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Computer-aided detection for 
pulmonary nodule identification: 
improving the radiologist’s performance?

Computer-aided detection (CAD) systems devoted 
to the automated identification of pulmonary nod-
ules on chest CT have been deeply investigated in 
the last two decades [1–9], as they could represent a 
valuable tool to provide radiologists with a second 
opinion. CAD systems integrated in routine clini-
cal practice could assist physicians by highlighting 
complementary information encoded in biomedi-
cal images, thus possibly shortening the diagnostic 
algorithm of a large variety of pathologies. With 
the advance of imaging technology, the number 
of diagnostic images to be reviewed by medical 
experts is increasing, together with the demand 
for automated tools for image interpretation. This 
happens in many fields of diagnostic radiology and 
in particular in the framework of screening pro-
tocols for early detection of lung cancer with low-
dose CT. A significant reduction in lung cancer 
mortality in the study participants screened with 
low-dose CT with respect to participants screened 
with x-rays has recently been reported [10,101]. This 
result strongly supports large-scale screening for 
lung cancer and constitutes a boosted motivation 
for lung CAD development.

In a large-scale screening context, radiologists 
are faced with the challenging task of identifying 
subtle abnormalities on a very noisy background. 
Moreover, they are required to review a large 

number of images for each patient. Small pulmo-
nary nodules are considered to be primary signs of 
early-stage lung cancers. Several CAD schemes for 
automated lung nodule identification have been 
developed in the recent years to aid radiologists 
in this complicated task and many of them are 
robust enough to be integrated in a lung screening 
workflow [11–28]. 

The subject of CAD for pulmonary nodule 
detection and diagnosis has been covered by 
detailed reviews since early lung CAD develop-
ments [1–4], providing a historical overview of the 
context that gave rise to the CAD concept [3,5]. 
Comprehensive reviews on the research carried out 
in more recent years have already been presented 
[5–9]. The peculiarity of the present review is that it 
discusses mainly two categories of research papers: 
the first one consists of papers describing full sys-
tems devoted to lung nodule automated identi-
fication; the second one is papers reporting the 
evaluation of CAD systems as second readers. This 
work is especially focused on the CAD research 
activity carried out during the last 5–6 years, that 
is, since 2007, with the aim of highlighting the 
current trends and the unanswered issues in this 
research area. The recent availability of exten-
sive computing power has allowed sophisticated 
approaches to become rapidly executable and 
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decisional algorithms to be trainable on large 
databases, more accurately resembling the under-
lying population being studied. This work aims 
to complement the existing reviews by providing 
young researchers in this field with a brief overview 
of the analysis methods generally implemented to 
process CT data in order to automatically extract 
useful information. Moreover, the review will also 
stress the importance of conducting appropriate 
tests to assess whether or not the developed CAD 
systems are effective aids for radiologists. In par-
ticular, this article aims to give an overall idea of 
the long process, from the design and development 
of a CAD system for lung nodule detection to its 
use in clinical practice.

Designing a CAD system for 
pulmonary nodules
The strategies adopted in the attempt to auto-
matically detect lung nodules in CT images are 
many and various, and depend on the type of 
nodules to identify. First of all, it is necessary to 
define the target of a lung CAD. Lung nodules 
can be categorized according to their shape, loca-
tion and possible connections with anatomical 
structures: isolated nodules are rather spherical 
abnormalities fully embedded within the lung 
parenchyma; perivascular nodules appear to be 
connected to the vascular tree; juxtapleural nod-
ules include both hemispherical nodules originat-
ing in the pleura and growing towards the lung 
parenchyma, and nodules with almost spherical 
shape, connected to the pleura through a tail 
( Figure 1) [29]. Lung nodules can also be distin-
guished according to their CT contrast into solid 
and part-solid or ground-glass nodules.

As lung nodules may differ either in shape 
or intensity, they are characterized by a large 

variety of features that the algorithms have to be 
trained to interpret. In many cases CAD systems 
are developed with the aim of detecting all type 
of nodules at the same time. However, specific 
approaches can be developed independently for 
each nodule type [16,19], and complementary algo-
rithms can finally be integrated [25]. Regardless 
of the type of nodule it is targeted to detect, a 
CAD algorithm can generally be schematized in 
three steps, as described in Figure 2: first the data 
undergo a preprocessing step, such as filtering 
and/or resampling algorithms, and often lung 
parenchyma segmentation – that is, the identifi-
cation of the lung tissue with respect to the sur-
rounding different anatomical structures; then, 
the initial selection of nodule candidates is per-
formed; finally, the list of nodule candidates is 
optimized by eliminating as many false positives 
as possible. Each step of this scheme is discussed 
in detail in the following sections.

 n Image preprocessing
As a preliminary step of the analysis, many 
authors implement filters, such as Gaussian filters, 
to reduce noise in the images and resample data 
in order to have isotropic voxel sizes. Procedures 
to enhance interesting structures may be applied, 
such as spherical-shaped object enhancement 
filters [30] or multiscale enhancement filters, to 
suppress blood vessels and highlight nodule-like 
structures [15,16,31]. As real nodules may strongly 
differ from the nodule models used in conven-
tional filtering procedures, a supervised filter 
based on the massive-training artificial neural 
network approach [32] was trained with actual 
nodules to enhance actual patterns of nodules [33].

A second preprocessing step identifies the target 
volume for the automated search of lesions. The 

Figure 1. Appearance of lung nodules in low-dose CT images. Examples of lung nodules embedded in (A) the lung parenchyma 
and (B) connected to the pleura surface.
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aim of this segmentation task is both to reduce 
the computational costs of CAD execution and 
to avoid for example unwanted CAD marks 
pointing at anatomical structures external to the 
lungs. There are studies fully dedicated to the 
development of specific algorithms for accurate 
lung parenchyma identification [22,34–36]. This not 
straightforward task is further complicated when 
an elderly population is investigated due to the 
complexity of the anatomical structures, especially 
in the presence of underlying lung diseases [34,35]. 
The accuracy of the lung segmentation step is cru-
cial, especially when dealing with the identifica-
tion of juxtapleural nodules. In this case, depend-
ing on the planned detection algorithm, the lung 
segmentation step is required either to include 
or exclude the pleural abnormalities (including 
j uxtapleural nodules) in the segmented lungs. 

The lung segmentation step is crucial to deter-
mine the maximum sensitivity of the CAD sys-
tems (the sensitivity is defined as the percentage of 
nodules correctly identified by the CAD system); 
lung nodules excluded from the segmented vol-
ume at this stage will be definitely missed by the 
detection systems.

The validation of lung segmentation algo-
rithms is far from being trivial, and a large public 
database with a well-defined ground truth would 
be needed. Performance comparison between 
various methods has low significance. 

The segmentation of structures in medical 
images still represents a challenging task many 
research groups try to deal with, such as by the 
implementation of innovative methods based 
on shape analysis strategy [37] or an improved 
 marching cube algorithm [38].

 n Nodule candidate identification
A crucial task in the development of a CAD 
scheme for nodule detection is the initial selec-
tion of nodule candidates. This consists of imple-
menting suitable image processing techniques to 
highlight suspicious regions of the images where 

lung nodules may be located. Working in the seg-
mented lung regions, CAD developers can alter-
natively implement the following three main cat-
egories of approaches: intensity-based algorithms, 
shape-based approaches and template-matching 
procedures.

Algorithms that exploit the CT intensity infor-
mation belong in the first category; they rely on 
the assumption that lung nodules have higher 
relative intensity than those of lung parenchyma. 
Among the intensity-based methods applied to 
identify nodule candidates are the multiple gray-
level thresholding techniques [23,39]. In this case, 
the segmented lung volume is applied to a series of 
gray-level thresholds, leading to a series of thres-
holded lung subvolumes, which are selected as 
initial lung nodule candidates in case they satisfy 
a volume criterion [39]. The intermediate candi-
date masks obtained for each threshold in the 
multiple-threshold approach can also be processed 
by specific morphological opening operation and 
finally combined by the logical disjunction (OR) 
operation to obtain the final nodule candidate 
masks [23]. The initial selection of nodule can-
didates can also be based on a multithreshold 
surface-triangulation approach [22]. In this case, 
the surface triangulation is performed at differ-
ent threshold values over a wide range. At each 
threshold value a nodule candidate is defined as 
the volume inside a connected component of the 
triangulated isosurface [18]. Multithreshold nodule 
candidates are defined as a path of the tree-like 
structure that represents the evolution of a nodule 
candidate as a function of the threshold values. 
Instead of applying multiple thresholds, it is also 
possible to carry out a local-adaptive thresholding 
approach [18,40]; in this case an adaptive thresh-
old that automatically converges to the optimum 
gray level value that separates the higher density 
regions from the background is applied to the seg-
mented lung volume to identify nodule candidates 
[18]. Intensity thresholding can be combined with 
morphological processing [14,23] or rule-based 

Image processing
(filtering and lung
segmentation)

Nodule candidate
identification

False-positive
reduction

Figure 2. Generic flowchart of a computer-aided detection system for lung nodule identification. The main steps of the 
algorithm are represented. The circles represent CAD marks. 
CAD: Computer-aided detection.
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pruning [41] to detect and segment nodule can-
didates simultaneously. Another intensity-based 
method for nodule candidate identification is the 
region-growing algorithm, where seed points are 
iteratively chosen from the segmented lung vol-
ume [14]. In particular, the segmented volume is 
scanned until a voxel satisfying the region-grow-
ing inclusion rule is found; that voxel is used as a 
seed point and the growth starts; once the region 
is completely grown, it is removed from the CT 
and stored for further analysis; then, the search 
for new seed points is iterated until no more seed 
points satisfy the inclusion rule [14].

The second category consists of methods that 
exploit the shape properties of the objects to be 
detected, in addition to their intensity. Nodules 
are considered to be nearly rounded objects and 
thus suitable features that highlight the local 
sphericity characteristic of image regions are 
computed to identify nodule candidate locations. 
Since the pioneering work of Li et al. [31], many 
authors have implemented the selective filter for 
nodule enhancement and suppression of normal 
anatomic structures such as blood vessels, which 
are the main source of false positives [15,16,20,25]. 
This filter is based on the computation of the 
eigenvalues of the Hessian matrix at each voxel 
location, which can be quite time consuming. 
Subsequent thresholding of the filter output map 
allows identification of nodule candidates. This 
filter can be complemented with the computa-
tion of a volumetric shape index map based on a 
Gaussian filter and mean curvature [20,21]. Among 
the shape-based methods, some are dedicated to 
almost hemispherical objects, such as juxtapleural 
nodule candidates. In particular, gradient-based 
filters are used to enhance the convexity of the 
pleura surface [19,42].

The third category of nodule candidate identi-
fication algorithms consists of template-matching 
methods [13,40,43]. In this case, nodule models are 
created, taking into account variability in shape, 
size and location of true nodules in the lungs. The 
calculation of the correlation coefficient between 
templates and lung subregions allows the identi-
fication of nodule candidates. The possibility of 
carrying out a template-matching technique is 
not limited to matching in the voxel space, but 
it can be extended, for example, to the feature 
space, as in the case of the shape-based genetic 
algorithms template-matching method proposed 
by Dehmeshki et al. [12].

The nodule candidate selection step requires 
the highest possible sensitivity because nodules 
missed at this stage cannot be recovered in the 
later steps of the analysis.

 n Nodule candidate classification or 
false-positive reduction
After their first identification, nodule candidates 
have to be characterized in terms of image prop-
erties, often referred to as features, which can be 
handled and investigated by machine-learning 
approaches. This step of the analysis is referred 
to as nodule candidate classification, which aims 
to label each entry of the initial list of candidate 
nodules either as a CAD finding, according to a 
certain degree of suspicion, or as a portion of nor-
mal tissue. The classification step has the essen-
tial role of reducing the number of false-positive 
detections generated by the nodule candidate 
selection algorithm. The number of nodule can-
didates corresponding to false-positive detections 
can be quite large at this stage, depending on how 
strict the requirement of maintaining the high-
est possible maximum sensitivity was up to this 
stage. This is the first step of the analysis where 
some nodules can be missed. In general, a com-
promise should be reached between the need to 
have high sensitivity to lung nodules and the need 
to avoid too many confounding CAD marks 
being shown to the radiologists. The aim of this 
step of the analysis is to improve the specificity 
of the CAD system, while keeping the  sensitivity 
as high as possible. 

Two main strategies are generally implemented: 
the characterization of the nodule candidate by 
its global shape- and/or intensity-based features 
[11,12,14,15,18–23,26–28,44]; and the characterization of 
the nodule candidate at the voxel level [16,19,32,33]. 
Both approaches require segmentation of the nod-
ule candidates, then the feature extraction, and 
finally the feature classification. The accuracy 
of the nodule segmentation step is particularly 
important in the first approach, where the com-
puted features strictly depend on the shape of the 
segmented nodule candidate. The accurate seg-
mentation of lung nodules is even more important 
for reliable computations of the nodule doubling 
time; thus, research on this particular issue is very 
active [45–47]. The voxel-based approaches to false-
positive reduction are, in principle, less affected by 
nodule segmentation accuracy. With the current 
increasing availability of computational power, the 
current trend is to classify every single voxel of a 
diagnostic image, bypassing the candidate selec-
tion and characterization steps [48]. However, this 
choice is still not efficient in the case of 3D CT 
data, such as the CT data acquired in lung cancer 
screening. The global features generally computed 
on the nodule candidates are gray-level based fea-
tures, texture features and morphological features. 
They are all encoded in a vector of features and 
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finally classified by machine learning approaches. 
In contrast, when characterizing nodule candi-
dates at the voxel level, each voxel is assigned a 
number of features extracted from its neighbor-
hood, then each voxel is classified by a decisional 
system and a majority criterion has to be imple-
mented to finally assign the nodule  candidate to 
either the nodule or healthy tissue class. 

In the classification of nodule candidates, 
which are represented in terms of the vectors 
of features extracted from either each nodule 
candidate or each voxel of each nodule candi-
date, pattern-recognition techniques are gener-
ally implemented. Among them, artificial neural 
networks (ANNs) are very popular [49], and lin-
ear discriminat analysis (LDA) [50] and support 
vector machines [51] are also widely used.

The choice of the minimal amount of features 
to properly characterize the nodule candidates 
and carry out an efficient reduction of false posi-
tives is a nontrivial task and it is still a matter 
of investigation. If many features are consid-
ered, such as in the voxel-by-voxel classification 
approach, possible drawbacks are high computa-
tional time and overfitting of the classifiers. By 
contrast, if an overly restrictive set of features are 
chosen to characterize the nodule candidate, they 
could not encode all necessary information to get 
an accurate classification performance. In choos-
ing the number of features to characterize the 
nodule candidates and in designing the appro-
priate classifier to handle them, some practical 
considerations have to be made about the avail-
ability of training cases. CAD developers have 
to take into account the finite size of available 
cases to train, test and validate the CAD sys-
tem, and that the sample size affects the classifier 
 performance [52].

Evaluation of CAD performance
Once the design and development of a CAD 
scheme has been completed, it is very important 
to make a reliable estimate of its standalone per-
formance. Although the CAD system has been 
developed with the aim of using it as a second 
reader of diagnostic images, it is necessary to 
fully characterize its own performance before its 
impact on radiologists’ performance can be evalu-
ated. Although research on CAD has been very 
active in the recent years, it is difficult to carry 
out a fair comparison among the performance of 
systems developed by different research groups. 
As already pointed out by many authors, a reli-
able comparison of the nodule detection ability of 
different systems could be done only on common 
databases. The rapid growth of CAD algorithms 

over the last two decades has simultaneously trig-
gered the development of the appropriate meth-
odology to carry out CAD performance assess-
ment, and also highlighted the necessity of the 
availability to CAD developers of a large, clini-
cally relevant and annotated database to test and 
validate their systems. 

 n Publicly available databases
CAD researchers very often develop their algo-
rithms on private lung CT databases collected 
and annotated in medical centers accessible 
within specific research networks and projects. 
However, it is currently possible to also access 
public databases of annotated CT images. Use-
ful repositories of annotated lung CT images are 
those released by the Early Lung Cancer Action 
Program in 2003 [102] and by the Lung Image 
Database Consortium (LIDC) [103] funded by 
the National Cancer Institute in 2000. The aim 
of the LIDC was to develop consensus guide-
lines for a spiral CT lung image resource and to 
construct a database of spiral CT lung images 
[53]. Another dataset of lung CT scans is acces-
sible within the ANODE09 initiative (see ‘com-
paring the performance of recently developed 
CAD’ section) [54,104], which contains data from 
the NELSON study, the largest CT lung cancer 
screening trial in Europe [105]. In this case, the 
CT annotations are not available on the website; 
however, CAD developers can submit the output 
of their systems for each case to the organizers 
and the CAD performance will be evaluated and 
published on the website. 

All these initiatives promote the early detec-
tion of lung cancers by supporting the research 
of image processing tools and CAD and  the 
diagnosis of lung nodules.

 n Comparing the performance of 
recently developed CAD
Although public databases of lung CT scans 
acquired with screening setting protocols are 
becoming available, it is not yet a common prac-
tice for CAD developers to validate their CAD 
systems on a public dataset and to discuss the 
results achieved in comparative research papers. 
However, many groups still develop and validate 
their systems on private data sets and a fair com-
parison among the performance achieved is not 
possible. Table 1 reports the results achieved by 
recently developed innovative approaches to CAD 
of pulmonary nodules in thin-slice CT exams. 
The publication year of the results, the dataset 
used, slice thickness, the number of CT cases and 
the number, size and, possibe type of nodules are 
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reported, in addition to the performance infor-
mation expressed in terms of s ensitivity and 
false-positive detection per scan (FP/scan).

Several CAD systems were recently developed 
using the LIDC database [22,23,26–28,41,55,56], as 
reported in Table 1. Sahiner et al. used adaptive 
3D clustering and a 3D active contour algorithm 
to detect nodule candidates; clustering initialized 
by k-means was then used for segmentation of the 
nodule candidates, further characterized by three 
groups of features [55]. An automated discrimi-
nation between internal and juxta pleural nod-
ules was performed before applying rule-based 
classification and LDA to both the juxta pleural 
and internal nodule candidates. Validation of 
the CAD system on an independent dataset 
of 52 CT scans containing 241 nodules in the 
3–18.6 mm diameter range achieved 54% sen-
sitivity with 5.60 FP/scan. Golosio et al. selected 
the nodule candidates by means of a multithresh-
old surface-triangulation approach; shape- and 

intensity-based features were then computed at 
each threshold on nodule candidates and clas-
sified by ANNs [22]. Following a twofold cross-
validation protocol, the system achieved a 79% 
sensitivity at 4.0 FP/scan in the detection of 
nodules with a diameter greater than or equal to 
3 mm on a dataset of 84 CT scans containing 
148 nodules. Messay et al. developed a sequential 
forward selection process for selecting the opti-
mum features for LDA and quadratic discrimi-
nant analysis [23]. They obtained a sensitivity of 
83% with 3 FP/scan on a dataset of 84 CT scans 
containing 143 nodules in a sevenfold cross-vali-
dation test. Riccardi et al. implemented a 3D fast 
radial filtering system to select nodule candidates 
and a heuristic approach based on geometric 
features, followed by a support vector machine 
for classification [27]. Following a twofold cross-
validation protocol, the CAD system achieved a 
sensitivity of 71% with 6.5 FP/scan on a dataset 
of 154 CT scans containing 117 nodules. Tan 

Table 1. The performance achieved by recently developed computer-aided detection systems.

Study (year) Dataset characteristics CAD performance Ref.

Slice 
thickness

CT scan cases (n) Nodules (n) Nodule size, 
diameter 
(mm)

Sensitivity 
(%)

FP/scan

Bellotti et al. (2007) 1 mm 
(ITALUNG-CT)

15 26 (containing 
11 juxtapleural nodules)

5–14 88.5 6.6 [14]

Dehmeshki et al.
(2007)

0.5–1.25 mm 70 178 (containing 20 nonsolid 
or part-solid nodules)

3–20 90.0 14.6 [12]

Pu et al. (2008) 2.5 mm 52 184 (among which 
58 juxtapleural, 
44 part-solid and 
16 nonsolid nodules)

3–28.9 81.5 6.5 [17]

Li et al. (2008) Thin slice 117 153 (solid and GGO) 4–28 86† 6.6 [15]

Sahiner et al. (2009) 1.25–3 mm 52 (LIDC) 241 3–18.6 54 5.60 [55]

Suárez-Cuenca et al. 
(2009)

1.3 mm 22 77 4–27 80.0 7.7 [18]

Golosio et al. (2009) 1.25–3 mm 84 (LIDC) 148 >3 79 4.0 [22]

Murphy et al. 
(2009)

1 mm >1500 (NELSON 
study); 
813 (validation)

1518 in the validation set >3 80 4.2 [21]

Messay et al. (2010) 1.3–3 mm 84 (LIDC) 143 (containing 
~38 juxtapleural nodules)

3–30 82.66 3 [23]

Cascio et al. (2012) 1.25–3 mm 84 (LIDC) 148 >3 88 2.5 [28]

Camarlinghi et al. 
(2011)

1 mm 
(ITALUNG-CT)

29 (training); 
20 (validation)

58 in training (containing 
28 juxtapleural nodules); 
38 in validation (containing 
15 juxtapleural nodules)

5–14 70 3 [25]

Riccardi et al. (2011) 1.25–3 mm 154 (LIDC) 117 >3 71.0 6.5 [27]

Tan et al. (2011) 1.25–3 mm 125 (LIDC) 80 >3 87.5 4.0 [26]

Choi and Choi 
(2012)

1–3 mm 84 (LIDC) 
containing 32 CT 
scans for validation

76 in validation set 3–30 94.1 5.45 [41]

†81% sensitivity to the GGO category alone. 
CAD: Computer-aided detection; FP/scan: False-positive detection per scan; GGO: Ground-glass opacity; LIDC: Lung Image Database Consortium.
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et al. developed a feature-selective classifier based 
on a genetic algorithm and ANNs for classifica-
tion [26]. They achieved a sensitivity of 87.5% 
with 4.0 FP/scan on an independent validation 
set of 125 CT scans containing 80 nodules. Choi 
and Choi developed a classifier based on genetic 
programming to process 2D and 3D features of 
nodule candidates identified by optimal multiple 
thresholding and rule-based pruning applied to 
the lung volume segmented by thresholding and 
3D-connected component labeling [41]. They 
obtained 94.1% sensitivity with 5.45 FP/scan on 
a subset of 32 CT scans containing 76 nodules in 
the 3–30 mm range. Cascio et al. used a stable 
3D mass–spring model combined with a spline 
curve reconstruction process to detect nodule 
candidates, taking into account both intensity 
and shape information [28]. A double-threshold 
cut on candidate features and a neural classifier 
were then implemented to reduce false-positive 
detections. The CAD performance was evalu-
ated through a cross-validation procedure on a 
dataset of 84 CT scans containing 148 nodules 
with a diameter greater than or equal to 3 mm, 
obtaining sensitivity values of 97 and 88% with 
6.1 and 2.5 FP/scan, respectively, at two  different 
operative points the CAD system can run on.

Many other valuable CAD approaches on pri-
vate data sets have been developed and validated 
[12,14,15,17,18,21,25], as reported in Table 1. Bellotti 
et al. developed a CAD system based on region 
growing algorithms and a new active contour 
model implementing a local convex hull, able to 
draw the correct contour of the lung parenchyma 
and to include the pleural nodules [14]. Rule-based 
classifiers and ANNs are implemented in a leave-
one-out cross-validation protocol. The system 
achieved a sensitivity of 88.5% with 6.6 FP/scan 
on 15 CT scans containing 26 nodules, acquired 
within the ITALUNG-CT trial, the first Italian 
randomized controlled trial for the screening of 
lung cancer [57]. Dehmeshki et al. implemented a 
shape-based genetic algorithm template-matching 
method for the detection of nodules with spheri-
cal elements [12]. Lung nodule phantom images 
were used as reference images for template 
matching. This method has been validated on 
a clinical dataset of 70 thoracic CT scans con-
taining 178 nodules, achieving a sensitivity of 
90% with 14.6 FP/scan. Pu et al. developed a 
detection procedure in the signed distance field 
of the image [17]. Nodule candidates are detected 
by searching local maxima of signed distances; 
detected candidates are then classified according 
to the similarity distance of their medial axis-like 
shapes obtained through a progressive clustering 

strategy combined with a marching cube algo-
rithm from a sphere-based shape. This system 
achieved a sensitivity of 81.5% with 6.5 FP/scan 
on a dataset of 52 CT scans with 184 nodules, 
including 16 nonsolid nodules. Li et al. imple-
mented the selective nodule enhancement filter 
in the nodule candidate identification procedure 
and automated rule-based classifier to reduce 
false-positive detections [15]. A case-based fourfold 
cross-validation testing method led to an overall 
sensitivity of 86% with 6.6 FP/scan on a dataset 
of 117 CT scans with 153 nodules, including both 
solid and nonsolid nodules. Suárez-Cuenca et al. 
developed a CAD system based on the capability 
of an iris filter to discriminate between nodules 
and false-positive findings [18]. Suspicious regions 
were characterized with features based on the iris 
filter output, gray level and morphological fea-
tures, and finally classified by LDA. The system 
achieved a sensitivity of 80% with 7.7 FP/scan 
on an independent validation dataset of 22 CT 
scans containing 77 nodules. Murphy et al. pro-
posed an algorithm based on local image features 
of shape index and curvedness to detect nodule 
candidates and two successive k-nearest neigh-
bor classifiers to reduce false positives [21]. The 
CAD was trained and tested on three databases 
extracted from a large-scale experimental screen-
ing study. The system performance was evaluated 
on a random selection of 813 scans, leading to a 
sensitivity of 80% with an average 4.2 FP/scan. 
The extensive training and validation of the sys-
tem on large data sets of nodules of varying sizes, 
types and textures allows for a realistic measure of 
the CAD system performance in low-dose screen-
ing CT studies. Camarlinghi et al. developed two 
dedicated and integrated procedures to detect 
both isolated and juxtapleural lung nodules [25]. 
The selective nodule enhancement filter and the 
directional gradient concentration approach are 
used in the internal and pleural nodule candidate 
selection steps, respectively. A sensitivity of 70% 
with an average of 3 FP/scan was achieved on 
an independent validation set of 20 CT scans of 
the ITALUNG-CT screening trial, containing 
38 nodules. 

It is evident from Table 1 that even when the 
publicly available LIDC database is used for CAD 
development and validation, the number of con-
sidered cases is not consistent among different 
studies. Not considering the different cardinal-
ity of the training and test sets among the vari-
ous studies, the performance achieved on LIDC 
data sets spans the 54−97% range of sensitivity 
and 3−6.5 FP/scan. On private data sets of lung 
CT scans, values of sensitivity are in the 70−90% 
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range and values of FP/scan of 3−14.6 have been 
reported. If the numbers of FP/scan are compared 
between the systems whose performance is given 
on LIDC dataset, it can be asserted that the CAD 
systems developed by Messay et al. [23], Cascio 
et al. [28], Tan et al. [26] and Choi and Choi [41] 
outperform the others. As they are evaluated at 
different operating points, a direct comparison 
among them cannot be performed.

Among the most challenging tasks reported 
by CAD developers is the difficulty in the iden-
tification of ground-glass opacity (GGO) nod-
ules strongly connected to the vasculature or to 
the pleura surface. These types of nodules often 
happen to be false negatives of CAD systems, 
and still represent an open issue in lung CAD 
research.

 n Combining different CAD algorithms 
leads to improved performance
CAD systems implementing different approaches 
to detect lung nodules may generally be charac-
terized by high sensitivity to a particular nod-
ule type, while being less accurate in detecting 
nodules with a different appearance. Mimicking 
the multiple reader algorithm often used in diag-
nostic protocols, lung CT data can be processed 
by many CAD systems and their outputs can be 
compared and possibly automatically combined 
[54,58,59]. The combination of different CAD sys-
tems extends the concept of the multiple clas-
sification problem, a known research issue in 
pattern recognition [60]. The classification step 
is only the final task of a CAD algorithm, and 
the maximum sensitivity of the system has often 
already been reduced at that stage. The potential 
beneficial impact of the combination of differ-
ent CAD systems lies in the principle that even 
less-performing systems can contribute to the 
enhancement of the detection accuracy.

To avoid the mere summation of false-positive 
findings, the outputs of different CAD systems 
have to be merged according to an appropriate 
criterion. 

When two independent systems analyze two 
nonoverlapping or partially overlapping regions 
of interest, such as the lung parenchyma and 
the pleura surface, searching for different types 
of nodules [16,19], the CAD output of the two 
systems could, in principle, merely be merged. 
However, in the choice of the operating point 
at which each system works, the relative weight 
between the two CAD systems has to be at least 
empirically determined [25].

General practical methods to combine many 
system outputs have been proposed by van 

Ginneken et al. [54] and Niemeijer et al. [58]. 
Those authors have organized a lung CAD chal-
lenge, the ANODE09 competition [104], where 
CAD developers were asked to blindly validate 
their CAD systems on a wide lung screening 
dataset (55 CT scans extracted from the NEL-
SON study) by uploading their CAD findings on 
a web-based framework for CAD performance 
evaluation. As reported in [54], the combination 
of the outputs of algorithms, even character-
ized by different performances, led to an overall 
improvement in nodule detection ability.

A similar study conducted on 138 cases of 
the LIDC database demonstrated that the com-
bination of the output of three different CAD 
systems [14,24,25,61], contributes to the reduction 
of false positives by exploiting the CAD comple-
mentarity [59]. A dedicated plug-in for the OsiriX 
open-source DICOM viewer [106] has also been 
developed to interactively review each CAD out-
put and their combination at different operating 
points [59].

 n Is there any winning strategy in 
nodule detection?
The large variety of CAD strategies for lung nod-
ule identification adopted in recent years strongly 
suggest the absence of a single method that 
clearly outperforms the others. Each approach 
has its own strengths and weaknesses and the 
complexity and variety of nodule appearance 
both with respect to the anatomical location and 
contrast causes the detection algorithms to fail 
to reach 100% sensitivity. Despite this consid-
eration, CAD systems can still represent useful 
aids in the diagnostic image reviewing process 
and they have to be accurately set up and their 
performance evaluated according to universal 
criteria shared by different research groups. As 
a general consideration, among the large variety 
of CAD approaches, those that are less affected 
by the presence of empirical thresholds set on 
available data guarantee a better generalization 
ability, thus are preferable. It would be desirable 
in any case that authors themselves show in their 
reports how the performance of their systems is 
reliable on wide data sets of previously unseen 
data. Now that large data sets of CT data are 
becoming available, it is hoped that research-
ers will reach an agreement on which data to 
use in the different steps of the CAD training 
procedure in order to carry out highly instruc-
tive comparisons of different methods, with the 
possibility of mixing and merging the different 
procedures implemented at each stage of the 
analysis.
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Impact of CAD on the radiologist’s 
performance
The active field of research on CAD systems 
aims to develop algorithms and procedures able 
to provide radiologists with a second opinion on 
diagnostic image interpretation, thus to facilitate 
and accelerate the diagnosis of a large variety of 
pathologies. It is very important that CAD sys-
tems show satisfactory standalone performance, 
but it is even more important that they have a 
complementary ability with respect to the radio-
logist’s expertise in detecting lesions. It has been 
necessary to develop appropriate instruments to 
assess the impact of CAD on the radiologist’s 
performance. Observer studies allow the assess-
ment of the diagnostic accuracy of radiologists 
with and without the use of CAD systems.

 n How to carry out an observer 
performance study
To assess the potential clinical usefulness of 
a CAD system, observer studies have to be 
conducted. To evaluate the impact of CAD 
as a second reader on the radiologist’s detec-
tion ability, the observer performance has to 
be evaluated before and after the CAD output 
is shown and make a statistical comparison of 
the performance achieved. Usually two to ten 
radiologists with different levels of experience 
in image annotation participate in the study. 
The possible improvement of the radiologist’s 
performance when using CAD has to be evalu-
ated according to statistically relevant protocols. 
For example, the jackknife free-response receiver 
operating characteristic (JAFROC) analysis can 
be implemented [62,63]. The JAFROC figure of 
merit is the probability that lesions are rated 
higher than false-positive marks on normal 
images. With respect to other statistical com-
parison procedures, the JAFROC method has 
shown an improved statistical power that can 
allow for a reduced sample size requirement for 
the observer study.

Both radiologists and CAD systems have to 
be evaluated against a dataset of annotated CT 
cases. The consensus achieved by two expe-
rienced radiologists or by an expert panel is 
usually implemented as the reference standard.

 n Is CAD improving the radiologist’s 
performance?
CAD systems have the potential to improve 
the radiologist’s performance in detecting lung 
cancer. Especially in large-scale screening pro-
grams of an asymptomatic population, subtle 
early-stage lung nodules can be overlooked [64]. 

The efficacy of CAD systems in detecting nod-
ules missed in CT screening programs has been 
demonstrated [65,66]. Moreover, numerous studies 
report that the use of CAD systems improved 
the radiologist’s diagnostic accuracy [55,67–70]. 
The impact of CAD systems on the diagnostic 
workflow has been demonstrated to be  beneficial, 
especially in lung screening  settings [71–73].

The choice of the operative point at which the 
CAD systems have to work in an observer per-
formance study is not trivial. If high sensitivity 
levels are chosen, the drawback is that a high 
number of false-positive marks may be shown 
to the radiologists. An acceptable number of 
marks to be reviewed for possible rejection by 
the radiologists is approximately five per case. 
Longer lists of CAD marks may lead to increased 
reading time and cause radiologists to avoid 
using CAD. Under this condition, the observer 
study of Beigelman-Aubry et al. on 54 pairs of 
CT scans containing nodules with diameters 
≥4 mm, involving two radiologists and a com-
mercial CAD system, demonstrated an improve-
ment in the radiologist’s sensitivity, while the 
overall reading time on the CAD workstation 
and on the clinical workstation was comparable 
[71]. Furthermore, Beyer et al. investigated the 
impact of a commercial CAD system on radi-
ologists’ sensitivity and reading time [67]. The 
study involved four radiologists reviewing 50 CT 
scans containing lung nodules with diameters 
≥4 mm. When using CAD as a second reader, 
the radiologists’ sensitivity improved from 68 to 
75% at the cost of longer reading times. Fraioli 
et al. conducted an observer performance study 
on 200 CT scans with screening characteristics 
[72]. The study involved three radiologists with 
variable experience, whose sensitivity to lung 
nodules had been found to be 57, 68 and 46%. 
With CAD used as a second reader, sensitivity 
significantly improved up to 94, 96 and 94%, 
respectively. Hirose et al. conducted a JAFROC 
study on six expert radiologists reviewing the 
CT exams of 21 subjects [68]. The standalone 
CAD sensitivity to lung nodules was 71.4% with 
0.95 FP/scan. The average radiologists’ sensitiv-
ity improved significantly from 39.5 to 81.0% 
when using CAD. Das et al., in an observer study 
involving two radiologists reviewing 77 CT 
exams, showed a benefit in the sensitivity of the 
two radiologists of between 8 and 24% when 
using CAD [69]. White et al. conducted a mul-
ticenter observer performance study involving 
ten radiologists with variable levels of experience 
reviewing 109 CT cases acquired with different 
CT scanners, containing nodules with diameters 
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≥4 mm [70]. The average increase in the perfor-
mance for the ten readers with CAD software 
was 1.9% for a 95% CI (0.8–8.0%). Sahiner 
et al. carried out a JAFROC experiment on a 
dataset of 85 CT exams, involving six radiolo-
gists [55]. A statistically significant improvement 
in radiologists’ average sensitivity from 56% at 
0.67 FP/scan to 67% at 0.78 FP/scan has been 
achieved on nodules with diameters ≥3 mm, 
whereas no significant improvement has been 
obtained on nodules with diameters ≥5 mm, 
thus indicating an enhanced sensitivity to small 
nodules, which are those more easily overlooked 
on visual inspection. Bogoni et al. evaluated the 
impact on radiologists’ performance of a com-
mercial CAD system integrated with the picture 
archiving and communication system (PACS) 
environment [73]. The average sensitivity of five 
radiologists evaluated on 48 CT exams improved 
from 44 to 57% for nodules with diameters 
≥3 mm, whereas the number of false-positive 
detections significantly increased for only two 
radiologists. The integration of CAD into PACS 
increased reader sensitivity with minimal impact 
on interpretation time.

Most studies reporting on observer perfor-
mance studies actually carry out a statistical 
comparison between the averaged sensitivity 
values shown by the radiologists before and after 
they are shown the CAD marks. However, to 
evaluate whether the entire performance has 
changed – that is, both in terms of sensitivity 
and FP/scan, a more complete analysis would 
be recommended, such as the JAFROC method. 
As shown in the reported studies, this powerful 
approach is rarely implemented. This is probably 
due to two main reasons: to conduct a JAFROC 
study the radiologists have to assign degrees of 
suspicion to their findings, which is a more time-
consuming task; and the CAD algorithms have 
to provide a nonbinary output, which is, in 
general, not available, especially for commercial 
CAD systems.

Open issues in CAD research
 n Dedicated CAD for solid & part-solid 

nodules
As stated before, nodules with GGO appear-
ance (part-solid and part-nonsolid nodules) are 
more difficult to detect. They are characterized 
by low contrast with respect to the background 
and ill-defined boundaries, thus they appear 
subtler with respect to solid nodules and are 
often missed by CAD algorithms. The likeli-
hood of malignancy for GGO nodules is much 
higher than that for solid nodules [74].

Despite some of the CAD systems including 
nonsolid nodules among the detected nodules 
[12,15], dedicated approaches have been also 
attempted [75–77]. Kim et al. proposed a method 
to detect pure nonsolid nodules based on the 
analysis of overlapping regions of a CT scan by 
computing 2D texture and Gaussian fitting fea-
tures, finally classified by ANNs [75]. Ye et al. 
implemented geometric shape features (e.g., 
shape index and dot enhancement) calculated 
for each voxel and then thresholded to detect 
nodule candidates; false-positive detection was 
removed by rule-based filtering [76]. On a dataset 
of 50 CT scans containing 52 GGO nodules, 
the system achieved a sensitivity of 92.3% at 
12.7 FP/scan. This dedicated approach has been 
further refined in a later work by Ye et al., where 
a CAD system of a dataset of clinical lung CT 
was developed and validated to detect both solid 
and GGO nodules [20]. Jacobs et al. based their 
dedicated system on the computation of a rich 
set of intensity, shape and context features to 
accurately describe the appearance of this type 
of nodule [77]. A two-stage classification method 
based on LDA and GentleBoost classifier led 
to a detection sensitivity of 73% at only one 
FP/scan on a dataset of 140 CT scans acquired 
in a screening trial.

Although dedicated approaches to GGO 
detection are needed due to the different appear-
ance of GGOs with respect to solid nodules, it 
is desirable that GGO-dedicated CAD modules 
are integrated into existing CAD approaches for 
other nodule types in order to get the most from 
the complementarity of these systems. 

 n CAD integration in the clinical 
workflow
It is now widely agreed that the appropriate use of 
CAD is as a second reader of diagnostic images, 
which means that radiologists carry out a first 
interpretation of the CT exam, then review the 
CAD output, and finally take the final decision. 
Although many CAD systems show high stand-
alone performance and have been demonstrated to 
enhance the radiologists’ ability in detecting lung 
cancers, their use is still not widespread in clini-
cal practice. There are many obstacles to be over-
come before CAD can be used daily in the clini-
cal reading environment [78,79]. Some are related 
to the reliability and generalizability of CAD 
performance. Automated algorithms may fail if 
underlying diseases modify the expected pattern 
content of the CT images; automated controls of 
system failures should be integrated to avoid, for 
example, CAD marks in undersegmented lung 
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regions. Moreover, medical experts and techni-
cians involved in diagnostic image acquisition 
would prefer not to have to handle unexpected 
failures or update requests.

To be considered valuable aid instruments in 
clinical practice, CAD systems should be char-
acterized by very high sensitivity and specificity 
levels for all nodule types and sizes, and they 
should be fast and easy to use. Depending on 
the task they are demanded to accomplish, they 
should allow the possibility to browse through 
CAD marks according to type, size and degree 
of suspicion. CAD marks should be accessible 
from any workstation used by the radiologists 
and connected to the PACS. 

A possible solution to making CAD algo-
rithms easily accessible by clinicians could be 
the use of web-based on-demand CAD services 
[80]. This kind of service allows for CT data 
uploading through secure web protocols. Then 
the service provider executes the CAD algorithm 
and notifies the end-user either via e-mail or 
text message that the CAD output is ready for 
downloading. CAD output may be available in 
standard formats agreed with the end-user. In 
this scenario, a short algorithm execution time 
is not mandatory because an automated protocol 
for data transfer can be set up to start upload-
ing the CT data as soon as they are acquired. 
The CAD output is in any case available before 
the radiologist starts to review the case. In addi-
tion, if the web-based on-demand CAD service 
paradigm is adopted, the quality of the CAD 
output can be optimized. In fact, the CAD ser-
vice provider can, in principle, own more than 
one CAD system, thus different algorithms can 
be simultaneously executed, and CAD findings 
can be compared and combined to enhance their 
nodule detection ability. Hospitals and diagnos-
tic centers do not have to acquire powerful work-
stations to carry out huge CAD computations 
or own CAD software licenses; they just pay 
for the CAD service if they use it, whereas the 
maintenance and the upgrade of CAD systems 
and the computing power is fully managed by 
the CAD service provider.

Contrasting trends in recent CAD 
research
Although the research on CAD for lung nodule 
detection has reached maturity after approxi-
mately two decades of very active work by many 
research groups, a standardization of many pro-
cedures in CAD analysis, decisional system 
training, performance evaluation and compari-
son is still missing. Several original algorithms 

and procedures, both for the automated search 
of lung nodules and for the evaluation of CAD 
system performance as a second reader have 
been successfully implemented and validated. 
Unfortunately, many of them are not shared 
among researchers and are not commonly used 
as standard tools, thus their potential remains 
unexploited.

The initiative carried out by the LIDC is 
extremely useful for CAD research, as it makes 
annotated CT scans available to CAD develop-
ers for developing and comparing systems [53]. 
However, as shown in Table 1, CAD develop-
ers very often extract subsets of data from the 
LIDC according to their own criterion, making 
the comparisons between different systems quite 
hard, if not impossible. Authors indeed rarely 
provide the complete list either of cases included 
in the analysis, or of those assigned to each par-
tition used to train and validate the decisional 
systems. It would be desirable that the effort sus-
tained by the LIDC initiative to promote CAD 
system development is rewarded with a more 
farsighted use of the data by CAD developers.

Although it has been demonstrated that the 
combination of different CAD systems, each 
with its own strengths and weaknesses, can lead 
to improved detection performance [54,59], only 
a few initiatives are working on the practical 
implementation of this new paradigm as a pos-
sible solution to maximize the sensitivity of CAD 
systems [80].

Conclusion & future perspective
In recent years, a variety of approaches have been 
adopted in the design, development and valida-
tion of CAD systems for lung nodule identifica-
tion on CT images. These systems have a great 
potential to detect early-stage lung cancers and 
may represent a valuable aid when used as second 
readers in the workflow of a radiology depart-
ment. The standalone performance of different 
CAD systems is difficult to compare due to the 
large variety of dataset characteristics used to 
train and test each system. 

Often CAD algorithms are trained on limited 
data sets, which are not representative of the com-
plexity and variability of CT characteristics that 
can be found in a screening population or, even 
worse, in a clinical context. The performance of 
these systems is generally not reproducible on 
any other dataset. To address this problem, the 
training and validation of CAD systems on a 
large annotated database is advisable. The avail-
ability of public databases of annotated lung CT 
scans could also facilitate the evolution of CAD 
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performance in nodule detection, adding to the 
scientific competition on efficient CAD develop-
ment those research groups without any other 
direct access to diagnostic images. 

The LIDC dataset is the largest repository 
of annotated lung CT scans available at pres-
ent. Despite many research groups using this 
extremely valuable resource, CAD performance 
happens to be evaluated by different developers 
either on arbitrary choices of data subsamples, 
or with different validation protocols, making 
a comparison unfair. Further studies are thus 
needed to refine the procedure to determine CAD 
standalone performance. 

The combination of different CAD algorithms 
in a more complex system seems beneficial. The 
optimal combination lies in complementarity 
among the detection abilities of  different CAD 
systems.

Studies devoted to improving CAD perfor-
mance and validation procedures must go on 
simultaneously with the evaluation of the impact 
of CAD on the radiologist’s performance. When 
used as a second reader, CAD is not required to 
have comparable or better performance in nodule 
detection with respect to human readers, it has 
to be complementary to the radiologist’s ability. 
Although many studies demonstrated that CAD 
could aid in daily radiologic workflow, detecting 
a substantial number of nodules (especially small 
nodules) unseen by radiologists, these efforts 
in CAD research have not reached the stage of 
 routine daily use.

The performance of CAD systems still needs 
to be further improved for detecting nodules, 
especially for nodules attached to other struc-
tures and in cases where they have subtler 
appearance, such as GGOs. The main issue is 
to maintain high levels of sensitivity to all types 
of nodules while keeping a limited number of 
false-positive marks; the radiologists’ reading 

time to review and discard these will otherwise 
undesirably increase.

Automated monitoring systems to diagnose 
possible CAD system failures should be inte-
grated in all CAD systems available in the read-
ing workstation in order to assign reliability 
scores to the CAD marks that the radiologists 
are shown.

To facilitate the integration of CAD in the 
workf low of radiology departments, CAD 
should be connected to the PACS environment. 
To avoid CAD final users have to face with CAD 
system installation, upgrade, maintenance and 
possible unexpected failures in algorithm execu-
tion, a confortable solution could be the access 
to a web-based CAD service. The service pro-
vider in this case guarantees huge computational 
power, usually not available in medical centers, 
and has the possibility to execute several CAD 
algorithms for comparisons and combinations.

Research in the field of CAD systems and 
their potential role in supporting the radi-
ologist’s daily work is currently a very active 
research area. The main obstacles to the wide-
spread implementation of these systems beyond 
a restricted amount of research centers will hope-
fully be overcome in a few years. Lung CAD 
systems will then become useful tools to improve 
and accelerate the radiologist’s task of lung CT 
image interpretation. 
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Executive summary

Designing a computer-aided detection system for pulmonary nodules
 � The main steps carried out in the design and development of a computer-aided detection (CAD) system for pulmonary nodule detection 

are presented, emphasizing the purpose of each module of the analysis and the difficulties one may encounter.

Evaluation of CAD performance
 � The standalone CAD performance has to be assessed before it can be used as a second reader in diagnostic protocols. Large and 

annotated databases of lung CT are very useful to refine CAD algorithms and to carry out validation and comparison of different 
approaches.

CAD impact on radiologists’ performance
 � Observer performance studies have to be performed to assess the potential improvement of CAD on radiologists’ detection ability.

Open issues in CAD research
 � Improving CAD performance, especially on subtler nodule types, by means of extensive training and validation on large data sets 

representative of the population under investigation, and more effective integration in the workflow of a radiology department could 
help in the diffusion of CAD systems to support radiologists’ in diagnostic image interpretation beyond research institutions.
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