre-
vious (not current) outcomes. It is assumed that an 
analysis would include all these variables. Then, a 
dropout (deviation) mechanism is said to be MAR if 
conditional on the history at the time, the probabil-
ity of dropout is not associated with the unobserved 
outcomes. This can be expressed in another way that 
is more relevant to the following exposition. Suppose 
that two patients share exactly the same history up 
until a certain time, at which point one patient drops 
out (or deviates) and the other remains (does not devi-
ate). Then, under MAR, the future conditional statis-
tical behavior of the two patients given their common 
history is identical. From this, it can be seen how a 
valid analysis can be constructed under MAR. Because 
both patients share the same conditional future sta-
tistical behavior, this conditional distribution can be 
estimated from those who remain and applied to those 
who do not, or who deviate. Likelihood-based analy-
ses are valid under MAR, provided the chosen model 
holds. Further, under MAR, the probability of dropout 
or deviation can be estimated from the observed data 

and incorporated into less fully parametric analyses to 
provide validity for these under MAR [9]. In spite of 
its convenience, MAR remains a strong assumption 
and, most importantly, cannot be confirmed from the 
data under analysis [10], although in very special set-
tings it may follow from the trial design [11]. If neither 
MCAR nor MAR hold then the missing data mecha-
nism is said to be missing not at random (MNAR). 
From the second expression of MAR using the two 
patients with the same history, we can see that MNAR 
implies that these two do not share the same future 
statistical behavior, and this might reasonably be what 
is expected in many real settings. In fact, MAR has a 
very strong implication here about the treatment sce-
nario. If two patients with the same past are assumed 
to share the same future statistical behavior then by 
implication they also share the same treatment sce-
nario, which in turn implies a de jure estimand. Only 
when there are no deviations, or no treatment differ-
ences of any sort, will such an analysis correspond to a 
de facto scenario and in these cases there is anyway no 
difference between de jure and de facto. This linking of 
the MAR assumption and the de jure estimand is a key 
component of the controlled imputation approach to 
sensitivity analysis.

Sensitivity analysis
Although strictly not essential, most forms of sensitiv-
ity analysis in the missing data setting use the MAR 
assumption as an origin, and the sensitivity analy-
sis assesses the consequences of departures from the 
assumptions underlying this. Given that there are 
many ways of varying these assumptions, there are 
many ways of approaching such analyses. The NRC 
report provides a discussion of some alternatives, and 
a wide range of other approaches are discussed in [3] 
(part V), [12], [13] (Chapter 10) and [14] (part V). A 
generic framework for sensitivity analysis is given in [1]:

•	 A clear definition of the estimand of interest;

•	 The assumptions under which the primary analysis 
is valid for this estimand;

•	 A nomenclature for practically relevant and 
accessible departures from these assumptions;

•	 Valid methods for assessing sensitivity to these 
assumptions.

The primary analysis from the second point 
applies when no data are missing. It is the intended 
analysis for complete data. For continuous outcomes, 
this analysis will commonly be a simple compari-
son of the means between randomized groups at the 
final, or some other key, time point, possibly adjusted 



314 Clin. Invest. (Lond.) (2015) 5(3) future science group

Clinical Trial Methodology    Kenward

for baseline covariates. With no missing data such 
an analysis can be justified by the trial randomiza-
tion alone. In the following, this will be used as the 
illustrative primary analysis, noting that the gen-
eral principles to be described can be used for other 
primary analyses provided that they are based on a 
comparison of the randomization groups. Hence, 
the primary analysis does not reflect postrandom-
ization treatment compliance or other deviations 
and, for this reason, such primary analyses will be 
called design-based analyses. In practice, when data 
are missing, alternatives to the simple design-based 
analysis are required, but these should, under appro-
priate assumptions, have the same target estimand as 
the primary analysis. For example, with continuous 
outcomes a so-called mixed model repeated measures 
analysis is often chosen as the primary analysis for 
the incomplete data.

The class of sensitivity analyses to be discussed 
below then is focused on design-based analyses and 
their target estimand, and the aim is to assess the 
behavior of the results from such analyses under par-
ticular departures from MAR. One of the most chal-
lenging aspects in formulating sensitivity analyses fol-
lows from the third point: the departures from MAR 
captured by a particular sensitivity analysis must be 
expressible in such a way that they can be appreci-
ated by all those who need to make use of the results 
from this analysis, the majority of whom will prob-
ably not be statistical experts. The controlled imputa-
tion method to be described now addresses this need 
through the explicit formulation of MNAR statistical 
models for dropouts (or those who deviate). An impor-
tant special class of controlled imputation approach, 
the so-called reference-based methods, constructs 
postdeviation/postdropout treatment scenarios from 
other arms of the trial. The feature that all controlled 
imputation methods have in common is the ability to 
construct the posited MNAR models using compo-
nents from an MAR model, with the possible addition 
of fixed, known, sensitivity parameters. Thus no direct 
estimation of an MNAR model is required. This leads 
to great simplification in practice.

Controlled multiple imputation
It has been seen above that analyses based on the MAR 
assumption correspond to de jure estimands. It has also 
been seen that, under MAR, the future conditional 
statistical behavior of the two patients given their com-
mon history is identical. Hence one form of sensitivity 
analysis that allows departures from the MAR assump-
tion can be formulated in terms of proposed or known 
deviations from protocol treatment. A particular set of 
assumptions about this behavior can be viewed as one 

possible de facto scenario. It is important to note that 
these assumptions apply to the statistical behavior of 
the missing data and do not affect the primary, design-
based analysis. The aim of the sensitivity analysis is to 
examine the impact of these alternative assumptions 
on the results obtained when the primary analysis 
method is used.

The implementation of this approach in practice 
brings together two statistical ingredients. The first 
is a pattern-mixture model [3] (Chapter 16). In simple 
terms, this allows patients with different dropout/
deviation patterns, and possibly other differences 
such as reason for dropout, to have different under-
lying outcome models. The overall model for all 
patients is then a mixture of such component mod-
els. For obvious reasons, the parts of the component 
models that correspond to missing data cannot be 
directly identified from the observed data. Hence, to 
use such models in practice, additional assumptions 
are introduced that allow unidentifiable parts of mod-
els to be identified or ‘borrowed’ from other groups of 
subjects. Sometimes these assumptions are expressed 
as constraints on the parameters of the component 
models. In fact, MAR can be shown to correspond 
to one very stringent set of such constraints. Early 
developments of pattern-mixture models used what 
could be termed ‘within-group’ constraints in which 
information is borrowed from other patients in the 
same randomized group. In control-based imputation 
methods, scenarios are formulated that define the 
future statistical behavior of the outcomes from each 
patient that deviates or drops out. These can take 
many forms, depending on the context. Such scenar-
ios may, for example, modify the statistical behav-
ior implied by the MAR assumption in some simple 
way, such as changing the predicted means by a given 
percentage. An important special class of controlled 
imputations consists of the so-called reference-based 
methods. These sensitivity analyses define the future 
behavior of patients with missing data according to 
some postulated pattern of treatments taken using 
information from other groups. So in contrast to 
‘within-group’ constraints, the required behavior is 
‘borrowed’ using a model for the missing data that 
are estimated from one of the other randomization 
groups. For example, if a subject withdraws from 
active treatment and subsequently takes no other, 
then their future behavior may be modeled on the 
behavior of those in a placebo group. Very commonly 
there will a reference group, a standard treatment for 
example, from which such borrowing will be made 
and this provides the name for the overall class of 
methods. In any particular instance the chosen set of 
mappings of behavior among randomization groups 
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defines the scenario, in the sense of the word used 
above. There are very many ways in which such sce-
narios can be constructed and the choice in practice 
depends critically on the particular clinical setting. 
Some examples are described below, both reference 
based and others, that have been found useful, but 
many others could be considered. All scenarios share 
a common property however. Each provides a statisti-
cal model for the conditional behavior of the missing 
data for each subject who deviates or drops out. This 
model can differ among randomized groups, and 
among reasons for, and times of, deviation or drop-
out. This model can be estimated from the observed 
data.

Having constructed a model for the entire set of out-
comes, both observed and missing, it is necessary to 
use this in the sensitivity analysis. For this the second 
statistical ingredient is required: Multiple Imputation 
(MI) [13], see also [14] for a recent text. The pattern-
mixture model allows missing outcomes to be imputed 
under the chosen scenario and in this way can be used 
to ‘complete’ the data set. The primary (design-based) 
analysis can then be applied to this completed data 
set. However, to produce a valid analysis it is neces-
sary to account for both the fact that the imputation 
model has been estimated from the observed data and 
to reflect properly the loss of information due to the 
missing data. Without this a valid comparison cannot 
be made with the MAR-based de jure analysis, or other 
possible de facto scenarios. It turns out that the use of 
MI with pattern-mixture models corrects for both of 
these requirements. It is important at this point to be 
clear about the precise nature of the sensitivity analysis 
being used. Under the alternative scenario on which 
the pattern-mixture model is based, and which cor-
responds to a nonrandom missing data mechanism, 
treatment compliance in at least one group will not 
follow the original protocol. Yet, in keeping with the 
randomization, and in accordance with intention to 
treat principles, the original design-based analysis is 
retained, as would be used if the data were complete. 
Hence, it is important for this class of sensitivity analy-
sis that the primary analysis does not reflect the pos-
tulated data generating mechanism as specified by the 
chosen scenario. The aim is to assess the robustness 
of the conclusions from the primary analysis as the 
underlying scenarios are altered. This should be con-
trasted with an analysis in which both the postulated 
data generating mechanism and the subsequent analy-
sis are changed; the latter being modified to match the 
former. The actual postulated treatment adherence will 
be incorporated into such an analysis. Such an analysis 
is well defined and valid, but answers a very different 
question. This distinction is made as follows in [7]: “We 

distinguish between two forms of sensitivity analysis, both 
of which have a role, and both of which can be formulated 
using the proposed multiple imputation framework. In 
the first, one assesses the impact of alternative postulated 
behaviors of the missing data on the conclusions from the 
original method of analysis. There is no full likelihood 
equivalent of such an analysis. It answers the question: 
how robust are the inferences from our analysis to mis-
specifying the assumptions about the behavior of the miss-
ing data (in the chosen directions)? In the second type of 
sensitivity analysis, the alternative postulated behavior is 
used both to impute the missing data and is acknowledged 
in the analysis model. Hence this answers the question: 
what would be the consequences of constructing the entire 
analysis under the chosen alternative assumptions? In this 
approach the imputation and analysis models are conge-
nial, and there will be an equivalent analysis based on 
full likelihood.”

Failure to appreciate this difference can lead to mis-
taken attempts to assess the properties of one approach 
through the behavior of the other. See for example [15] 
and the response [16].

A reference-based example of the controlled imputa-
tion approach to sensitivity analysis was first described 
in [17], with some extensions given in [18]. A comprehen-
sive account linking the approach to de jure and de facto 
estimands and introducing several alternative scenarios 
was provided by Carpenter et al. [7]. Discussions of one 
particular scenario (the so-called jump to reference) are 
provided in [19] and [20]. Two recent texts on handling 
missing data in clinical trials, [21,22], also discuss the 
approach. At present, controlled imputation meth-
ods for other outcomes, principally count, binary and 
event-time, are under development. A comparatively 
simple method for counts is described in [23].

Some example scenarios
We now describe in a nontechnical way some simple 
examples of scenarios that have been proposed for 
control-based imputation. These represent a mixture 
of reference-based methods (M1, M2, C1) and others 
(M3, C3, C4). For this we closely follow the develop-
ment in [7]. It is assumed that there are two treatments 
under comparison, a new treatment that is being com-
pared with a reference. In some settings, the reference 
treatment might be a standard, established treatment, 
in others, a placebo. In more complex settings, with 
more than two treatments for example, the basic sce-
narios illustrated here can be extended in a variety of 
natural ways, depending on the setting.

(M1) Jump to reference
It assumed that, following dropout, a patient’s mean 
follows a profile that is the same as that of a patient 
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from the reference group. An obvious example when 
this might be considered is when a patient ceases 
taking treatment and the reference is placebo. This lat-
ter is sometimes called ‘placebo imputation,’ although 
in practice this more commonly refers to the condi-
tional analogue of this, which we call ‘copy reference’ 
(see below).

Such a change may be seen as extreme: the patient 
immediately reverts, following dropout, to the ref-
erence profile, losing any gain that might have been 
made under the randomized active treatment. Hence, 
using the reference group in this way might be used as 
a worst-case scenario in terms of reducing any treat-
ment effect because patients on active treatment who 
have withdrawn will lose the effect of their period 
on active treatment. It may well not be an appropri-
ate scenario for treatments with a long lasting, or even 
permanent, impact.

Hence, this scenario might be considered for 
treatments with only short-term effect.

(M2) Copy differences in reference
This scenario provides a contrast to the extreme effect 
of jump to reference by assuming that in the future 
a dropout continues from their established position, 
but the subsequent changes in mean profile follow that 
of the reference arm. So, for example, if a particular 
rate of decline in mean were seen under the reference 
treatment this rate would then be applied to future 
outcomes for the dropout. In other words, the patient 
profile following dropout tracks that of the reference 
arm, but starting from the benefit already obtained. In 
contrast to the previous scenario, this would be more 
relevant when changes on outcome were not subject to 
rapid alteration under treatment change.

Such a scenario might be used, for example, in 
an Alzheimer’s study where treatment halts disease 
progression, but after stopping therapy the disease 
continues to progress [26].

(M3) Last mean carried forward (marginal)
There has been much criticism of the ad hoc method 
of handling missing data known as ‘Last Observation 
Carried Forward (LOCF).’ See for example [1,24–27]. 
A more principled statistical approach that provides 
one interpretation of the rationale underlying LOCF 
can be constructed using the current approach. It 
is not an example of a reference-based imputation 
because it does not, at least in its simplest form, apply 
models from one arm to imputations in another. It is 
assumed that, following dropout, the patient follows a 
mean profile that does not change with time, in other 
words, an average level is established that is main-
tained to the end of the trial. In contrast to LOCF, 

individual imputations incorporate appropriate ran-
dom variation, and this provides the proper under-
pinning of the method. In the MI/pattern-mixture 
version of the approach, it is the marginal profile that 
remains constant. There is a conditional analogue 
that is introduced below.

(M4) Marginal delta method
The so-called delta method can be used in various 
ways, with and without copying from other groups. 
The common feature of such methods is the addi-
tion of a chosen increment (often labeled delta, hence 
the name) to the marginal mean following dropout. 
This can be done once immediately following drop-
out to provide a one off ‘kick’ to the profile, or can 
continue for future times, perhaps increasing as time 
passes. These increment(s) can be added to various 
scenarios. For example, when added to a constant 
mean, as seen in the last mean carried forward sce-
nario, a linearly increasing/decreasing profile can be 
constructed. Alternatively, the increment(s) can be 
added to the mean profile from those from the same 
group who do not dropout. Or, a proportion of the 
difference between the active and reference profiles 
can be added as an increment, generating a scenario 
that lies between MAR and jump to reference. In each 
case, an attempt is being made to capture a dropout 
behaving in a systematically different way to those 
who remain, with this behavior captured by one or 
more parameters, the delta’s. This means that the delta 
method has a quantitative aspect that is absent from 
the other scenarios, and the size of delta can be treated 
as a sensitivity parameter, in other words, it can be var-
ied across a range of values. Many alternatives exist 
within the delta approach and appear to be gaining 
some popularity in practice.

An example where this has been used is a trial on the 
treatment of pulmonary arterial hypertension, with a 
6-min walking distance as an outcome. Dropouts were 
expected to do steadily worse on this score as time 
passed. Results from different values of delta formed 
the basis of a tipping point analysis [28].

We finish by considering three conditional scenarios.

(C1) Copy reference
This scenario is the analogue of jump to reference, 
but the conditional profile given the history is cop-
ied from the reference group not the marginal. It is 
less extreme than jump to reference and, in a certain 
sense, allows the patient to continue from the level 
achieved under the active treatment as though it had 
been achieved under the reference treatment. One 
consequence is that if a patient on active treatment is 
above the reference mean then this positive residual 
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will feed through into subsequent observations, to a 
degree determined by the correlation pattern in the 
reference arm. Hence, the patient’s profile will slowly 
decay back toward the mean for reference at later 
times. Whether this makes sense in any given setting 
depends wholly on the clinical context. There are 
clear examples where it is not appropriate. It is compu-
tationally particularly convenient to implement how-
ever under the conditional MI algorithm, sometimes 
called the regression method. One difference between 
copy reference and the marginal scenarios becomes 
particularly apparent when the implied marginal 
profile for dropouts is recovered. This is seen, neces-
sarily, to be a function of the dependence parameters 
(variances and correlations) as well as the marginal 
means, and this has implications for the correspond-
ing estimand. We might ask when it is appropriate 
for the estimand to involve these parameters. This is 
not necessarily an argument against using copy refer-
ence, rather that, when used, it should be clear what 
question is being answered in the resulting sensitivity 
analysis.

(C2) Last mean carried forward (conditional)
This scenario follows the same principle as M3 above 
except that it is the patient’s conditional mean that is 
carried forward. This means that to a certain extent 
the mean carried forward will reflect how successful 
or otherwise the individual patient has been up to the 
point of dropout. Those who have done well up to 
that point, for example, will retain that advantage (on 
average) to the end of the trial.

(C3) Conditional delta method
Again we take an approach originally applied to the 
marginal version, except that the same manipulations 
are applied to the conditional means. In this case, 
it follows that the delta increment is applied to the 
conditional not the marginal mean. And as we have 
seen with C1 above, it is important to understand 
what this implies about the resulting scenario. In par-
ticular, when the marginal implications of the con-
ditional model are assessed it is important that these 
reflect what is required. Consider a simple example 
in which a one-off ‘kick’ is applied following drop-
out, with no further impact. In the marginal scenario 
only the mean following dropout is affected. How-
ever, when this is applied in the current condition 
scenario, the one-off delta increment influences sub-
sequent marginal means, and the degree of influence 
depends on the variance and correlations among the 
outcomes. Similar, but more complex, implications 
for the implied marginal profiles follow from the use 
of other conditional delta methods. As with scenario 

C1, we see that the consequences on the implied 
marginal profiles of making these modifications are 
a function of the dependence structure of the data. 
And the implication of this is also the same: in using 
these scenarios it is important to be sure that these 
reflect what is required.

Further points
An important feature of these methods is that the 
grouping for scenarios need not be based just on time 
of dropout or deviation. The choice of scenario could 
also depend on the reason for dropout, for example. 
Information on this is usually collected in trials, cat-
egorized in some way. It could well be that certain 
reasons are likely to be quite unrelated to the trial and 
patient outcome, such as dropout associated with a 
change in home location of the patient. An MAR sce-
nario might be appropriate for such a dropout. Other 
reasons, such as lack of efficacy, might well require 
an alternative, nonrandom scenario. This potential 
for incorporating reasons for dropout into the anal-
ysis is another valuable feature of this approach. As 
yet, there are few other statistical methods available 
to the practitioner that allows this information to be 
accommodated.

Some have used the availability of the parameter 
delta in scenarios M4 and C3 to construct the so-called 
‘tipping point ‘ analyses [28,29]. In these, the value of the 
sensitivity parameter, here delta, is increased in steps 
until the statistical significance, or non-significance, of 
the of the primary analysis is reversed. The behavior 
of the dropouts implied by this value of delta can then 
be examined from a clinical perspective to assess its 
plausibility.

One great advantages of the MI-based approach to 
sensitivity analysis is the availability of the imputations 
themselves for inspection, in contrast to purely model 
based methods. They can be plotted as means over 
groups of patients to provide a graph of average behav-
ior from different dropout/deviation groups, or as 
means from each patient to give individual profiles. In 
this away, the actual behavior implied by the different 
scenarios can be visualized, greatly helping their assess-
ment from substantive perspective. Such an approach 
is usefully combined with the tipping point method, 
for example.

It should also be noted that the borrowing of infor-
mation from other arms does not avoid the issues of 
selection bias which are ever-present in missing data 
problems. For example, those who continue in the 
reference arm are not a random sample of those origi-
nally randomized to that arm and might, in some 
settings, represent less sick patients. Hence, it is an 
important aspect of the resulting sensitivity scenario 
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that the statistical behavior being borrowed reflects 
those who do indeed continue in the reference arm. 
If this does not match the required scenario, this can 
be modified by techniques like the delta method. In 
this overview, we have also confined discussion of the 
reference method to deviations confined to the active 
arm. In principle, many other scenarios can be con-
structed, for example, with deviations and dropouts 
in the reference arm as well. A referee asks whether 
the problem of missing data should be handled first 
in the reference arm before imputing for the active 
arm. There can be no ‘correct’ answer to this; the 
different options represent different scenarios which 
need to be considered in the context of the trial 
setting.

This points raised in the previous paragraph are 
related to a further query from a referee, who suggests 
that the de facto scenarios might, in some settings, 
make better foundations for primary analyses than 
the MAR-based analyses, in those circumstances 
when MAR is clearly an implausible assumption. 
While this does appear to be a sensible route for some 
settings, it does not follow that the controlled impu-
tation approach is then necessarily the appropriate 
method for such a primary analysis. We can separate 
the construction of a de facto scenario from the analy-
sis that incorporates it. A key feature of controlled 
imputation is the deliberate mismatch between the 
data generating model and the analysis model. It can 
be argued that for a primary analysis these two mod-
els should coincide, and the analysis model should 
properly incorporate the mechanisms leading to 
deviation and dropout. Such modeling approaches 
are under development, but take us away from the 
controlled imputation method.

Resources
As yet, a full range of controlled imputation meth-
ods has not been implemented in commercial statisti-
cal software. However, the general approach has one 
great computational advantage. The various scenar-
ios can be introduced into a conventional MI analysis 
through modification of the imputations generated 
under MAR, provided the chosen package allows 
access to the necessary ingredients. These are then 
manipulated to produce the required scenario-based 
imputations. This is certainly possible using the SAS 
procedure MI [30] and the Stata command MI [31], 
and it is not especially difficult to construct bespoke 
analyses for particular scenarios using these tools. 
More flexible tools have also been implemented as 
macros that have been built on existing facilities. The 
most flexible among these is a set of SAS macros, the 
development, implementation and dissemination of 

which were led by James Roger and which is freely 
available from [32]. This covers most of the scenarios 
described above and, in addition, allows the choice of 
scenario to be patient-specific, that is, it allows each 
individual scenario to be chosen according to other 
collected information, such as to reason for dropout. 
It is accompanied by examples and good documenta-
tion. A second, also well-documented, SAS macro by 
Bodhana Ratich and Michael O’Kelly provides anal-
yses for the C1 and C3 scenarios and also includes 
a tipping point analysis. This can be obtained from 
the same website as above, under the heading DIA 
working group.

Concluding remarks
The rationale behind, and the basic principles under-
lying, reference-based imputation methods of sensi-
tivity analysis have been described. These allow sen-
sitivity analyses to be constructed from alternative 
postulated treatment scenarios following dropout 
and deviation. Several possible scenarios have been 
described that have been found useful in practice. 
They have already formed part of successful regu-
latory submissions. We reiterate here the important 
point that this is a general approach and is not tied 
to these particular scenarios. Many other possibili-
ties exist, and a key feature of the overall approach is 
that it can be tailored to very specific, and potentially 
very different, settings. Computationally, analyses 
can be constructed readily by those with experience 
of building macros SAS or Stata. For others, there 
exist two macros in SAS that can be used for a range 
of scenarios and others are in development.

Future perspective
At the moment it does seem very likely that the use 
of controlled imputation will be used increasingly 
as a method for sensitivity analysis in regulatory 
submissions.

While the overall approach of the controlled impu-
tation sensitivity framework is now well established, 
there are many technical details that need filling in. 
The extension of controlled imputation to other out-
comes, such as counts, binary data and event-time 
data, is currently ongoing. Settings such as these in 
which the treatment effect may be a nonlinear func-
tion of the outcome means raise additional issues 
when constructing pattern-mixture models, some of 
which may carry over to the controlled imputation 
setting. It is also important to be able to assess the 
performance of newly developed statistical methods 
and, for this, a clear definition of ‘expected behavior’ 
is needed. In the current sensitivity setting, in which 
the data generating and analysis models are not the 
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same, special care is needed. In particular, to justify 
the use of controlled imputation, we need to be clear 
about the required behavior of Rubin’s MI variance 
formula in this very special setting. Some progress has 
already been made on this (see [18] for example) and 
further work is also ongoing on this problem.

As important as the technical developments is the 
continued accrual of practical experience of using 
these methods. As emphasized throughout this 
article, controlled imputation is a framework, not a 
particular analysis. Up to now, simpler settings have 
tended to be explored in more detail. However, there 
is an enormous range of clinical settings in which 
such methods might be considered, some with consid-
erable complexity, and experience gained from these 
that can be communicated widely will be invaluable 
in providing guidance for the future use of controlled 
imputation.

A further major issue for the future was briefly 
discussed earlier: there is increasing pressure to use 
de facto scenarios as the basis for primary analyses. 
However, there does not yet exist agreement on how 
this should be done, and an argument against using 
controlled imputation for this was outlined above. It 
is possible that other viewpoints might undermine 
this objection though. Or, it may be that more formal 
model based analyses will be required in which both 
the data generating and analysis models coincide. 

These will almost certainly have to incorporate more 
information on the processes presumed or known 
to lie behind deviation and dropout. Work is ongo-
ing on such models and subsequent analyses and is 
likely to be the topic of much development in the 
immediate future.
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Executive summary

•	 All nontrivial analyses for missing data rest on assumptions that cannot be assessed from the data under 
analysis.

•	 A comparison of different approaches for handling missing data cannot be separated from the aims of the 
analysis.

•	 The National Research Council report encapsulates such aims in the definition of the estimand.
•	 It is vital to distinguish between approaches in which missing data are ‘defined away’ by incorporating them 

into the definition of the subject outcome and in which they are a nuisance to be accommodated: such 
approaches have different estimands and so it is not meaningful to compare them directly.

•	 Two classes of estimands are the so-called de jure, in which treatments are compared assuming subjects 
follow their randomized treatment according to the protocol, and de facto, which compares the effects of the 
treatments actually taken irrespective of randomized treatment.

•	 When data are missing, any analysis that targets a de facto estimand must make assumptions about treatment 
use following dropout/deviation. This may be done explicitly or implicitly.

•	 Given the necessary uncertainty about the validity of assumptions underlying missing data analyses, 
including potentially treatment use following dropout/deviation, appropriate sensitivity analyses are strongly 
recommended.

•	 Such sensitivity analyses should be constructed in a coherent and relevant way given the estimand.
•	 There are many potential approaches to constructing sensitivity analysis and no broad agreement as yet about 

the most appropriate routes to take.
•	 In sensitivity analyses based on reference-based approaches, the assumptions are formulated in terms of 

treatment scenarios that follow dropout and deviations. Many such scenarios are possible.
•	 Such sensitivity analyses provide a transparent linkage between the estimand and the assumptions being 

targeted.
•	 Macros for these analyses have been developed and are freely available.
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