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Our immune system faces the intricate task of eliminating pathogenic microorganisms, 
while autoimmunity against self-components or intestinal flora must be prevented. This 
complex task demands an exceptional level of regulation and specificity. Hereto, immune 
cells are equipped with a myriad of surface receptors, including cytokine-receptors and 
pathogen recognition receptors. In this review we describe two important PRR families, Toll-
like receptors and nucleotide-binding oligomerization domain leucine-rich repeat proteins, 
and their crucial role in instruction of the immune response. Interestingly, these key immune-
receptors have recently been identified as major players in several immune disorders, such 
as systemic lupus erythematosus, Crohn’s disease, auto-inflammatory diseases and 
rheumatoid arthritis. These findings, and their implications for future research and therapy of 
immune disorders, will be discussed.

Our immune system is well equipped to recog-
nize specific, highly conserved structures
unique to microorganisms of a given class.
These so-called pathogen-associated molecular
patterns (PAMPs) are recognized by pathogen
recognition receptors (PRRs), such as C-type
lectins [1], members of the nucleotide binding
oligomerization domain (NOD) leucine-rich
repeat (LRR) family [2] and Toll-like receptors
(TLRs) [3]. TLRs owe their name to the
Drosphila protein Toll. Toll was initially stud-
ied for its involvement in embryonic dorsoven-
tral axis formation. However, Toll-/- animals
quickly succumbed to massive fungal infec-
tion, implying a role for Toll in immunity [4].
Subsequent bioinformatics analyses led to the
identification of mammalian TLRs. To date,
13 TLRs have been defined. However, certain
TLRs can form heterodimers, which further
increases TLR diversity. TLRs are type 1 trans-
membrane receptors, which recognize their lig-
ands via a conserved C-terminal LRR domain.
For some TLRs, ligand binding is dependent
on the presence of accessory molecules [5,6].
Many pathogen-derived structures, such as
lipopolysaccharide (LPS), bacterial lipopro-
teins and double-stranded RNA are sensed by
distinct TLRs (Table 1). In addition, it has been
suggested that several endogenous structures –
mostly associated with cell death, tissue dam-
age or infection – can activate TLRs, such as
heat-shock proteins [7], β-defensins [8] and
fibrinogen [9]. However, these findings should
be approached prudently, as contamination
with, for instance, endotoxins could lead to
serious misinterpretation of results [10,11]. 

All members of the TLR family share a cyto-
plasmic domain called Toll/interleukin (IL)-1
receptor (TIR) domain, for its homology with
the respective region of the IL-1 receptor. Acti-
vation of TLRs induces the recruitment of
adaptor proteins that serve as a scaffold for
downstream signaling molecules. The adapter
protein myeloid differentiation factor (MyD)88
is involved in signaling of most TLRs, with the
exception of TLR3, which  signals via Toll/IL-1
receptor domain-containing adapter-inducing
interferon IFN-β (TRIF). The use of different
adaptor proteins – and thus activation of dis-
tinct signaling pathways – brings specificity to
TLRs and directs the type and magnitude of
the immune response. While TRIF effectively
activates interferon regulatory factor (IRF)-3,
resulting in interferon (IFN)-β production
[12,13], MyD88 mediates transcription of
cytokines and chemokines via nuclear factor
(NF)-κB and mitogen-activated protein kinase
(MAPK) pathways. Interestingly, the recently
discovered adapter proteins MyD88 adapter-
like (Mal) [14] and TRIF-related adapter mole-
cule (TRAM) [15] add to the further diversifica-
tion of the TLR signaling network. To avoid
excessive inflammation or autoimmunity fol-
lowing TLR activation, feedback mechanisms
are of paramount importance. Indeed, a pleth-
ora of regulatory molecules and circuits are in
place to control TLR responses. For instance,
single immunoglobulin IL-1 receptor-related
protein (SIGIRR) attenuates the recruitment
of receptor-proximal signalling components
[16], while stromal (ST)2 cells can prevent the
translocation of NF-κB to the nucleus [17].
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Table 1. Overview of Toll-like receptor ligands and sources.

TLR Ligand Source Ref.

TLR1 and TLR2 Triacyl lipopeptides* Bacteria

Lipoarabinomannan* Mycobacteria

PorB porin* Neisseria meningitidis

Nystatin Anti-fungal drug (Streptomyces noursei) [121]

TLR2 Lipopeptide/lipoprotein* Bacteria

Lipoteichoic acid* Gram-positive bacteria

Lipopolysaccharide* Plasmodium gingivalis, Listeria interrogans

Lysophosphatidylserine* Streptomyces mansoni

HSP60*, HSP70*, HSPB8 Host, Helicobacter pylori [122]

HMGB1* Host

Biglycan Host [123]

TLR2 and TLR6 Diacyl lipopeptides* Mycoplasma

Lipoteichoic acid* Staphylococci, Streptococci

GPI* Plasmodium falsiparum

TLR3 dsRNA* West-Nile virus, Cytomegalovirus, S. mansoni

siRNA* Synthetic

mRNA* Host

TLR4 Lipopolysaccharide* Gram-negative bacteria

Taxol* plants

Anthrolysin O* Baccilus anthracis

Phosphorylcholine* Filarial nematode

HSP60*, HSP70* Chlamydia pneumoniae, host

β-defensin 2* Host

Fibrinogen* Host

Hyaluronic acid* Host

Fatty acids* Host

Modified LDL* Host

Biglycan Host [123]

Levan Host [124]

Heparan sulfate Host [125]

TLR5 Flagellin* Bacteria

TLR7 ssRNA* Influenza, HIV-1, parechovirus 1

Imidazoquinoline* Synthetic

Loxoribine* Synthetic

TLR8 ssRNA* Coxsackie B virus, parechovirus 1

Imidazoquinoline* Synthetic

TLR9 CpG DNA* Bacteria, synthetic, DNA viruses

Hemozoin* Plasmodium falsiparum

Chromatin–IgG complexes* Host

TLR10 Not determined*

TLR11 Profilin-like molecule* Toxoplasma gondii

*Adapted from Isshi et al. [126], supplemented with most recent data from literature. 
dsRNA: Double-stranded RNA; GPI: Glycosyl-phosphatidylinositol; HMBG: High-mobility group box; HSP: Heat-shock protein; 
LDL: Low-density lipoprotein; siRNA: Short interfering RNA; ssRNA: Single stranded RNA; TLR: Toll-like receptor.
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Finally, the MyD88 splice-variant MyD88s can
serve as a ‘decoy’ adaptor molecule that pre-
vents the recruitment of IL-1 receptor-associ-
ated kinase (IRAK)-4 and subsequent
downstream signaling [18].

In conclusion, TLRs play a central role in the
response to danger signals, such as the presence
of microorganisms or tissue damage. Triggering
of TLRs leads to activation of highly complex
and intertwined signaling pathways that
control immunity.

Toll-like receptor expression & location
Different combinations of TLRs and TLR sign-
aling molecules are expressed in various cell
types involved in the induction of innate
immune responses. Monocytes, macrophages
and neutrophils are all equipped with their own
subset of TLRs, enabling them to execute their
effector function. However, TLR expression is
not limited to innate immune cells, as they can
also activate T and B cells, and nonimmune
cells located at the interface of the interior and
exterior milieu (Figure 1). For example, airway
epithelial cells produce inflammatory cytokines
and antimicrobial peptides in response to
PAMPs or pathogens in a TLR-dependent
manner [19–21].

The expression of TLRs is dynamic and can be
increased by proinflammatory cytokines, such as
tumor necrosis factor (TNF)-α, IFN-γ and IL-6,
which contribute to a higher sensitivity for TLR

ligands and amplification of the inflammatory
response [22–24]. On the other hand, TLR pro-
tein expression is tightly controlled via ubiqui-
tin-mediated protein degradation [25].
Furthermore, prolonged exposure to microbial
components results in hyporesponsiveness, as a
result of decreased TLR expression and the
upregulation of endogenous inhibitory mole-
cules; a mechanism to prevent disproportionate
inflammation [26]. TLRs also differ in their
location within a cell. Whereas TLR1, -2, -4, -5
and -6 are present on the plasma membrane,
TLR3, -7, -8 and -9 reside mainly within the
endosomal/lysosomal compartment. The differ-
ential subcellular location of TLRs relates to the
nature of the ligands that are recognized. Thus,
TLRs at the cell surface mainly respond to
extracellular pathogens, while intracellular
TLRs are triggered by nucleic acids from bacte-
ria and viruses, mostly following uptake of
pathogens or pathogen-infected cells. In addi-
tion, the intracellular localization avoids
unwanted, and potentially harmful, inflamma-
tory responses against extracellular self-DNA or
mRNA released from dying or dead cells. Like-
wise, the polarized expression of TLR5 in intes-
tinal epithelial cells prevents inflammatory
responses to commensal bacteria in the intes-
tine. TLR5 is absent on the luminal side of the
cell and is only triggered by its ligand, flaggelin
(the PAMP in flagella from motile bacteria),
once the epithelial barrier is breached by
pathogenic bacteria [27,28].

In summary, TLR expression in various tissues
and cell types is dynamic and can be increased by
several proinflammatory cytokines. Tissue- or
cell-type-specific localization of TLRs is organized
such that instant recognition of invading patho-
gens is ensured, but responses to self-antigens
are avoided.

Role of Toll-like receptors in the adaptive 
immune response
Dendritic cells (DCs) are the professional anti-
gen-presenting cells of the immune system, and
direct the type and course of an immune
response. DCs can initiate immune responses
against pathogens or tumors, but also prevent
autoimmune responses that are harmful to the
host. Immature DCs are present in virtually all
organs and tissue,s and they continuously sample
their environment for the presence of micro-
organisms. Captured antigens are processed into
peptides and subsequently presented to lympho-
cytes in lymph nodes. DCs can also activate

Figure 1. Effect of TLR triggering on innate and adaptive 
immune responses.

 

APC: Antigen-presenting cell; DC: Dendritic cell; IFN: Interferon; MMP: Matrix 
metalloprotease; ROS: Reactive oxygen species; TLR: Toll-like receptor.
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natural killer cells and produce IFNs, thus link-
ing the innate and adaptive immune system [29].
DCs express a broad repertoire of TLRs, and
activation of these receptors results in upregula-
tion of major histocompatibility complex
(MHC) and costimulatory molecules, and
migration of DCs to the secondary lymphoid
organs, where they activate naive T cells. The
nature of the signals that DCs receive, especially
through TLRs and cytokine receptors, deter-
mines the type of immune response induced.
Unstimulated DCs or DCs receiving immune-
inhibitory signals induce immune tolerance. On
the other hand, triggering of TLR4 on DC
results in T-helper (Th)1 polarization, while
TLR2 activation rather supports a Th2
response [30,31]. These findings have significantly
contributed to our understanding of the classical
Th1–Th2 paradigm, and indicate that the com-
bination of TLRs activated upon pathogenic
encounter plays a pivotal role in directing the
type of immune response against that particular
pathogen [32]. However, this phenomenon can
sometimes be exploited by microorganisms. For
example, Candida albicans is shown to induce
Th2 or Treg differentiation via production of
cytokines, such as IL-10, thereby preventing the
Th1 response necessary for its eradication [33].

NOD-LRR protein family
Recently, new LRR-containing PRRs have
been identified and collectively christened the
NOD-LRR family [2]. NOD-LRRs have a high
structural homology to plant R proteins
(Figure 2), which are involved in innate immune
defense [34]. NOD-LRRs reside in the cytosol
and are thought to be involved in sensing the
presence of intracellular microorganisms. All
NOD-LRR proteins share a C-terminal LRR
domain, a central NOD domain – used to
form dimers or oligomere complexes – and a
distinct N-terminal effector domain. The
NOD-LRR family can be divided into four
distinct subfamilies: the CIITA, interleukin 1
β-conveting enzyme (ICE)-protease activating
factor (IPAF), NOD and NALP subfamilies, of
which the latter two will be discussed further. 

NOD1 and 2 respond to distinct moieties of
the bacterial cell wall component
peptidoglycan [35–38]. NODs are expressed in
monocytes, macrophages and DCs, but also in
nonhematopoietic cell types, such as intestinal
epithelial cells. Triggering of NODs results in
homodimerization, the recruitment of adapter
protein receptor-interacting protein (RIP)-like

interacting CLARP kinase (RICK) via
homotypic caspase recruitment domain
(CARD)–CARD interactions and induction of
subsequent signaling events [39]. Triggering of
endogenous NODs leads to only a moderate
secretion of cytokines through activation of
NFκB and mitogen-activated protein kinases
(MAPKs). However, recent data indicate that
NOD stimulation strongly synergizes with TLR
triggering for the production of both pro- and
anti-inflammatory cytokines [40,41].

Another NOD-LRR subfamily is the NALP
family, consisting of 14 proteins that share
structural similarity with the NODs [42].
Rather than an N-terminal CARD domain,
NALPs display a so-called pyrin domain. Cer-
tain NALPs, especially NALP3 (cryopy-
rin/CIAS1/PYPAF), have recently been
discovered to be  key regulators of the inflam-
matory cytokine IL-1β [43]. Several NF-κB-
activating signals induce production of the
inactive pro-IL-1β protein. The processing of
pro-1β into active IL-1β is mediated by
activation of a multiprotein complex referred
to as the inflammasome, of which NALPs and
pro-inflammatory caspases are crucial
components [44]. This activation of the inflam-
masome can occur independently of TLRs.
Binding of NALPs to apoptosis-associated
speck-like protein (ASP) containing a CARD
leads to recruitment and activation of caspase-1
(also known ICE) and production of bioactive
IL-1β. Since NALPs posses LRR domains simi-
lar to that of TLRs, they are thought to play a
role in pathogen recognition. Recent studies by
the Tschopp and Núnêz groups identified sev-
eral compounds that can trigger NALP path-
ways, such as the NOD2 activator muramyl
dipeptide (MDP) [45], bacterial RNA, imidazo-
quinolines (which also activate TLR7/8) [46]

and gout-associated uric acid crystals [47]. How-
ever, it remains to be determined whether these
structures directly bind to and trigger NALPs,
or whether associated factors are required for
their activation. Future research will undoubt-
edly lead to the identification of other NALP
ligands, similar to the ever-growing list of TLR
ligands that has been discovered in recent years.
In parallel with regulation of TLR signaling,
the presence of endogenous inhibitors, such as
pseudo-ICE, inhibitor of pro-caspase-1 activa-
tion (ICEBERG) [48] and proteinase inhibitor
(PI-9) [49], which interfere with IL-1β process-
ing, is crucial to prevent disproportionate
inflammatory responses.
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Toll-like receptors & NOD-LRR in 
immune disorders
Systemic lupus erythematosus
Since TLRs are such potent inducers of both
innate and adaptive immune responses, they are
implicated in many immune disorders, such as
Crohn’s disease (CD) [50,51] and Type 1 diabetes
mellitus [52]. The clearest example is the relation-
ship between TLR9 and the autoimmune dis-
ease systemic lupus erythematosus (SLE). SLE is
thought to be related to defective clearing of
apoptotic cells and characterized by chronic
inflammation initiated by deposition of immune
complexes (IC) in target organs [53]. The ICs
consist of antibody/DNA and antibody/nucleo-
protein complexes, and they cause the release of
a variety of chemokines and cytokines, thereby
attracting, for instance, neutrophils and DCs.
In vitro stimulation with serum or purified
DNA-IC from SLE patients results in significant
IFN-α production by a rare subpopulation of
DCs, referred to as plasmacytoid (p)DCs [54]. It
has now been determined that IFN-α release by
pDC is induced in a TLR9 and FcR-dependent
manner [55]. It was found that DNAICs are
taken up via FcγRIIa and translocate to acidic

lysosomes, where binding of DNA to TLR9 trig-
gers the production of IFN-α. Antibodies against
FcγRIIa or addition of chloroquine, a known
inhibitor of TLR9 signaling, both efficiently
blocked IFN-α production following stimulation
of pDC with DNA-ICs [56]. An excellent review
dealing with the complex interplay of these
receptors in SLE has recently been published [54].
The finding that polymorphisms in FcγRIIa are
correlated with susceptibility to SLE further sup-
ports a role for this receptor in the delivery of
complexes into the cell. To date, an association
between TLR9 polymorphisms and susceptibil-
ity to SLE has not been established [57]. Instead,
it has been found that polymorphisms in TLR5
are associated with protection from the develop-
ment of this disease [58], via a mechanism that is
currently unknown.

These data indicate that cooperation between
seemingly distinct receptors, including TLRs,
contributes to the perpetuation of the inflamma-
tory response against DNA and/or nuclear
proteins that is characteristic of SLE.

Crohn’s disease
CD is a chronic Th1-mediated inflammatory
disease that can affect any part of the gastro-
intestinal tract. CD is a multifactorial disease,
with a strong genetic component and a role for
environmental factors. It is generally believed
that the disease results from an exaggerated
immune response directed against the normal
intestinal flora. This idea is supported by the
finding that animals kept in a germ-free envi-
ronment generally do not develop colitis [59].
The vast number of bacteria in the gut repre-
sents a plethora of potential PRR-activating
structures, and this situation demands a tight
immune regulation. Both TLRs and NOD-
LRR proteins play an important role in intesti-
nal inflammatory responses. In the mouse coli-
tis model of dextran sulfate sodium (DSS),
TLR9 stimulation with DNA derived from
luminal bacteria results in elevated pro-inflam-
matory cytokine and chemokine production,
and more pronounced histopathological dam-
age in the colonic mucosa in wild-type mice,
but not TLR9-/- mice [60], indicating that TLR9
signaling can contribute to intestinal inflamma-
tion. Similar responses were obtained after
TLR5 activation using flagellin [27]. Interest-
ingly, flagellin is not only recognized by TLR5.
Cytosolic flagellin can activate IPAF, a NOD-
LRR protein, which results in production of
IL-1β [61,62]. The availability of two sensory

Figure 2. Structural organization of the NOD-LRR family 
members, as well as their homologs, the plant R proteins. 
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Pyrin NOD LRR

TIR LRR

TIR LRR

TIR NBARC LRR

CARD NOD LRR

NALP

NOD

NOD-LRR

Plant R-proteins

Drosophila Toll

Toll-like receptors



REVIEW – Kramer, Joosten, Figdor, van den Berg, Radstake & Adema 

470 Future Rheumatol. (2006)  1(4)

pathways for  flagellin potentially enables regula-
tion of the intensity of the immune response,
depending on the virulence of the pathogen
encountered. Interestingly, TLR2 agonists do
not cause an inflammatory response in the DSS
colitis model [27], an effect that might be related
to the induction of a Th2 cytokine profile fol-
lowing TLR2-triggering. Despite the fact that
MyD88-dependent TLR5 and TLR9 responses
can contribute to colonic inflammation, it was
recently found that MyD88-deficient mice
exhibit an increased susceptibility to DSS-
induced colitis [63]. This would suggest a protec-
tive role for MyD88-dependent signaling in
preventing colonic inflammation. 

Additonally, on a genetic level, TLRs and
NOD2 have been linked to CD. For instance,
the TLR4 Asp299Gly polymorphism, which is
associated with increased susceptibility to
Gram-negative infections, is found more fre-
quently in CD patients than in the healthy
population [50,51]. However, the most compel-
ling evidence is found for polymorphisms in
NOD2. The 3020insC frameshift mutation in
NOD2 that results in a truncated form of the
protein is highly associated with CD [64,65].
Although several mouse models have suggested
that this mutation results in enhanced NF-κB
activation and IL-12 or IL-1β production
[66,67], virtually all studies performed with
human cells suggest a loss-of-function muta-
tion, resulting in defective recognition of MDP
and loss of synergy between TLRs and NOD2
[41,68,69]. In addition, NOD2 knockout (KO)
mice were found to have decreased expression

of a subgroup of antimicrobial peptides [70].
How exactly a loss-of-function mutation in
NOD2 leads to an unwarranted immune
response towards intestinal flora is not cur-
rently completely clear, but might be related to
defective immune regulation by impaired
release of immunosuppressive cytokines, such
as IL-10 [41,68,69]. Besides its involvement in
CD, NOD2 was recently identified as the sus-
ceptibility gene for another granulomatous dis-
order, termed Blau syndrome (BS) [71]. BS is a
rare disease that features early-onset granulo-
matous arthritis, uveitis, skin rash and campto-
dactyly (Table 2). These data indicate that
different mutations in NOD2 can have distinct
physiological consequences. In the case of BS,
the NOD2 mutations all affect the NOD
domain of the protein [71,72]. Since the NOD
domain is not reported to be involved in the
recognition of PAMPs, these mutations may
cause ligand-independent NOD2 activation
and inflammation, which is also observed in
other so-called autoinflammatory disorders,
which are discussed below.

NALPs & autoinflammatory syndromes
Autoinflammatory diseases are characterized by
recurrent episodes of seemingly unprovoked sys-
temic inflammation that, unlike autoimmune
disease, lack high-titer antibodies or the
involvement of antigen-specific T cells.
Mutations in NALP3 have unquestionably been
linked to three prototypical autoinflammatory
syndromes: familial cold autoinflammatory
syndrome (FCAS) [73], Muckle–Wells syndrome

Table 2. Overview of members of the NOD-LRR family involved in systemic 
auto-inflammatory disorders with rheumatic manifestations.

Disease Symptoms Affected gene Ref.

MWS Episodes of rash, arthralgia, fever, conjuctivitis NALP3 [73]

Frequent sensorineural hearing loss

FCAS Cold-induced episodes of rash, 
arthralgia, fever

NALP3 [73]

Conjuctivitis

NOMID Rash, papilledema, uveitis, 
hepatosplenomegaly

NALP3 [74,75]

Sensorineural hearing loss, arthropathy

Epiphyseal boneformation

Blau syndrome Granulomatous papular rash,
uveitis, iridocyclitis

NOD2 [71,72]

Granulomatous arthritis, camptodactyly

FCAS: Familial cold autoinflammatory syndrome; LRR: Leucine rich repeat; MWS: Muckle–Wells syndrome; 
NOD: Nucleotide-binding oligomerization domain; NOMID: Neonatal-onset multisystem inflammatory disease.
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(MWS) [73] and neonatal-onset multisystem
inflammatory disease (NOMID) [74,75]. These
syndromes are now considered to be a contin-
uum of one disease, referred to as cryopyrin-
associated periodic syndromes (CAPS). The
CAPS share features, such as episodes of fever,
arthritis and increased levels of inflammatory
markers (Table 2). Most NALP3 mutations affect
the NOD domain of the protein and it has been
hypothesized that they interfere with auto-
inhibitory LRR–NOD interaction and cause
NALP3 inflammasome activation and IL-1β
production – even in the absence of NALP3-
activating structures [43]. In line with this, mac-
rophages from MWS patients were found to
spontaneously secrete IL-1β  [43]. The role of IL-
1β in these diseases is further supported by the
finding that treatment with the IL1-R antago-
nist anakinra results in a dramatic improvement
in the clinical symptoms and laboratory markers
of inflammation in patients with MWS, FCAS
and NOMID [76–78]. 

Toll-like receptors, NOD-LRRs & their 
involvement in joint inflammation
Rheumatoid arthritis
RA is a common autoimmune disease charac-
terized by inflammation of the synovial joints,
leading to cartilage degradation and bone
destruction, affecting approximately 1% of the
worldwide population. The first evidence that
suggested RA to be an autoimmune condition
originated from the association of RA with cer-
tain human leukocyte antigen (HLA)
subtypes [79]. Secondly, various autoantigens,
including rheumatoid factor and citrullinated
peptides, were found to be associated with sus-
ceptibility to, and severity of, RA [80,81]. Despite
multiple efforts, the precise role of HLA subtypes
and autoantigens in RA pathogenesis remains to
be elucidated. Nowadays, strong evidence shows
a pivotal role for activated inflammatory cells in
the initiation and perpetuation of the disease,
and it is now generally accepted that APCs are
key players in the pathogenesis of RA. The dis-
ease process of RA can be divided into several
stages. During the early stages, synovial cell pro-
liferation, infiltration of proinflammatory cells
and defects in apoptosis lead to synovial thicken-
ing. As the disease process develops, the inflamed
synovium invades the surrounding cartilage and
bone, leading to complete joint destruction.
Although the exact mechanism underlying RA
pathogenesis is still unknown, the involvement of
microorganisms has often been suggested. The

fact that DNA viruses, including Epstein–Barr
virus (EBV) [82], cytomegalovirus (CMV) [82] and
parvovirus [83], have been shown to be present in
RA synovium and fluid supports this hypothesis.
Likewise, several reports suggest the possible
involvement of bacterial products in the inflam-
matory circle of RA [84,85]. Although a direct link
between the presence of pathogens and RA has
not been demonstrated to date, the recent
identification of TLRs sheds new light on the
involvement of PAMPs in the articular
inflammatory response. 

Toll-like receptors in rheumatoid arthritis 
initiation & perpetuation
Interestingly, many animal models of arthritis
applied TLR agonists for the induction of arthri-
tis, long before TLRs had been identified. More
recent studies have substantiated a role for TLRs
in the initiation of experimental arthritis. For
instance, TLR2 was found to play an essential
role in the induction of streptococcal cell wall-
induced arthritis, since both TLR2-/- and
MyD88-/- mice demonstrated reduced signs of
inflammation compared with control mice [86].
In addition, TLR4-/- mice have been shown to be
less susceptible to collagen-induced arthritis [87],
and ST2, an endogenous TLR4 inhibitor, atten-
uates disease severity in the same animal model
[88]. Although informative, it should be realized
that these animal models are artificial and do not
provide an explanation for the role of TLRs in
the pathogenesis of RA in the human setting.

To determine whether TLRs are involved in
the initiation and/or perpetuation of RA in
humans is extremely difficult. It is particularly
complicated by the fact that the disease process
is likely to have started long before the onset of
symptoms, as demonstrated by the presence of
citrullinated auto-antibodies and inflamma-
tory markers. Nevertheless, a vast body of evi-
dence links TLRs to the pathogenesis of RA.
First, the expression of TLRs in synovial tissue
from RA patients is increased compared with
the expression found in osteoarthritis patients
or healthy controls [89]. Second, DCs from RA
patients are highly responsive to TLR ligands
and produce higher levels of proinflammatory
cytokines compared with control DCs [90].
Likewise, various groups have demonstrated
that triggering of selective TLRs results in an
increased production of chemokines in RA
patients [91]. Taking into account that TLRs
respond to endogenous danger signals, com-
bined with the general belief that a variety of
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those structures, such as HSPs, RNA from
necrotic cells and hyaluronic acid, are present
in the synovial compartment further supports
the involvement of TLRs in RA. In addition,
RA patients have high levels of circulating ICs
and it was recently found that binding of IC to
FcγRII can facilitate TLR7 and TLR9-medi-
ated B-cell activation [92,93], a mechanism that
is likely to function in DCs and macrophages as
well. Interestingly, activated pDCs, which
express both TLR7 and TLR9, are present in
high numbers in synovial tissue of RA patients.
However, pDCs isolated from synovial fluid
display a more immature phenotype [94], which
might be explained by the presence of ICs in
synovial fluid that can inhibit DC maturation
by binding to inhibitory FcR subtypes [95]. 

Is should be noted that activation of TLRs
on other cell types besides APCs can signifi-
cantly contribute to the inflammatory process,
as, for instance, synovial fibroblasts produce a
wide panel of chemokines, metalloproteinases
and cytokines upon activation with TLR
ligands [91,96,97]. It is tempting to speculate that
the increased TLR expression and sensitivity for
TLR ligands underlies both the pronounced
state of activation of synovial tissue APCs and
the high levels of pro-inflammatory mediators
found in both synovial tissue and fluid. In addi-
tion, since pro-inflammatory cytokines can
increase TLR expression, these circumstances
might lead to an inflammatory response with a
self-perpetual character and thereby contribute
to the chronicity of RA (Figure 3).

On another level, the use of association studies
has provided some additional information on the
role of TLRs in RA. The identification of the
TLR4 Asp299Gly variant, which decreases
responsiveness to LPS [98], enabled researchers to
determine the influence of TLR4 in RA.
Although earlier studies have failed to find an
association between this TLR4 polymorphism
and RA susceptibility [99,100], it was recently
found to be present in a statistically significant
lower frequency in RA patients [101]. However,
there was no association with disease severity.
These findings, although still requiring confirma-
tion by research in independent cohorts, would
suggest a role for TLR4 in the initiation, rather
than perpetuation, of RA. The contribution of
polymorphisms in other TLRs besides TLR4 has
not been subjected to similar scientific scrutiny. 

In conclusion, both animal models and
human studies have yielded evidence for a role
of TLRs in RA but have not identified the

precise contribution of TLRs to RA susceptibil-
ity and/or chronicity. Future research is war-
ranted to unravel the exact mechanism of
involvement and may lead to the potential
development of novel therapeutic interventions
to battle this disabling chronic disease.

NOD-LRR proteins & arthritides
The recent discovery of the clear association
between mutations in NOD2 and CD has
unleashed research to investigate the potential
role of NOD2 and other NOD-LRR proteins
in susceptibility to a variety of arthritic condi-
tions. To date, no association between muta-
tions in NOD2 and susceptibility to
RA [102,103], psoriatic arthritis [104,105] or anky-
losing spondylitis [106] has been established, and
the only clear association between NOD2 and
arthritis is found in BS [71,72]. By contrast, the
dramatic consequences of mutations in NALP3
in the previously mentioned autoinflammatory
disorders MWS, FCAS and NOMID open up
possibilities for currently unidentified role of
members of this protein family in other inflam-
matory disorders that might seriously affect the
joint. Recently, PBMC from patients with sys-
temic onset juvenile idiopathic arthritis
(SoJIA), a severe disease encompassing approxi-
mately 10% of all cases of arthritis that begin in
childhood, were found to release large amounts
of IL-1β upon activation [107]. IL-1RA adminis-
tration to a small group of SoJIA patients
resulted in complete remission in the majority
of subjects, indicating the essential contribu-
tion of IL-1β to this disease. Remarkably, the
efficacy of IL-1RA in these children is in sharp
contrast to that of blocking TNF [107]. A signif-
icant body of evidence from the clinic as well as
animal models has suggested IL-1β also plays a
crucial role in the pathogenesis of RA [108,109].
However, despite the promising results of
IL-1RA in SoJIA patients, the clinical effects of
IL1-RA in adult RA are currently less impres-
sive than these of TNF-α blockers [110–112]. To
date, no studies have been published that have
investigated the potential link between genetic
variations in NALP family members and RA
susceptibility. Although a number of NALPs
have been identified as inflammasome compo-
nents, it is not currently known whether other
NALP family members also form these inflam-
matory caspase activating platforms. Further-
more, it is likely that many exogenous and
endogenous NALP activators – and their
potential role in immune disorders – will be
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discovered in years to come. It is tempting to
speculate that future research in NALP biology,
and perhaps identification of novel mutations
in NALP encoding genes, will lead to new
insights into the pathogenesis of RA and other
arthritic conditions. 

Conclusion
In recent years, TLRs and NOD-LRRs have
unquestionably been identified as major
regulators of innate and adaptive immunity. In

addition, a vast body of data demonstrates
their involvement in the initiation and aggra-
vation of many immune disorders. Receptor
polymorphisms, recognition of self-compo-
nents and defective feedback mechanisms can
all contribute to the pathogenesis of disease. A
greater understanding of the exact activation
and regulation of these receptors, and their
signaling pathways could open up novel ave-
nues for therapeutic strategies to combat
autoimmune disorders.

Figure 3. Model of Toll-like receptor agonists as catalysts in the rheumatoid arthritis 
inflammatory processes. 

 

The mechanisms by which TLRs contribute the pathogenesis of rheumatoid arthritis (RA) are multifaceted. 
TLR activation of dendritic cell (DC) (3) is thought to be particularly important, since this leads to T-cell 
activation and often initiation of Th1 responses via release of IL-12. IFN-β release by Th1 cells can 
subsequently activate innate immunity, for instance macrophages (5), that produce high amounts of IL-1, 
TNF-α, IL-18 and MMPs. TLR ligation can also directly activate T-cells (4) and B cells (2), leading to 
increased cytokine production and the generation of high-affinity antibodies, respectively. TLR activation of 
fibroblasts (1) or osteoclasts (6) further results in release of pro-inflammatory cytokines, chemokines 
and/or MMPs. The mere presence of inflammatory mediators affects all the cell types present and further 
increases TLR expression. Collectively, the local inflammatory environment fuels the destructive processes 
into RA. Destruction in itself causes release of endogenous TLR agonist from damaged cartilage and bone 
(7), leading to a self-perpetuating loop of inflammation, which contributes to the chronic character of RA.  
IFN: Interferon; IL: Interleukin; MMP: Matrix metalloprotease; Th: T helper; TLR: Toll-like receptor;
TNF: Tumor necrosis factor.
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Future perspective
To date, a large body of evidence suggests the
involvement of TLRs in many inflammatory dis-
orders; therefore, they are attractive targets for
future therapies. Several strategies might be con-
sidered. One way of preventing TLR activation is
blocking ligand–receptor interaction via applica-
tion of specific monoclonal antibodies or TLR
antagonists. These latter compounds can be lig-
and analogs that bind TLRs, but do not initiate
signaling, or can interfere with ligand recognition
by inhibiting the physical association between the
ligand and accessory molecules [113,114]. However,
blocking antibodies or antagonists might not
inhibit binding of all recognized structures, owing
to different ligand binding sites. In addition,
binding sites of nearly all (endogenous) ligands
are still obscure, which severely impairs the use of
such antibodies in the clinic. Furthermore, the
exact TLR and TLR-associated pathways that
drive the inflammatory disorders remain to be
elucidated. Since TLR activation does not con-
sistently lead to induction of immunity, but can
also contribute to tolerance, this is particularly
important to determine. Until then, the use of
antibodies or antagonists holds the danger of
potentiating the inflammatory circle, rather than
restoring tolerance. 

Another way to prevent TLR activation would
be to inhibit downstream signaling molecules, by
using inhibitors of, for example, NF-κB or
MAPKs [115–118]. These compounds can reduce
proinflammatory cytokine production following
TLR ligation, and have been shown to alleviate
symptoms in several experimental animal models
of arthritis. However, it should be realized that
these compounds can severely impair the induc-
tion of immune responses that play a crucial role in
the prevention of infections. An alternative option
is to exploit one of the many endogenous inhibi-
tory pathways, since a deranged function of these
pathways could potentially underlie the chronic

character of many autoimmune diseases. Further
research characterizing the exact mechanisms of
immune regulation, and the potential contribution
of failing negative feedback to inflammatory disor-
ders, could lead to novel therapeutic interventions
aimed at restoring the delicate immune balance. 

Finally, stimulation of specific TLRs can
manipulate APC function, so that they gain
tolerogenic capacities. Vaccination of autoim-
mune disease patients with these tolerogenic
APCs could result in attenuation of symptoms
and/or restoration of the immune homeostasis.
Along the same line, repetitive triggering of DCs
via TLRs has been shown to abrogate their pro-
inflammatory capacity, supporting the idea that
the effect of TLR signaling in directing APC
behavior is heavily dependent on the timing,
combination and quantity of TLRs triggered. The
use of TLR-activated, immune-stimulatory DCs
has already shown promising results in the battle
against malignancies [119,120]. In the case of
inflammatory disorders, stimulation with
immunosuppressive compounds or cytokines
(e.g., vitamin D3, dexamethasone or IL-10) in
combination with TLR stimulation might be
more effective. Treatment with ex vivo instructed,
tolerogenic DCs requires a stable DC phenotype
that is not affected by the proinflammatory
environment these cells will encounter in vivo. 

Future research uncovering the exact mecha-
nisms of TLR and NOD-LRR activation, and
their feedback mechanisms, might be extremely
rewarding. Once a thorough understanding is
achieved, development of immune intervention
strategies targeting these molecules or their signal-
ing pathways could become powerful approaches
in the battle against immune disorders.
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Executive summary

Toll-like receptor function & signaling

• Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated 
molecular patterns (PAMPs) and endogenous danger signals.

• TLR ligation results in activation of diversified signaling pathways and a tailored immune response.
• Endogenous feedback mechanisms attenuate TLR signaling to prevent excessive inflammatory responses.

TLR expression & localization

• TLRs are expressed in various cells and tissues that form the interface between internal and 
external milieu.

• TLR localization within cells and tissues is aimed at instant recognition of pathogens, while minimizing 
the chance of response to self-components.
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Role of TLRs in adaptive immune responses

• Activation of different TLRs on dendritic cells regulates T-cell differentiation.
• Some pathogens have evolved to avoid TLR activation or exploit TLRs to induce immune deviation.

NOD-LRR protein family

• Nucleotide-binding oligomerization domain (NOD) leucine-rich repeat (LRR) proteins are intracellular 
proteins with a LRR domain similar to TLRs.

• NODs recognize different peptidoglycan moieties and synergize with TLRs for the production 
of cytokines.

• Specific NOD-LRR subfamily members are components of the inflammasome, which regulates 
interleukin (IL)-1β processing.

TLRs & NOD-LRRs in immune disorders

• Cooperation between TLR9 and FcγRIIa results in inflammatory responses against systemic lupus 
erythematosus (SLE) DNA-imunno complexes. 

• TLRs are important contributors to the intestinal inflammation in various mouse models.
• TLR and NOD2 polymorphisms are associated with increased susceptibility to Crohn’s disease.
• Mutations in NALP3 lead to a variety of autoinflammatory disorders. 

Involvement of TLRs & NOD-LRRs in arthritides

• TLRs contribute to joint inflammation in various animal models of arthritis.
• In humans, expression of TLRs in rheumatoid arthritis (RA) synovial tissue is increased.
• In RA, TLR activation on several cell types results in production of higher levels of cytokines 

and chemokines.
• The presence of inflammatory mediators and endogenous ligands in inflamed joints may lead to a 

self-perpetuating inflammatory loop, contributing to the chronic character of RA.

Future perspective

• Future research aimed at unraveling TLR and NOD-LRR activation and feedback pathways could 
contribute to the development of novel therapeutics to alleviate various immune disorders.

Executive summary
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