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Common statistical concerns in clinical trials 
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Department of Statistics, Harvard University, Boston, MA 

Abstract  

Statistics are an integral part of clinical trials.  Elements of statistics span clinical trial design, data monitoring, 
analyses, and reporting.  A solid understanding of statistical concepts by clinicians improves the comprehension 
and the resulting quality of clinical trials. This manuscript outlines common statistical concerns in clinical trials 
that are important for clinicians to understand. 
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1. Introduction 

Statistics are an important aspect of clinical trials.  
The breadth of statistical issues span the full spec-
trum of a trial from design and protocol development, 
data monitoring and conduct during an ongoing trial, 
data management, data analyses, and reporting of 
trial results. Statistical concepts can be difficult for 
non-statisticians to understand.  However it is impor-
tant that clinicians involved with clinical trials under-
stand fundamental statistical issues in order to 
uphold the integrity of a trial. Knowledge of basic bi-
ostatistics and of study design is also important for 
reading medical journals(Weiss and Samet 1980). 

Studies suggest a marked increase in the complexity 
of statistical methods in the medical literature. (Hor-
ton and Switzer 2005) Studies also demonstrate that 
the current level of medical training in biostatistics is 
inadequate. (West and Ficalora 2007; Windish et al 
2007) In a study by West and Ficalora, more than 
two-thirds of clinician respondents disagreed or 
strongly disagreed with the statement that “the cur-
rent level of medical training in biostatistics in medi-
cine is adequate”.  Clinicians often seem willing to 
draw conclusions unsupported by the data.(Berwick 
et al 1981) Wulff et.al (Wulff et al 1986) reported that 
statistical knowledge of most doctors is so limited that 
they cannot be expected to draw the right conclu-
sions from the analyses presented in medical jour-
nals. There is evidence that researchers often inap-
propriately apply statistical methods due to poor un-
derstanding of statistical concepts(Altman and Bland 
1998) and Glantz(Glantz 1980) suggested that ap-
proximately half of the published articles in medical 
journals that use statistical methods, use them incor-
rectly. 

In this article, I discuss some basic statistical issues 
that are common concerns in clinical trials. 

2. Common statistical concerns in clinical trials 

There are several common statistical concerns in 
clinical trials including poor p-value interpretation, the 
need for presenting confidence intervals, adherence 
to the intent-to-treat principle, missing data, multiplici-
ty, subgroup analyses, association vs. causation, ap-
propriate reporting of trial results, probability and 
Bayesian statistics, and the clinician-statistician inte-
raction and the importance of effective communica-
tion.  

2.1 Poor p-value Interpretation 

The use of statistics in medical journals has in-
creased dramatically over the past few decades.  
One unfortunate consequence has been a shift of 
emphasis away from the basic results towards a con-
centration on hypothesis testing. (Gardner and Alt-
man 1986) 

One of the biggest flaws in medical research is the 
over-reliance on and misinterpretation of the p-value.  
The p-value is interpreted within the context of a hy-
pothesis test where complimentary hypotheses, a null 
hypothesis (assumed to be true) and an alternative 
hypothesis (the claim that researchers wish to prove) 
are developed. 

The p-value is defined as the probability of observing 
data as or more extreme than the observed data if 
the null hypothesis was true (note that the p-value is 
not the probability of a hypothesis being true given 
the data).  If this probability is low (e.g., <0.05) then 
either: (1) the observation of these data is a rare 
event, or (2) the null hypothesis is not true. The stan-
dard practice is to reject the null hypothesis (in favor 
of the alternative hypothesis) when the p-value is ac-
ceptable low.  If the p-value is not acceptably low 
then there is a failure to reject the null hypothesis. 
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Since the p-value is defined as the probability of ob-
serving data as or more extreme than the observed 
data if the null hypothesis was true, in order to ap-
propriate interpret the p-value, a clear understanding 
of the null hypothesis is needed.  For example, the 
null hypothesis for a two-sample t-test is the means 
of two groups are equal.  Thus if the null hypothesis 
is rejected, then one concludes that the means are 
unqual (the alternative hypothesis).  The validity of 
the t-test is based on an assumption of normality, 
however this assumption does not always hold. In 
such a case, statisticians often opt for a Mann-
Whitney U test whose validity does not depend on 
the normality assumption.  However the null hypothe-
sis for the Mann-Whitney U test is not the equiva-
lence of means of the two groups but that the ranks 
of the two groups do not differ (i.e., if one were to 
rank the outcomes in the two groups combined, that 
the ranks in one group are not higher or lower than 
the other group).  Since the two-sample t-test and the 
Mann Whitney U test have different hypotheses, the 
p-values from these two tests should be interpreted 
differently.     

One may interpret the results of a hypothesis test 
similarly to the result of a court trial where the null 
hypothesis is the assumption of innocence and the 
alternative hypothesis is that the person is guilty. If 
there is enough evidence to reject the null hypothesis 
of innocence (i.e., verdict of “guilty”), then one may 
conclude that there was evidence found to conclude 
guilt.  However if the null hypothesis of innocence is 
not rejected (i.e., verdict of “not guilty”), then it cannot 
be said that innocence was proven, only that there 
was a lack of evidence to conclude guilt. Thus one 
does not prove the null hypothesis, you only fail to 
reject it. “Absence of evidence is not evidence of ab-
sence.” (Altman and Bland 1995) 

For example, consider a trial comparing a new thera-
py vs. placebo.  Researchers would like to show that 
the new therapy is different (better) than placebo 
(and thus this becomes the alternative hypothesis 
while its compliment, that the new therapy is not dif-
ferent from placebo is the null hypothesis).  Suppose 
that researchers decide that a 5% false positive error 
rate is acceptable.  Thus if the p-value is <0.05 then 
the null hypothesis is rejected in favor of the alterna-
tive and the conclusion is that the new therapy is dif-
ferent from placebo.  If the p-value is not <0.05 then 
the null hypothesis is not rejected and researchers 
cannot conclude that the new therapy is different 
from placebo. Note that “no difference” has not been 
proven; you are only unable to reject the possibility of 
“no difference”. 

The traditional cut-point of 0.05 is arbitrary and p-
values are not binary statistics.  There is very little 
difference in the evidence of effect when a p-value is 

0.052 vs. 0.048. The 0.05 cut-off is used to control 
the “false positive” error rate (i.e., to ensure that it is 
not greater than 5% when the null hypothesis is true).  
However, researchers can decide for themselves if a 
5% false positive error rate is appropriate.  If a false 
positive error is very costly (e.g., would result in a 
very expensive and invasive therapy being used 
when effective and safer alternatives are available) 
then researchers may opt for a 1% false positive rate 
(i.e., use 0.01 as a cutoff).  If a false positive error is 
not costly, then a 10% (i.e., 0.10 cutoff) could be 
used.  The standard 5% false positive error rate is 
often used since this is the regulatory hurdle for ap-
proval of a new intervention. 

The p-value is a function of effect size, sample size, 
and variability.  Larger effect sizes, larger sample 
sizes, and smaller variation all contribute to smaller 
p-values.  Researchers often incorrectly interpret the 
p-value as providing direct information about the ef-
fect size.  P-values do not provide direct information 
about the magnitude or clinical relevance of the effect.  
Low p-values (e.g., <0.05) do not imply clinical or 
practical relevance and high p-values do not imply 
“no effect”.  Information about the effect size (or what 
effect sizes can be ruled out) can only be obtained by 
constructing confidence intervals. 

2.2 Need for confidence intervals 

P-values are only one tool for assessing evidence.  
When reporting the results of a clinical trial, confi-
dence intervals should always be reported to identify 
effect sizes that can be “ruled out” (i.e., effect sizes 
that are inconsistent with the data). If a p-value is 
significant, implying an effect, then the next natural 
question is “what is the effect?”  Confidence intervals 
directly address this question.  If a p-value is not sig-
nificant, implying that you were not able to rule out 
the possibility of “no effect”, then the next natural 
question is “what effects could be ruled out?” Confi-
dence intervals again directly address this question. 
The under-reporting of confidence intervals is a se-
rious flaw in the medical literature. 

Confidence intervals are not a replacement for p-
values but instead should be provided with p-values.  
P-values are still very useful tools particularly when 
assessing trends and interactions.  

Confidence intervals are also frequently misinter-
preted.  A 95% confidence interval can be thought of 
as an interval that has 95% probability of covering the 
parameter of interest (note that this is distinct from a 
value having 95% probability of falling into an inter-
val). This is to say that if a trial was repeated a very 
large number of times and each time a 95% confi-
dence interval estimate of the treatment effect was 
obtained, then 95% of the confidence intervals would 
cover the true treatment effect. A common misinter-
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pretation is that the true treatment effect is more like-
ly to be close to values in the center of the confi-
dence interval.  But this is not the case as the center 
of the interval is no more likely to cover the true 
treatment effect than values within the interval but 
away from the center. 

2.3 The intent-to-treat (ITT) principle 

The ITT principle is a fundamental concept in clinical 
trials but is frequently misunderstood.  The ITT prin-
ciple essentially states to “analyze as randomized”.  
This means that once a study participant has been 
randomized then they will be included in the analyses 
(i.e., the “ITT population”) as part of the randomized 
regimen, regardless of adherence to protocol, study 
completion, or anything that happens after randomi-
zation. Analyzing study participants that did not take 
their assigned therapy is a difficult concept for re-
searchers to understand.  An ITT approach can be 
considered an evaluation of the treatment “strategy” 
(i.e., an evaluation of the utility of a treatment in prac-
tice) rather than an evaluation of treatment under 
ideal conditions and perfect adherence.  

An alternative to an ITT analyses is a “per protocol” 
(PP) analyses.  The PP analysis is conducted using 
the PP population, often defined as those study par-
ticipants that adhere to the randomized therapy and 
the protocol and have appropriate data for analyses.  
The PP analysis is appropriate when the goal is to 
isolate and identify the biological effects of a treat-
ment rather than the utility of the treatment in practice.  
There are a few key differences between analyses 
conducted using an ITT population vs. a PP popula-
tion.  The first issue is that randomization is the foun-
dation for statistical inference.  Since an ITT analysis 
is consistent with randomization (e.g., comparisons 
are indeed randomized comparison), inferences 
drawn from these analyses are rooted in strong sta-
tistical theory.  However, PP analyses do not analyze 
study participants as randomized (e.g., some patients 
consciously or unconsciously self-select themselves 
out of the analyses by not adhering to protocol). Thus 
a PP analysis is not rooted with the same statistical 
foundation for inference (i.e., treatment comparisons 
are epidemiological rather than randomized). In a 
randomized trial, if one observes treatment differenc-
es in an ITT analyses, then these differences may be 
due to differences in treatment or bad luck from ran-
domization (and statistical inference techniques can 
discriminate between these two). However, if one 
observes treatment differences in a PP analyses, 
then these differences may be due to differences in 
treatment, bad luck from randomization, or from a 
factor that is causing people not to adhere to protocol 
(and statistical techniques cannot necessarily isolate 
the treatment effect).  A second key difference is that 
ITT analyses apply to patients sitting in a clinicians’ 

office waiting to be treated but a PP analyses may 
not. The PP analysis only compares adherent pa-
tients but the future adherence of a patient sitting in a 
clinicians’ office is unknown.  However the analysis of 
treatment strategy (ITT analyses) will apply to the 
patient. This is attractive since the possibility that the 
patient will not adhere should be considered when 
making treatment decisions. 

Thus clinical trials should be conducted with ITT prin-
ciples in mind.  Study participants should be followed 
regardless of adherence or treatment status.  Occa-
sionally, treatment may need to be withdrawn when 
there are concerns for patient safety.  However the 
patient should still be followed on study and planned 
data should be gathered.  It is important to realize the 
distinction between “off-treatment” and “off-study”.  
Researchers should try to keep study participants on-
study regardless of treatment status in accordance 
with ITT principles. Of course participants can go off 
study when they no longer consent, for ethical rea-
sons, or if there are safety issues that cannot be 
adequately addressed by taking the patient off-
treatment. 

2.4 Missing data 

Missing data is one of the biggest threats to the inte-
grity of a clinical trial. Nearly all trials will have miss-
ing data but when a trial has substantial missing data, 
the interpretation of trial results is very challenging 
and must be viewed with a level of uncertainty. Miss-
ing data is usually caused by loss-to-follow-up or pa-
tient refusal to participate and provide data.  Missing 
data can be the cause of biased treatment compari-
sons or estimates of treatment effects.  This is be-
cause “missingness” is usually not random (e.g., 
could be related to treatment, or outcome, or both). 
For example, a treatment-related serious adverse 
event may cause a patient to discontinue the study 
and thus outcome data may not be available for this 
patient at the end of the trial.   

Prevention is the first and most effective approach for 
addressing the missing data problem.  Researchers 
can prevent missing data by designing simple clinical 
trials (e.g., designing protocols that are easy to 
comply to; having easy instructions; having patient 
visits that are not too burdensome, having short, 
clear case report forms that are easy to complete, 
etc.) and adhering to the ITT principle (i.e., following 
patients after randomization regardless of adherence). 

Missing data create an obstacle for applying an ITT 
analysis.  The ITT principle states that all randomized 
study participants should be analyzed, but the data 
for some participants are missing.  The alternative 
per protocol analyses might only analyze data that 
are observed.  But if patients that will perform poorly, 
drop out of the trial and only remaining patients are 
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analyzed, then a distorted view of the therapy will be 
obtained. In order to comply with the ITT principle, 
the general approach is to impute data that are miss-
ing (i.e., use a strategic “guess” at what the data 
might have been if observed).  For example, if the 
primary endpoint was binary (i.e., treatment success 
vs. treatment failure) then an assumption of treatment 
failure may be imputed and then the data would be 
analyzed.  Sensitivity analyses are then conducted to 
see how robust the results are to varying assump-
tions about the missing data.  For example, other 
analyses assuming treatment success may be con-
ducted and the results would be compared.  If the 
results are qualitatively similar then some comfort in 
interpretation may be gained.  But if the results are 
qualitatively different then interpretation is challeng-
ing. If there is a lot of missing data then qualitative 
differences are likely. 

2.5 Multiplicity 

Researchers are often interested in testing several 
hypotheses. Consider a clinical trial designed to 
compare a new therapy vs. placebo.  Researchers 
may wish to test the effect of the intervention vs. pla-
cebo on several outcomes (e.g., a primary outcome 
and several secondary outcomes).  Similarly re-
searchers may wish to test these endpoints in several 
subgroups of patients (e.g., defined by gender, race, 
age, or baseline disease status) or at several time-
points during therapy. 

Each time a hypothesis test is conducted (i.e., each 
time a p-value is calculated), there is a chance to 
make an error (e.g., a false-positive error).  For any 
single test, researchers can control the false positive 
error rate by deciding the “significance level”.  For 
example, it is common to claim that p-values below 
0.05 are “significant”.  This decision rule sets the 
false positive error rate at 5% for a single test.  How-
ever if a researcher conducts several tests, then the 
probability of making at least one false positive error 
is greater than 5%.  The probability of at least one 
false positive finding increases as the number of tests 
that are conducted increases.  If a researcher con-
ducts 14 hypothesis tests when null hypothesis is 
true, then the probability of at least one false-positive 
finding is [1− (1− 0.05)14 ]= 0.512 or 51.2% 

Thus it is important for researchers to consider test-
ing only important hypotheses to reduce the possibili-
ty of false conclusions. Significant results that are 
obtained when many tests were conducted without 
control of the trial-wise false positive error, may need 
to be validated with independent data. 

It is important to report the results of non-significant 
tests so that significant results can be interpreted 
within the context of the number of hypothesis tests 
that were conducted. Researchers can either: (1) 

clearly report the total number of hypothesis tests, 
the significance level of each test, and the number of 
expected false-positive tests by chance or (2) control 
the false positive error rate with an adjustment to the 
significance level of each individual test so that the 
probability of making a trial-wise false positive error is 
controlled.  For example if a researcher plans to con-
duct two hypothesis tests, then the trial wise error 
rate could be controlled at 5% by conducting each 
individual test at 0.025 (rather than 0.05). 

2.6 Subgroup analyses 

A subgroup analysis is an evaluation of a treatment 
effect for a specific subset of patients defined by 
baseline characteristics.  Analyses of subgroups that 
defined by post-baseline characteristics are not ad-
vised in clinical trials as such analyses are subject to 
several types of biases.  

Subgroup analyses are subject to the multiplicity 
problem.  Thus subgroup analyses should be con-
ducted selectively.  An evaluation of whether a treat-
ment effect varies across subgroups (i.e., treatment 
effect heterogeneity) should be conducted prior to 
conducting subgroup analyses. This evaluation is 
typically conducted via statistical tests for interaction.  
Only if the treatment effect varies across subgroups 
should specific subgroup analyses be undertaken.  
For example, there may be interest in evaluating 
whether a treatment effect is similar for men vs. 
women. If the treatment effect varies by gender then 
subgroup analyses may be undertaken.  However, if 
the treatment effect is not dissimilar then there is no 
reason to conduct subgroup analyses within each 
gender. 

When evaluating whether the treatment effect varies 
across subgroups, it is important to clarify the metric. 
Consider the data in Table 1* displaying the response 
rate for a new therapy and a control for three age 
subgroups. 

For each treatment group, the response rate increas-
es with age. However there is no interaction (hetero-
geneity of treatment effects) on the relative risk scale 
but there is on the absolute scale. 

The reporting of subgroup analyses in the literature 
has generally been poor.  Furthermore the results of 
subgroup analyses are often over-interpreted.  First 
there is often low power to detect effects within sub-
groups.  This is because clinical trials are generally 
powered to detect overall treatment effects and not 
necessarily for effects within particular subgroups 
(where sample sizes are obviously smaller). Further-
more consider a trial that compares a new therapy vs. 
a control where the primary outcome is a clinical re-
sponse (vs. no response).  Suppose the results for 
men were 32 of 40 in the new therapy arm responded 
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vs. 16 of 40 in the control arm.  This yields a p-value 
of <0.01.  Suppose the results for women were 4 of 
10 in the new therapy arm responded vs. 2 of 10 in 
the control arm.  This yields a p-value of 0.49. Does 
this imply that the treatment is effective in males but 
not females? No. Note that the relative risk in each 
gender is 2. It is only the smaller sample size that 
leads to the nonsignificant result in females.  Note 
that conducting these subgroup analyses do not ad-
dress the question of whether the treatment effect 
varies by gender.   

When subgroup analyses are conducted then they 
should be reported regardless of significance.  A for-
est plot is an effective method for reporting the re-
sults of subgroup analyses. The number of subgroup 
analyses conducted should be transparent so that 
results can be interpreted within the appropriate con-
text. Subgroup analyses should generally be consi-
dered exploratory analyses rather than confirmatory. 
It is advisable to pre-specify subgroup analyses to 
avoid “data dredging”. 

 

 

2.7 Association vs. causation 

A common mistake of clinical researchers is to interp-
ret significant statistical tests of association as causa-
tion.  Causation is a much stronger concept than as-
sociation.  There are no formal statistical tests for 
causation (only for association).  Although criteria for 
determining causation are not universal, a conclusion 
of causation often requires ruling out other possible 
causes, temporality (demonstrating that the cause 
precedes the effect), strong association, consistency 
(repeatability), specificity (causes result in a single 
effect), biological gradient (monotone dose response), 
biological plausibility, coherence (consistency with 
other knowledge), and experimental evidence.  Clini-
cal trials try to address the causation issue through 
the use of randomization and the ITT principle.  How-
ever even in randomized clinical trials, replication of 
trial results via other randomized trials is usually 
needed. This is particularly true for evaluating causes 
other than randomized treatment. A more common 
concern is to conclude causation between a non-
randomized factor and a trial outcome.  Researchers 
should be very careful about concluding causation 
without randomization. 

2.8 Reporting 

Appropriate reporting of clinical trial results is crucial 
for scientific advancement.  Selective reporting is 
very common and can result in sub-optimal patient 
care.  A common problem in medical research is the 
under-reporting of negative evidence.  If trial results 
are negative, researchers often elect not to publish 
these results, perhaps in part because medical jour-
nals do not consider the results exciting enough to 

publish.  However, if several trials are conducted to 
evaluate the effectiveness of a new intervention, and 
only one trial is positive and furthermore is the only 
trial that is published, then the medical community is 
left with a distorted view of the evidence of effective-
ness of the new intervention.  For these reasons, 
negative evidence should be reported with equal vi-
gor. 

When reporting the results of clinical trials, it is impor-
tant to report measures of variation along with point 
estimates of the treatment effect, and confidence in-
tervals.  Reporting both relative risk and absolute risk 
measures, of adverse events for example, are helpful 
for interpreting the impact of the events. Creative and 
interpretable data presentation helps to convey the 
overall message from the trial data.  Reporting both 
benefits and risks (categorized by severity) provides 
a more complete picture of the effect of a therapy.  
Providing reference rates (e.g., of no therapy or an 
alternative therapy) can further help put the results 
into perspective and aid other clinicians in making 
treatment decisions.  

Researchers can consult the Consolidated Standards 
of Reporting Trials (CONSORT) Statement, which 
encompasses various initiatives to alleviate the prob-
lems arising from inadequate reporting of randomized 
controlled trials. The CONSORT Statement is an evi-
dence-based, minimum set of recommendations for 
reporting randomized clinical trials. It offers a stan-
dard way for authors to prepare reports of trial find-
ings, facilitating their complete and transparent re-
porting, and aiding their critical appraisal and inter-
pretation. It comprises a 22-item checklist and a flow 
diagram and is considered an evolving document. 

Table 1.  Response rate for a new therapy with control for three age subgroups 

Age subgroup New therapy 
rate 

Control ther-
apy rate 

Relative risk Risk differ-
ence 

Odds Ratio 

Young 0.1 0.05 2 0.05 2.11 

Medium 0.4 0.2 2 0.2 2.67 

Old 0.7 0.35 2 0.35 4.33 
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The checklist items focus on reporting how the trial 
was designed, analyzed, and interpreted; the flow 
diagram displays the progress of all participants 
through the trial. 

2.9 Probability and Bayesian statistics 

P-values are a product of a traditional “frequentist” 
approach to statistics.  A p-value is the probability of 
observing data as or more extreme than that ob-
served if the null hypothesis is true.  In other words it 
is the probability of the data given a hypothesis being 
true.  Researchers are often more interested in the 
question “what is the probability that a hypothesis is 
true given the data?”. Traditional frequentist statisti-
cians view this as asking the probability of a fact (i.e., 
either the hypothesis is true or it is not, and thus the 
probability is either 0 or 1). 

However an alternative statistical approach, Bayesian 
statistics, allows calculation of the probability of a 
hypothesis being true given the data. This approach 
can be more intuitive or appealing to researchers as 
they wish to know if a particular hypothesis is true. 
The disadvantage of this approach is that it requires 
additional assumptions and researchers generally try 
to move towards fewer assumptions so that results 
are robust. Bayesian approaches are based on the 
idea that unknown quantities (e.g., a treatment differ-
ence) have probability distributions.  The assump-
tions (called prior distributions in Bayesian terms) 
often incorporate prior beliefs about the hypothesis.  
Historical data can be used to help construct the prior 
distribution.  This might be an attractive approach 
when sound prior knowledge based on reliable data 
is available.  The prior distribution is then updated to 
a “posterior distribution” based on data collected in 
the trial. Use of Bayesian statistics has become more 
common in the design of clinical trials for devices.   

A simple example that illustrates the differences be-
tween frequentist and Bayesian approaches is in the 
evaluation of diagnostic tests.  Sensitivity (the proba-
bility of a diagnostic test being positive when a per-
son is truly diseased) and specificity (the probability 
of a diagnostic test being negative when a person is 
truly non-diseased) are examples of frequentist prob-
abilities.  However one may wish to know the positive 
predictive value (the probability that a person is truly 
diseased given a positive diagnostic test).  This prob-
ability can be calculated using a Bayesian approach 
but requires an assumption about the prevalence of 
the disease in the population from which the patient 
belongs. 

A common dilemma is whether a frequentist or Baye-
sian approach is “best” for a particular trial.  This has 
caused some divides in the statistical community. 
However the approaches should not be viewed as 
competing and in conflict. Instead Bayesian statistics 

should be seen as another approach or tool to help 
understand the data. 

2.10 Clinician-statistician interaction and communica-
tion 

One of the keys to the successful design, monitoring, 
analyses, and reporting of clinical trials is the quality 
of the interaction between the protocol team clini-
cians and statisticians. Solid communication is critical. 
Statisticians need to understand the clinical questions 
of interest at the deepest level and then develop 
strategies for answering those questions. They then 
need to convey the assumptions and limitations of 
various designs and conduct options to the clinicians.  
Complicated terminology can often be an obstacle for 
successful communication.  Statisticians do not see 
patients and do not have a medical background to 
understand complicated medical terminology.  Clini-
cians can have difficulty understanding complicated 
statistical terminology.  Thus both clinicians and sta-
tisticians need to find ways to communicate their 
ideas in simple terms.   

Another potential obstacle to successful communica-
tion between statisticians and clinicians is a clear un-
derstanding of roles.  Statisticians should be viewed 
as strategists rather than data analysts, programmers, 
or data managers.  Statisticians need to develop a 
vision of the end of the trial during its design stage.  
Thus statisticians can be very helpful at preventing 
problems and should be involved in trial design from 
the beginning.  Statisticians also specialize in study 
design (e.g., clinical trials vs. epidemiological de-
signs), disease areas, and statistical methods (often 
determined by the study characteristics typically con-
ducted in disease areas of specialization). Statisti-
cians thus may have limited biological knowledge 
particularly in a specific disease area that is new to 
them and need time to develop appropriate know-
ledge to understand the disease area and related 
therapies.  They may have limited expertise in statis-
tical areas required for particular diseases but often 
have the flexibility to develop expertise in over time. 
Thus statisticians may not have answers immediately 
since they may have to learn new medical areas (e.g., 
genomics, proteomics, imaging, etc.), the complexi-
ties of the data associated with these areas, and the 
respective statistical methods that are required to 
analyze such data.   

Time constraints can be another obstacle to success-
ful communication between statisticians and clini-
cians.  The demand for statisticians is higher than the 
supply in clinical trial settings.  Statisticians often 
work on multiple protocols simultaneously.  It is also 
very common for clinicians and other researchers to 
underestimate the required time of a statistician to 
help design a trial or analyze data from a trial.  Reali-
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zation of these issues from clinicians can improve 
clinician-statistician communication. 

3. Summary 

There are many places during the life of clinical trials 
in which errors can take place. (Altman 1998) Fancy 
statistical methods cannot rescue clinical trial flaws.  
For this reason, it is optimal to have a statistician that 
can envision potential obstacles, involved early in the 
conception of the clinical trial.  It is also important that 
clinicians educate themselves to common statistical 
issues and concerns when conducting or participating 
in clinical trials.  Perhaps surprisingly, the most im-
portant things that clinicians should know about sta-
tistics, are not formulas but basic concepts.  I have 
outlined some of the statistical concepts that are 
commonly misunderstood. Solid understanding of 
these issues will help to ensure high-quality clinical 
trials. 
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