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Review

Economic and regulatory drivers tend to move the manufacturing of biopharmaceuticals 
from an empiricism-driven art to a science and engineering-based technology. 
Therefore, the US FDA started the process analytical technology and quality by 
design initiative to modernize risk-based regulation of quality. Industry implementation 
is encouraged by increased flexibility and knowledge-based approval procedures. In 
brief, the concept is based on advanced process monitoring and control, quality built 
in by design and the definition of the design space. Major obstacles in the translation 
of the process analytical technology concept are the complexity of biological systems 
and their limited online observability. To circumvent the lack of physiology-relevant 
online sensors and to improve process understanding either new online sensor devices 
are implemented, such as real-time analysis of volatile compounds, or multivariate 
statistical methods are employed to extract hidden information from acquired data sets, 
thereby enabling the prediction of non-measurable variables in real time.

Unlike the majority of the manufactur-
ing industries, validation procedures in 
biopharmaceutical manufacturing evolved 
quite differently and in such a way that pro-
cesses strictly adhere to predefined conditions 
without gaining detailed insight into the 
entire metabolic reactions. This means that 
even minor changes or even optimization of 
the process are hardly possible. Hence, vali-
dation in upstream processing is typically de-
rived from the control of a few state variables 
such as pH, pO

2
, temperature and stirrer 

speed (rpm), none of which provide signifi-
cant information on the physiological state of 
the cells and quality assurance is shifted to 
in-depth characterization of the final prod-
uct. As a whole, such an approach cannot 
provide the required process knowledge and 
does not allow for a reduction in variabil-
ity or an improvement in reproducibility of 
biotechnological production processes. 

Therefore, in 2002 the US FDA started a 
pivotal initiative to modernize the regulation 
of pharmaceutical quality and to encour-
age industry to implement this new concept: 
‘guidance for industry, process validation: gen-
eral principles and practices’ [101]. The keys are 
the implementation of risk- and science-based 
approaches for regulatory decision making. 
In this development process, pharmaceutical 
engineering should evolve from an empiricism 
driven art – ‘quality by quality control’ – to 
a science and engineering-based technology. 
Thus, the advanced science and engineering 
knowledge will improve efficiency of manu-
facturing and regulatory decision procedures. 
Hence, the initiative can be seen as a paradigm 
change for biopharmaceutical manufactur-
ing from ‘quality after design’ to ‘quality by 
design’ (QbD). To achieve these goals a set of 
tools comprising process analytical technol-
ogy (PAT) [1,2], QbD and design space are 
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suggested and need to be implement-
ed. Put simply, PAT aims to improve 
analytical and monitoring capabili-
ties and the QbD concept is based 
on understanding of the product and 
process, along with knowledge of the 
risks involved in manufacturing, and 
the design space defines valid opera-
tional conditions to meet the product 
quality attributes [3]. Hence, the vali-
dation of product quality is provided 
by mutual variation of a multitude of 
interdependent variables contained in 
the particular data set. As a whole, the 
defined design space provides more 
flexibility in manufacturing and en-
ables process optimization within the 
solution space, without violating the 
validation status of the process.

Meanwhile, the new quality con-
cept has been further developed 
and corresponding guidelines have 
been issued [4] in which the authori-
ties strongly emphasize to provide 
a comprehensive understanding of 
the product and manufacturing pro-
cess for reviewers and inspectors, 
which in turn can create a basis for 
more flexible regulatory approaches 
predicated on the level of scientific 

knowledge. Risk-based regulatory decisions, primar-
ily reviews and inspections, facilitate improvements of 
the manufacturing process within the approved design 
space as prescribed in the dossier without further regu-
latory review. Moreover, reduction of post-approval 
submissions and real-time quality control will lead to a 
reduction of end-product release testing, in addition to 
shortening the time to market. 

Irrespective of the permanent needs to improve the 
monitoring capabilities of bioprocessing, the recent 
change of regulatory issues also implies a strong com-
mitment to improve process knowledge and under-
standing in up- and down-stream processing. Due to 
the specific challenge of working with living cells, this 
article is focused on upstream processing. However, 
the implementation of process control and automation 
is in contrast to other manufacturing industries. The 
major reasons for this are:

»» The complexity and fragmentary understanding of 
the biological production systems;

»» Limited online access to physiologically relevant 
molecules due to their inclusion in the cellular matrix;

»» The heterogeneity of cellular populations;

»» Lack of meaningful sensors fulfilling specific require-
ments in bioprocessing, such as maintenance of ste-
rility, fouling and leaching of compounds [5]. 

However, implementation of QbD concepts and 
definition of the design space requires the availability 
of physiologically relevant information in real time. 
The solution to this problem can be accomplished by 
combining highly specific offline data [6–12] and online 
data acquired with a broad spectrum of established and 
new sensors/analyzers [5,13–15] using advanced compu-
tational modeling techniques [16–19]. In terms of this 
conceptual framework process understanding can be 
improved, which, in turn, supports the identification 
of the most meaningful process variables.

Concepts for acquisition of meaningful 
process variables
Bioprocess-specific online sensor requirements are 
described in detail by Sonnleitner [5]. Conduction of 
measurements in a solid–liquid–gas suspension under 
sterile process conditions represents one of the major 
challenges. Another problem is that physiologically 
relevant metabolites and compounds are not directly 
accessible since they are enclosed in the cellular ma-
trix. Consequently, upstream bioprocess monitoring is 
always a combination of offline monitoring methods 
with sampling and subsequent time-delayed labora-
tory analysis and online in situ or ex situ monitoring 
strategies. In situ measurement signifies insertion of a 
sensor into the bioreactor with either direct contact to 
the fermentation broth (invasive) or separated by, for 
instance, a glass membrane (noninvasive). The ex situ 
configuration describes techniques with sampling and 
direct in-line analysis. Lastly, there are also intermedi-
ate approaches with sampling and proximate, timely 
analysis known as at-line techniques [14]. In this con-
text reliable sampling systems and appropriate equip-
ment must comply with bioprocess-specific features 
such as maintenance of sterility, low sampling vol-
ume, and rapid sampling procedure to assure authen-
tic sample composition. Sampling techniques [20–22], 
commonly used ex  situ analytical methods [5,23] and 
in situ monitoring strategies have been comprehensive-
ly reviewed [5,14,24,25]. In the pharmaceutical industry 
IR, mid-IR, and in particular near-IR (NIR), are the 
most frequently employed monitoring instruments in 
combination with chemometric-based signal process-
ing for data interpretation. PAT compliance technol-
ogy, as well as applications, have been reviewed in 
detail [14,26,27]. However, wide application of NIR in 
upstream processing is impaired by strong absorption 

Key Terms

Quality by design: A systematic 
approach to development that 
begins with predefined objectives 
and emphasizes product and 
process understanding and 
process control, based on 
sound science and quality risk 
management.

Process analytical technology: 
Defined by the US FDA as a 
mechanism to design, analyze 
and control pharmaceutical 
manufacturing processes through 
the measurement of critical 
process parameters that affect 
critical quality attributes.

Bioprocess monitoring: The 
supervision of bioprocesses 
performed by measuring critical 
parameters such as temperature, 
pH, O2 and quality variables.

Statistical modeling: Comprises 
a framework of formalization of 
relationships between variables 
in the form of mathematical 
equations to identify causal 
dependencies and to enable 
prediction of complex variables. 

Proton transfer reaction MS: A 
very sensitive technique for online 
monitoring of volatile organic 
compounds in ambient air.
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of water in the NIR region or by interaction with gas 
bubbles and matrix effects of nutrient media [14]. 

The challenge for process engineers is to select an ac-
curate combination of sensor and analyzer systems that 
comply with challenges specific to the process they are 
intended for, and that enable acquisition of meaningful 
process variables, and combinations thereof, in real-time. 

The potential of a versatile monitoring platform in 
combination with statistical modeling applied to ad-
vanced control of Escherichia  coli-based recombinant 
protein production processes is shown and discussed in 
the ‘Case study’ section. 

In addition to classical process variables, such as agi-
tator speed, flow rates, temperature, pH, pO

2
, CO

2
 and 

O
2
 in the off-gas, base consumption and medium feed, 

the established monitoring platform consists of ad-
vanced monitoring devices to gain physiologically rel-
evant information. The quantification of biomass and 
its physiological activity in real-time are among the 
most important parameters in upstream bioprocesses, 
however, ex  situ cell dry-mass determination is still 
frequently used, even in industrial applications. Opti-
cal in situ probes for optical density measurements in 
transmittance mode are an alternative, but in general 
they show a limited linearity range; they are sensitive to 
bubbles, suspended solids and changes in cell morphol-
ogy and there is no differentiation between viable cells, 
non-viable cells and cell debris [13,28]. This backlog is 
also valid for NIR technology employed for cell density 
measurement [29]. Hence, dielectric spectroscopy offers 
the advantage of acquisition of living, physiologically 
active biomass; however, signal quality is affected by 
cell size [30,31]. Concentrations of medium compounds 
(glucose, amino acids) and by-products of metabolism 
(acetate, ethanol) are low in carbon-limited feed-batch 
cultivations with defined media and, therefore, NIR 
was not considered as additional process analyzer. 
Alternatively, emission–excitation multiwavelength 
fluorescence spectroscopy was applied to gain signals 
regarding intracellular components. 

However, direct assignment of the fluorescence sig-
nal to specific analytes is only feasible with reporter 
proteins. Hence, the multiwave excitation of intrinsic 
fluorescence requires elaborate statistical data analysis 
and modeling to assign fluorescence signals to specific 
variables [32–36]. 

Considering the gas phase as source for process, 
information quantification of oxygen consumption 
and carbon dioxide evolution were, for a long time, the 
exclusively acquired data. 

Recently, a highly promising method for direct 
measurement of volatile metabolites has been adapted 
for bioprocess monitoring, the proton transfer reaction 
MS (PTR MS) [37]. The major benefit of PTR MS lies 

in the acquisition of previously unavailable data in real 
time. Specific compounds are tightly associated with 
the cell metabolism and can be directly assigned to 
individual pathways to uncover bottlenecks and/or 
overflow of metabolites. Moreover, PTR MS does not 
require complex sample treatment. In brief, PTR MS 
consists of an ion source to produce hydronium ions 
(H

3
O+) connected to a drift tube to react with volatile 

organic compounds, which are analyzed in a quad-
rupole MS [38,39]. The major advantages of PTR MS 
instruments in upstream monitoring are the short re-
sponse time of approximately 100 ms, enabling real-
time measurement, the very low detection limit in the 
single digit parts per trillion by volume (pptv) region, 
direct, noninvasive sampling downstream, the sterile 
head space filter, quantification by calibration and easy 
interpretation of obtained mass spectra. 

Thus, the increased process understanding provides 
valuable information for targeted host–vector system 
improvement and modification. Above all, depend-
ing on the physiological role of particular compounds, 
meaningful control loops can be established. 

The role of statistics in data processing
Although in recent times a couple of new sophisticated 
sensor systems, qualified for use in the upstream process-
ing mentioned above, have appeared on the market, the 
controllability of upstream processing is still impaired 
by a rather low observability of the entire biochemical 
process. Due to the complex nature of biological systems 
and the particular features of bioprocesses a significant 
extension of the online monitoring capabilities is not to 
be expected in the near future. Hence, the implementa-
tion of PAT, QbD and even the definition of the design 
space is impaired by these circumstances. 

Statistics has a long tradition in the life sciences by 
quantitatively assessing relationships and unraveling 
hidden interdependencies. Overall, the role and evolu-
tion of statistics in bioprocess engineering reaches from 
assessment of data quality, to scrutinizing relations 
within sets of variables and discovery of interdepen-
dencies between variables of a data set. A comprehen-
sive compilation of methods used in multivariate data 
analysis and prediction is provided by Backhaus et al. 
[40] and by Johnson and Wichern [41]. Concerning data 
quality the primary goal is to assure usability of the 
acquired data. Individual steps include checks for miss-
ing data, identification of ranges of individual vari-
ables, use of control charts and device-specific checks. 
These tasks are also crucial in view of minimizing er-
ror propagation. Further steps of data pre-processing 
encompass filtering and time alignment. 

The potential of multivariate data analysis us-
ing support vector regression and partial least square 
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regression for prediction of animal cell cultivation pro-
cesses was reported by Li et al. [42]. Therein, data sets 
comprising 134 temporal online and offline parameters 
derived from 243 production runs were analyzed. As 
an important result, the association of growth, lactate 
metabolism and product titer could be identified.

»» Development of statistics in process control
In the manufacturing industry, statistical concepts 
were further developed to statistical quality control. 
In the course of this approach, quality criteria were 
specified and even monitored over time by control 
charts. Industry then switched over to statistical pro-
cess control and, thereby, process abnormities could 
be detected at an early stage and tracked back to the 
source of the problem. However, the complexity and 
high interactivity of biological processes made process 
supervision cumbersome since several of these charts 
trigger alarms in a short period and the operator can-
not isolate the source of the problem. The solution was 
the transition from univariate to multivariate methods 
to meet the demands of bioprocess data analysis and 
modeling [43]. By application of multivariate statistics 
and chemometrics correlations between the fragmen-
tary information derived from the low number of on-
line measurable variables and the broad spectrum of 
offline data sets, such as DNA microarrays, 2D electro
phoresis and mass spectrometry can be established. 
According to Herman Wold, chemometrics is defined 
by: “how to get chemically relevant information out of 
measured chemical data, how to represent and display 
this information and how to get such information into 
data” [44]. For further reading refer to [45]. 

The enormous progress in computer science sup-
ported the rapid implementation of multivariate statis-
tical analytical methods and chemometrics, which are 
nowadays indispensable tools in research and develop-
ment of life science. Multivariate statistics largely con-
tribute to improved process understanding of biologi-
cal systems and, thereby, support bioprocess monitor-
ing and control and follow the requirements outlined 
in the PAT initiative exactly.

Variable selection & data compression
As mentioned before, the overwhelming complexity 
and high interactivity of cellular production systems 
largely impedes monitoring and control in real time, 
which, in turn, prevents substantial improvement of 
process understanding. In order to extract the most 
relevant information in situations where several hun-
dreds of variables are available, variable selection meth-
ods are applied. For a detailed overview of typically 
used methods, such as stepwise selection methods, 
best-subset regression or genetic algorithms, see [17,46].

Multivariate projection methods are applied to re-
duce the dimensionality of the problem, taking into 
account the correlated nature of the data sets. Thereby 
new variables, the so-called latent variables, are calcu-
lated. The most frequently applied method is princi-
pal component analysis (PCA). Latent variables from 
PCA optimally represent the distances between the 
objects in the high-dimensional variable space. PCA 
is very useful for transformation of highly correlated 
x-variables into a smaller set of uncorrelated latent 
variables. The results of a PCA are usually discussed 
in terms of component scores – the transformed vari-
able values corresponding to a particular data point 
– and loadings – the weight by which each standard-
ized original variable should be multiplied to get the 
component score [47].

Another method is projection to latent structures 
(PLS), first introduced by Herman Wold [48] and fur-
ther developed by his son Svante Wold [49]. PLS is used 
to find the fundamental relations between two matrices 
(X and Y; i.e., a latent variable approach to modeling 
the covariance structures in these two spaces). 

Both methods, PCA and PLS, are frequently and 
successfully applied in data mining in the life sciences 
to identify the variables with utmost relevance. Multi-
way PLS was applied for real-time monitoring of fed-
batch penicillin fermentation [50]. Due to the complex-
ity of biological systems, the set-up of control regimes 
often fails because the most relevant variables are not 
known and, therefore, setup of corresponding control 
loops is impaired.

Prediction of key variables
As mentioned above, most of the currently imple-
mented control variables in bioprocess control are state 
variables with rather low relevance to the physiology 
of the cell factory. However, prediction methods are 
able to extract relationships between easy to acquire 
online signals and physiologically relevant directly 
nonmeasurable variables. For an extended overview of 
prediction methods in chemometrics see [17,19,51]. The 
most frequently applied methods include PLS regres-
sion, linear weighted regression [52], artificial neural 
networks (ANNs) [53] and support vector machines 
regression [42,54]. 

In the authors’ laboratory, PLS regression and ANNs 
are currently in use. ANNs are systems composed of 
highly interconnected processing elements – artificial 
neurons – organized in layers that operate in parallel 
and that are tied together with weighted connections 
analogous to synapses. The correlations between input 
and output data are achieved by adjustment of weight 
functions implemented in the artificial neurons. Typi-
cally easy to acquire online signals, such as oxygen up-
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take, rate of carbon dioxide production rate, alkaline 
base consumption, fluorescence emission units and/or 
mass units of PTR MS are assigned to offline deter-
mined cellular key variables. Among these are biomass 
and product concentration, plasmid copy number and 
so forth.

Nonetheless, the complexity of the ANN model-
ing process led to some skepticism and impaired the 
broad implementation in industry thus far. Mean-
while, the regulatory authorities explicitly recom-
mend the application of multivariate statistics and 
simulation techniques to obtain non-measurable, but 
highly relevant, process variables. Another reason for 
the increased perception of these technologies in pro-
cess monitoring and control is that in recent time, al-
ternative machine learning techniques are assessed by 
which the obtained results can be cross-checked [55].

Case study
The proof-of-concept to predict complex process 
variables in real time was shown with E.  coli labo-
ratory-scale fed batch cultivation for the production 
of a recombinant protein. The intention of the ‘case 
study’ is to show that the described monitoring setup 
is useful and that application of multivariate data 
analysis allows for prediction of variables not directly 
accessible in real time. Although the results were ob-
tained in an academic environment, one of the goals 
of this article is to encourage the enhanced applica-
tion of statistics to make use of hidden information 
in existing data sets. 

Online data sets comprising O
2
 off-gas, CO

2
 off-

gas, base consumption, dielectric spectroscopy (ca-
pacity, conductivity) and 2D multiwave fluorescence 
signals gained from three replicate processes were 
used to predict the ex situ analyzed offline variables: 
cell dry mass, the amount of recombinant protein and 
the plasmid copy number [56,57]. PLS and radial ba-
sis function ANN (RBF-ANN) were used to predict 
the above-mentioned parameters. In order to avoid 
over-fitting of the models, the input data of the fluo-
rescence data set were pre-selected based on Pearson 
correlation coefficients. The quality of prediction was 
compared by the root mean squared error of predic-
tion (RMSEP). The RBF-ANN model showed the 
best performance (i.e., the lowest RMSEP) by using 
the pre-selected data sets, whereas the PLS model 
could not take advantage of the data pre-processing 
step. When using the whole data sets, the RMSEP 
of the PLS model is lower than that of the RBF-
ANN model, which is in accordance with Svante 
Wold’s statement that the precision of the PLS model 
improves with an increasing number of relevant input 
signals [49]. 

The availability of such highly relevant process 
variables enables the calculation of quality param-
eters, such as actual growth rate (µ), specific product 
formation rate (qP), specific respiration rate qO

2
 or 

oxygen uptake rate and carbon dioxide production 
rate. Furthermore, design of advanced process control 
strategies based on predicted variables is facilitated. 
For instance, calculation of substrate and/or inducer 
feed streams based on predicted cell dry mass will en-
able further improvement of the transcription tuning 
concept [58]. Moreover, due to the timely prediction of 
biomass and product concentration, process perturba-
tions can be immediately recorded and measures to 
compensate can be initiated without delay. 

The results obtained from laboratory-scale experi-
ments prove the potential of statistical modeling and 
advanced monitoring techniques to predict complex 
variables, such as biomass and product titer in real 
time. Moreover, the study also revealed important 
information on contribution and performance of 
individual sensor systems to the overall modeling 
performance. The detailed analysis of dielectric spec-
troscopy-derived signals showed that differentiation 
between living and dead E. coli cells is not possible. 
Small cell size and compactness of E. coli cell mem-
branes are identified as the main sources of this prob-
lem. Prediction accuracy of recombinant proteins 
is strongly improved by 2D multiwave fluorescence 
signals but general conclusions on other proteins 
cannot be drawn as GFP was used as recombinant 
model protein. In summary, additional experiments 
are required to show that prediction of process vari-
ables also works under varying process conditions 
(for instance, temperature or growth rate), prediction 
of proteins without autofluorescence is possible and 
sensor setup and strategy is also valid on a larger scale. 

Future perspective
There is a great deal of evidence that chemometric-
based approaches will substantially enhance the 
capabilities of bioprocess monitoring and that imple-
mentation of advanced physiology-based bioprocess 
control regimes in upstream processing will occur in 
the near future. Hence, the implementation of PAT 
and QbD and definition of the design space is nearing 
realization. For the time being, a major proportion of 
biopharmaceutical companies are still hesitant with 
the implementation of the PAT and QbD concept. 
However, with the increasing number of marketing 
authorization applications, companies will be more 
imposed to demonstrate comprehensive process and 
product understanding, and consequently the ben-
efits of PAT and QbD approaches will become more 
important. The overall optimistic view of forced 
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implementation of knowledge-based approaches is 
grounded on the following supporting pillars:

»» Further exploration of physicochemical phenomena 
to gain new information of biological systems, for 
instance the measurement of inelastic, scattering of 
photons by Raman spectroscopy;

»» Rapid improvement of offline bioanalytical tech-
nologies, such as polyomics technologies (combin-
ing genomics, transcriptomics, proteomics and 
metabolomics), sequencing methods and auto-
mated micro-structured devices, which, in turn, 
provide enhanced insight into the cell factories;

»» Further development and improvement of statisti-
cal modeling techniques due to further progress in 
computer science and statistical methods. 

Therefore, the improved knowledge and under-
standing is highly supportive for definition of the 
design space. Previously unavailable, highly relevant 
variables in real-time enable mathematical modeling 
of individual subprocesses that, in turn, can strongly 

support the quantitative determination of the key 
variables of the design space. The finally determined 
operational limiting values are the result of a mutual 
iterative process of modeling and interpretation of ex-
periments. The flexibility in process operation gained 
by definition of the design space allows continuous 
process optimization (clearly) beyond previous or even 
current operation and validation concepts. 

As a whole, it can be said that in the near future 
bioprocess monitoring and control in upstream pro-
cessing will advance to the current standards in the 
manufacturing industry, to improve the productiv-
ity of biopharmaceuticals for the benefit of human 
society. 
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