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Due to multiple factors, including their low incidence, heterogeneity and span 
of ages of affected patients, both osteosarcoma and Ewing’s sarcoma pose 
significant challenges to oncologists and patients. Despite these obstacles, 
significant progress has been made in the last 40 years in improving the 
survival of patients with localized osteosarcoma and Ewing’s sarcoma 
through multidisciplinary management. However, patients with primary 
refractory disease or disseminated disease fare poorly, emphasizing the 
need for novel therapies. Unfortunately, given their rarity, novel therapies for 
these tumors are difficult to rigorously trial. Current investigation is focused 
on identification of active targeted therapies in trials in patients with relapsed 
or refractory disease. Here we review the past, present and potential future 
clinical trials of systemic therapy in osteosarcoma and Ewing’s sarcoma.
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Osteosarcoma and Ewing’s sarcoma (EWS) represent the two most common pri-
mary bone malignancies in children and young adults [1]. These tumors have a peak 
incidence in the second decade of life; however, they can occur infrequently in very 
young or older patients. In children and adolescents, osteosarcoma most commonly 
arises in an extremity while EWS most commonly involves the extremities, pelvis 
and chest wall. Until the middle of the 20th century, local control by radical surgical 
resection (i.e., amputation) and radiotherapy were the only treatments available for 
these tumors. Although remission could occasionally be induced with surgery alone, 
relapse was nearly inevitable and overall prognosis was dismal, with survival rates of 
less than 20% for both tumors [2–4]. However, with the advent of cytotoxic chemo-
therapy in the 1950s and 1960s, rapid progress was made in prolonging survival in 
osteosarcoma and EWS patients by combining multi-agent chemotherapy with local 
control modalities. Currently, 5-year overall survival (OS) rates for patients with 
nonmetastatic disease exceed 60–70% in both osteosarcoma and EWS [5,6]. Despite 
these dramatic improvements, many patients still fare poorly due to the rare occur-
rence of primary refractory disease, relapse or the presence of distant metastases at 
diagnosis. Moreover, survival rates have remained largely unchanged over the past 
two decades despite active investigation [7]. Current clinical trials are mainly focused 
on identifying targeted therapies active against osteosarcoma and EWS.

Osteosarcoma
The annual incidence of osteosarcoma is approximately 5.4 and 4.0 per million for 
males and females, respectively [8]. It is the eighth most common pediatric malig-
nancy in the USA [8]. Most cases are sporadic and occur in the second decade of 
life – correlating with the pubertal growth spurt. However, osteosarcoma can arise 
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later in life in conditions characterized by chronic bone 
remodeling, including Paget disease of bone, hereditary 
multiple exostoses, enchondromatosis and fibrous dys-
plasia [8,9]. Osteosarcoma typically presents with pain, 
with imaging revealing a bone lesion or occasionally a 
pathologic fracture. Definitive diagnosis relies on tissue 
biopsy with histopathologic examination. At diagnosis, 
several clinicopathologic findings have been correlated 
with long-term survival. Factors negatively affecting 
prognosis at initial diagnosis include age greater than 
12 years, the presence of distant metastases, elevated 
serum alkaline phosphatase and lactate dehydrogenase, 
osteoblastic histology, and tumor volume greater than 
150 ml [10–12].

The past: development of modern methotrexate, 
doxorubicin and cisplatin chemotherapy for 
nonmetastatic osteosarcoma
Early studies investigating the role of chemotherapy in 
treatment of osteosarcoma were performed in patients 
with metastatic disease, which identified several chemo-
therapeutic agents capable of inducing tumor regres-
sion when used as monotherapy [13,14]. In an effort 
to decrease rates of relapse in patients with localized 
disease, investigation in the 1970s next examined the 
role of postoperative ‘adjuvant’ chemotherapy follow-
ing curative surgery. Three independent, single-arm, 
prospective studies using adjuvant chemotherapy (single 
agents or combination agents) for patients with localized 
disease markedly extended the 2-year disease-free sur-
vival (DFS) to 45–55% compared with 20% historically 
(Table 1) [15–17]. To definitively address the role of adju-
vant chemotherapy in osteosarcoma, two randomized 
trials were performed comparing surgery with adjuvant 
chemotherapy versus surgery alone, which both inde-
pendently verified the benefit of multi-agent chemo-
therapy in both disease-free and OS in patients with 
nonmetastatic osteosarcoma [2,18]. 

Current osteosarcoma chemotherapy protocols devel-
oped from studies of pre-operative ‘neoadjuvant’ (also 
known as ‘induction’) chemotherapy combined with the 
postoperative adjuvant ‘consolidation’ chemotherapy 
reported in the 1980s. Neoadjuvant chemotherapy is 
given with the dual aims of eradicating undetectable 
micrometastatic disease present at diagnosis (thought 
to be present in 80% of cases of osteosarcoma [19]) and 
decreasing the size of the primary tumor for improved 
local control to allow limb-sparing surgery. Neoadjuvant 
therapy also allows the option of tailoring postoperative 
treatment based on histologic response. 

Despite data suggesting that combined neoadjuvant 
and adjuvant chemotherapy may not improve survival 
compared with adjuvant chemotherapy alone [20–22], 
neoadjuvant chemotherapy has become the standard 

of care. Implementation of neoadjuvant chemotherapy 
protocols correlated with a marked increase in the pro-
portion of patients with localized osteosarcoma under-
going limb salvage surgery without a concomitant 
compromise in survival [20,23]. Indeed, with modern 
combined neoadjuvant/adjuvant chemotherapy, limb-
sparing surgeries are performed in over 90% of cases [24] 
compared with only approximately 25% of cases with 
adjuvant chemotherapy alone [20]. Although improve-
ments in staging and surgical technique likely contrib-
ute to these findings, these data indicate that when 
adequate surgical margins can be achieved, use of limb-
sparing surgeries following neoadjuvant chemotherapy 
does not seem to compromise survival compared with 
more aggressive surgery.

Modern first-line chemotherapy for localized osteo-
sarcoma consists of methotrexate, adriamycin (doxo-
rubicin) and cisplatin given pre- and postoperatively, a 
regimen termed methotrexate, doxorubicin and cisplatin 
(MAP). Early studies identified all three of these agents 
as possessing therapeutic activity against osteosarcoma 
[15–17,25,26]. Active drugs in osteosarcoma were subse-
quently studied in various combinations, culminating 
in the T-10 protocol utilized at Memorial Hospital (NY, 
USA). T-10 utilized high-dose methotrexate with leu-
covorin rescue (HDMTX) together with doxorubicin 
and the combination of bleomycin, cyclophosphamide 
and actinomycin D (BCD), with cisplatin added post-
operatively for poorly responsive patients, reporting  a 
5-year DFS of 76% [3,21]. Subsequently, the German 
Cooperative Osteosarkomstudiengruppe (COSS)-80 
and COSS-82 trials together demonstrated the essen-
tial roles of both doxorubicin and cisplatin as first-line 
agents in all patients with localized disease, while ques-
tioning the relative efficacy of the combination of BCD 
used in place of these drugs [27,28]. 

While studies have confirmed the central roles of 
both doxorubicin and cisplatin in treatment of osteo-
sarcoma [21], the role of methotrexate has been contro-
versial [19]. Although known to possess activity against 
osteosarcoma as adjuvant monotherapy [16], the inclu-
sion of methotrexate in multidrug protocols was 
called into question by the European Osteosarcoma 
Intergroup (EOI) in 1992. In this study, the combina-
tion of doxorubicin and cisplatin was reported to be 
equivalent to a similar regimen containing methotrex-
ate in OS; however, patients in the methotrexate arm 
received lower cumulative doses of doxorubicin and 
cisplatin [29]. Following this trial, the EOI conducted 
two separate randomized trials utilizing the same 
doxorubicin and cisplatin regimen as a control arm 
compared with either a HDMTX-containing multi 
drug T-10-like regimen or dose intensification and 
compression of doxorubicin and cisplatin [30,31]. While 
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neither of the investigational arms improved outcomes 
compared with the control cisplatin and doxorubicin 
arms, the EOI investigators noted that the doxorubi-
cin and cisplatin regimen utilized in these three trials 
has consistently yielded lower survival rates than those 
achieved in contemporary MAP-based trials [30–32]. 
The inclusion of HDMTX in first-line chemotherapy is 
further supported by the report that cumulative metho-
trexate dose correlates positively with prognosis, when 
combined with doxorubicin and cisplatin [33]. Several 
studies have investigated methotrexate dosing and 
pharmacokinetics as related to outcome, concluding 
that HDMTX is equivalent to moderate-dose metho-
trexate in terms of survival, but HDMTX is currently 
favored as it can be administered over a shorter time 
and with less overall toxicity when leucovorin rescue 
is effectively used [21,34,35]. The efforts of these many 
studies have culminated in the standard MAP regimen 
presented in Figure 1 [36].

The present: redrawing the MAP
Trials performed in the past two decades have focused 
on addition of other active drugs to the core MAP regi-
men, intensification of front-line therapy, or replacement 
of the most toxic drugs with those associated with less 
acute and long-term toxicity. The activity of ifosfamide 
and etoposide (IE) together or as single agents and in 
addition to MAP has been investigated. Small stud-
ies have demonstrated that these agents possess activity 
against metastatic, relapsed and refractory osteosarcoma 
[37–40]. However, despite their known activity in the 
metastatic setting, the addition of ifosfamide alone or 
together with etoposide to front-line AP or MAP in 
Phase II and III trials has failed to demonstrate a clear 
survival benefit, while inducing high rates of severe 
hematologic toxicity [5,41–44]. Thus, IE are not routinely 
utilized as standard first-line chemotherapy for non-
metastatic osteosarcoma.

IE may prove to be cornerstones of strategies to tailor 
chemotherapy to the tumor response. Analysis of trials 
utilizing neoadjuvant chemo-therapy have consistently 

observed that patients with a ‘good’ histologic response 
to chemotherapy (usually defined as tumor necrosis 
greater than 90% at resection) have superior survival 
outcomes compared with those with ‘poor’ responses 
[3,21,27,31,45,46]. These observations led to the use of alter-
native chemotherapy drugs postoperatively in tumors 
that showed a poor histologic response at resection, with 
the aim of increasing necrosis of any remaining viable 
tumor cells resistant to the pre-operative regimen [3]. 
An early study of this strategy at Memorial Hospital 
suggested that poor responders could be effectively sal-
vaged using this approach by adding cisplatin postop-
eratively [3]. However, independent studies using similar 
strategies failed to reproduce this effect [20,23,27,46,47] and 
longer-term follow-up with a larger cohort of patients 
on similar protocols at Memorial Hospital found that 
the benefit observed by altering postoperative chemo-
therapy was lost over time [21]. However, following the 
identification of the activity of IE against osteosarcoma, 
these drugs have emerged as promising potential sal-
vage agents for poor histologic responders. The OS-2 
and OS-3 prospective Phase II studies performed at 
the Rizzoli Institute demonstrated that addition of 
postoperative IE following MAP induction in patients 
with tumors showing poor histological response might 
improve survival in these patients [42,48,49]. Response-
based therapy using IE is currently under investiga-
tion as part of the ongoing randomized, Phase III 
EURAMOS-1 trial (Figure 2) [201]. 

Addition of a biologic agent to MAP has recently 
been explored. A multicenter, randomized Phase III 
trial has investigated the role of liposomal muramyl 
tripeptide phosphatidylethanolamine (MTP-PE) 
combined with front-line MAP in localized osteosar-
coma (the Children’s Cancer Group [CCG] and the 
Pediatric Oncology Group [POG] Intergroup Study 
0133 [IS-0133]) [5,32]. MTP-PE is designed to mimic 
the inflammatory response associated with deep tis-
sue infections that have been associated positively with 
long-term survival in osteosarcoma [7]. MTP-PE is 
derived from a peptidyl glycan present in both Gram-

positive and Gram-negative cell 
walls, which activates the cytotoxic 
activity of monocytes and macro-
phages to induce these cells to target 
osteosarcoma cells [9]. In the IS-0133 
trial, following MAP induction 
patients were randomized to receive 
MTP-PE or no MTP-PE in addi-
tion to standard postoperative che-
motherapy. This trial also examined 
the addition of ifosfamide to MAP 
with or without MTP-PE in a 2 × 2 
factorial design. Comparison of the 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29

A A A A A A
P P P P

M M M M M M MM MM MM

Surgery

Week

Figure 1. Representative scheme for methotrexate, doxorubicin and cisplatin regimen. 
Doses are expressed as cumulative dose per cycle. 
A: Doxorubicin 75 mg/m2; M: methotrexate 12 g/m2 (maximum 20 g/m2) for one dose; 
P: Cisplatin 120 mg/m2.  
Adapted from [36].
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treatment arms found that patients 
who received MAP with ifosfamide 
and MTP-PE had 72% 5-year event-
free survival (EFS), compared with 
64% in those patients only receiv-
ing MAP, suggesting a benefit of 
the two additional agents together. 
However, a positive interaction 
between ifosfamide and MTP-PE 
was postulated, since those patients 
who received MAP with ifosfamide 
had 56% 5-year EFS, suggesting 
that ifosfamide alone worsens 5 year 
EFS when added to MAP, while 
ifosfamide with MTP-PE added to 
MAP is beneficial [7,32]. At longer 
follow-up, by examining only the 
patients with localized, resectable 
osteosarcoma, a statistically sig-
nificant interaction of ifosfamide 
and MTP-PE was not observed, 
and a statistically significant ben-
efit of MTP-PE in OS was found 
(70% 6-year OS in patients not 
receiving MTP-PE compared with 
78% in those receiving MTP-PE, 
p = 0.03) [5]. Thus, MTP-PE may 
provide a benefit as an adjuvant 
agent in nonmetastatic, resectable 
osteosarcoma, although this conclu-
sion remains controversial partially 
due to the design of the study itself. 
Further studies are required to confirm the clinical util-
ity of this agent. If incremental benefit is confirmed, it 
will be critical to elucidate the population most likely to 
benefit, given the range and frequency of side effects as 
well as the potential costs on the global healthcare sys-
tem. [50,51]. At present, MTP-PE is available in Europe 
for treatment of osteosarcoma; however, this agent is 
not available in the USA, having not been approved by 
the US FDA.

Intensification of neoadjuvant chemotherapy has 
been investigated in several trials, including a random-
ized study comparing the T10 with the T12 protocol, 
which included additional courses of doxorubicin and 
cisplatin, where no advantage of the intensified T12 
protocol was observed [52]. The EOI performed a ran-
domized, Phase III trial comparing standard-dose doxo-
rubicin and cisplatin to dose compressed and intensified 
doxorubicin and cisplatin with granulocyte colony-stim-
ulating factor support. Although an increased rate of 
good histologic response was observed with the inten-
sified regimen, both 5-year OS and PFS did not differ 
between the arms [30]. 

Other studies, performed largely in pediatric 
patients, have examined substitution of MAP compo-
nents with the aim of reducing both short- and long-
term toxicities. The Phase II OS-91 and OS-99 trial 
performed at St Jude Children’s Research Hospital 
(TN, USA) demonstrated that substituting compo-
nents of MAP therapy with carboplatin and ifosfamide 
could decrease toxicity without compromising outcome 
[53,54]. The French SFOP OS94 study was a random-
ized trial that attempted to reserve the most toxic che-
motherapy agents for poor histologic responders. The 
trial compared HDMTX and doxorubicin (with IE 
added postoperatively for poor histologic responders) 
to HDMTX with IE (with doxorubicin and cisplatin for 
poor responders) in localized disease, with similar out-
comes reported for both regimens [55]. Taken together, 
these studies provide evidence that long-term toxicity 
of osteosarcoma chemotherapy could be potentially 
minimized. However, the validity of these protocols 
in supplanting current front-line strategies will likely 
require additional randomized trials comparing these 
regimens directly to MAP. 

Good 
response

Poor 
response

Randomize

Randomize

MAP × 4

MAP × 4

MAP × 4
IFN-α2b

MAP × 4
IE

MAP × 2 Surgery

Figure 2. EURAMOS-1 trial. Patients with resectable osteosarcoma (localized or metastatic) 
uniformly undergo induction therapy with MAP. Following surgery, histologic response to MAP 
induction is assessed. Good responders are randomized to either continue MAP or continue 
MAP followed by a 74-week maintenance period with IFN-a2b. Poor responders either 
continue MAP, or continue MAP with the addition of IE.  
IE: Ifosfamide and etoposide; MAP: Methotrexate, doxorubicin and cisplatin. 
Adapted from [217].
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Metastatic, refractory & relapsed osteosarcoma
Although significant progress has been made in treat-
ment of localized osteosarcoma, survival rates for 
metastatic disease remain poor [11,52]. The mainstay of 
treatment for metastatic disease is MAP. If resectable 
lung metastases are identified at diagnosis, first remis-
sion may be achieved by surgical removal of these foci 
at time of resection of the primary lesion [56]. As part 
of the IS-0133 trial, MTP-PE was investigated as an 
adjuvant agent in metastatic osteosarcoma, finding 
a nonsignificant trend toward benefit of MTP-PE in 
survival [11]. 

It has been estimated that 94% of osteosarcoma 
relapses occur within 5 years of diagnosis [57], with first 
remissions lasting longer than 2 years correlating with 
improved survival [58]. Surgery serves an essential role 
in relapse, as metastectomy of sites of pulmonary relapse 
alone can induce second and subsequent remissions, 
with an unclear benefit of adjuvant chemotherapy in 
such patients [58,59]. If second or subsequent remission 
cannot be achieved surgically, use of chemotherapy has 
been suggested to improve survival following first and 
subsequent relapses [58]. Phase II studies have reported 
that relapsed patients respond to the combination of 
IE either alone (48% response rate) or together with 
HDMTX (62% response rate) [37,60]. The regimen 
of ifosfamide, carboplatin and etoposide (ICE) was 
shown to have a response rate of 16% in recurrent and 
refractory osteosarcoma in a small Phase I/II trial of 
34 patients [61]. The combination of gemcitabine with 
oxaliplatin or docetaxel has also been reported to induce 
responses at low frequency [62,63]. 

The future: targeted therapies on the MAP
Current osteosarcoma trials are based on target-
ing the biochemical and genetic circuitry thought to 
regulate osteosarcoma pathogenesis and progression. 
Investigational agents include monoclonal antibodies 
targeting cell surface receptors expressed on osteosar-
coma cells and secreted cytokines, small molecules 
inhibiting key intracellular signal transduction proteins 
that control cell proliferation, survival, angiogenesis 
and bone turnover, and an exogenous cytokine that 
regulates osteosarcoma proliferation and differentiation 
(Figure 3) [64].

Expression of VEGF in osteosarcoma correlates 
with increased microvessel density in tumors, and 
is associated with poor response to neoadjuvant che-
motherapy, increased rates of pulmonary metastases, 
and poor DFS and OS [65,66]. Targeting this soluble 
growth factor has improved outcomes in other malig-
nancies [67]. St Jude Children’s Research Hospital is 
leading a Phase III trial designed to assess the safety 
and efficacy of bevacizumab, a monoclonal antibody 

that directly binds VEGF, combined with first-line 
chemotherapy agents (MAP for localized disease, 
with IE added for patients with metastases) for newly 
diagnosed localized and metastatic osteosarcoma [202] 
(Table 2). This strategy of the addition of anti-VEGF 
therapy to standard chemotherapy may be a promis-
ing avenue based on preclinical rationale. Expression 
of the IGF-1 receptor (IGF-1R) is associated with a 
poorly differentiated, highly proliferative phenotype 
in osteosarcoma cell lines [68]. A recently completed 
Phase II trial investigated the safety and activity of 
the anti-IGF-1R monoclonal antibody SCH 717454 
as monotherapy in relapsed, resectable osteosarcoma 
[203]. Cixutumumab, another monoclonal antibody 
targeting IGF-1R, is under investigation in children 
with relapsed solid tumors, enrolling patients with 
osteosarcoma [204]. The activity of a third anti-IGF-
1R monoclonal antibody, R1507, was investigated in a 
completed Phase II trial in recurrent or refractory sar-
coma, including osteosarcoma [205]. While preliminary 
results have shown only limited activity of anti-IGFR 
therapy thus far in osteosarcoma patients, combination 
strategies with other targeted agents or cytotoxics have 
shown promise preclinically and may be a promising 
path for further study [69–71].

Expression of the HEGF-receptor 2 (HER2) in 
osteosarcoma is associated with lower EFS compared 
with tumors that do not express HER2 [72]. The results 
are pending of a Phase II trial of methotrexate, doxo-
rubicin, cisplatin, IE with or without trastuzumab, a 
monoclonal antibody against HER2, for patients with 
metastatic osteosarcoma [206]. A recently completed 
Phase II trial assessed the activity of trastuzumab 
monotherapy in patients with recurrent osteosarcoma 
[207]. As the importance of HER2 in osteosarcoma has 
been quite controversial preclinically, these studies may 
definitively determine whether this strategy is worthy 
of further study.

Among small molecules undergoing trials for 
osteosarcoma, considerable interest has focused on 
the bisphosphonates, a class of drugs widely used 
for treatment of osteoporosis due to their activity in 
preventing bone resorption [73]. Extensive preclinical 
investigation has demonstrated antitumor activity of 
these agents against osteosarcoma cells in  vitro and 
in vivo, with apparent effects on both osteosarcoma cell 
growth directly as well as bone catabolism by inhibit-
ing the melavonate pathway and prenylation of small 
G-proteins [74,75]. This activity seems to synergize with 
first-line chemotherapy agents [74]. Bisphosphonates also 
possess antiangiogenic and antitumor immunomodula-
tory properties through stimulation of gd T cells [76,77]. 
A recent single-arm, prospective Phase II study exam-
ined combining the bisphosphonate pamidronate with 
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MAP, reporting 5-year EFS of 72% and OS of 93% for 
patients with localized disease, and 5-year EFS of 45% 
and OS of 64% in patients with metastatic disease [78]. 
These promising results should encourage further inves-
tigation of the role of bisphosphonates in osteosarcoma. 
Multiple Phase II and III trials investigating the activ-
ity of bisphosphonates in both newly diagnosed and 
relapsed osteosarcoma are ongoing [208,209].

Trabectedin (ecteinascidin 743, ET-743) is a tetrahydro- 
isoquinoline alkaloid isolated from the marine tuni-
cate Ecteinascidia turbinata (a sea squirt) proposed to 
exert cytostatic and cytotoxic effects through alkylation 
of guanine residues [79]. Preclinical investigation has 
demonstrated synergy between trabectedin and first-line 
chemotherapy agents in induction of osteosarcoma cell 
cytotoxicity. Moreover, trabectedin is active in osteo-
sarcoma cells resistant to methotrexate and cisplatin [80]. 
Trabectedin possesses limited activity against relapsed 
osteosarcoma when used as monotherapy, inducing 
minor responses in three out of 23 patients in a small, 
Phase II study [79]. A recently completed Phase II 
trial assessed the activity of trabectedin in metastatic 
osteosarcoma following conventional treatment [210]. 

Preclinical studies have identified the non receptor 
tyrosine kinase as a potential therapeutic target in 
osteosarcoma. Inhibition of Src activity in vitro inhib-
its osteosarcoma cell viability, and slows growth of 
osteosarcoma cell xenografts in immunodeficient mice 
in vivo [81]. The activity of the Src family kinase inhibi-
tor dasatinib against osteosarcoma cells has recently 
been confirmed using in vitro cell culture systems [82]. 
A trial has recently been completed assessing the safety 
and efficacy of dasatinib as a single agent in a cohort of 
patients with osteosarcoma [83] and in combination with 
ICE in recurrent or metastatic solid tumors in pediatric 
patients [211]. The final results of the single agent trial 
are pending, but preliminarily limited activity was seen. 
Another placebo-controlled, Phase II trial is testing the 
efficacy of the oral Src kinase inhibitor AZD0530 in 
preventing osteosarcoma recurrence following surgical 
removal of relapsed lung lesions [212]. 

A second signaling molecule, mTOR, is a target of 
investigational therapies in sarcomas [84]. mTOR regu-
lates cell response to growth factors and nutrient avail-
ability, and participates in intracellular signaling net-
works interacting with the protein products of several 

IFN
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Figure 3. Mechanism of action of selected anti-osteosarcoma therapies in Phase II and III trials. 
HER2: HEGF receptor 2; IFN: Interferon; IGF-1R: IGF-1 receptor; PDGFR: PDGF receptor.
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oncogenes [85]. Inhibition of mTOR signaling with rapa-
mycin decreases osteosarcoma lung metastases in mice 
[86]. Interestingly, bisphosphonates appear to sensitize 
osteosarcoma cells to the effects of mTOR inhibition 
[87]. Rapamycin analogs are currently being tested in 
clinical trials to assess their activity in osteosarcoma. 
A Phase II study showed some activity of AP23573, an 
mTOR inhibitor, in advanced sarcomas, but full results 
are pending [213]. A Phase I/II trial is testing the safety 
and efficacy of the rapamycin analog temsirolimus com-
bined with liposomal doxorubicin in recurrent sarco-
mas [214]. A third Phase II trial is assessing the efficacy 
of targeting both mTOR and IGF-1R through use of 
temsirolimus with cixutumumab in advanced sarcomas, 
including osteosarcoma [215]. 

Recent evidence suggests that the Notch signal-
ing pathway is implicated in osteosarcoma metastases 
and might provide a novel target in osteosarcoma [88]. 
Studies in other cancers have suggested that targeting 
this pathway may be a valid therapeutic approach and 
Phase I studies of multiple agents are underway [89].

The multikinase inhibitor sorafenib (BAY 43–9006) 
is under clinical investigation in osteosarcoma. 
Inhibiting the Raf kinases, KIT, FGF receptor-1, RET 
and PDGF receptor b (PDGFRb), sorafenib abro-
gates osteosarcoma cell proliferation and survival [90]. 
Sorafenib also acts as an antiangiogenic agent via its 
inhibition of VEGF receptor kinases [67]. A Phase II trial 
is currently recruiting to test the efficacy of sorafenib 
in preventing progression of osteosarcoma following 
relapse [216].

The endogenous IFN cytokines have been investi-
gated as therapeutic agents in osteosarcoma for several 
decades. IFNs modulate tumor progression both directly 
by inhibiting cell growth and differentiation and indi-
rectly by regulating angiogenesis and the antitumor 
immune response [91]. Preclinical studies have shown 
that IFNs inhibits osteosarcoma xenograft growth in 
nude mice [92]. Beginning in 1971, investigators at 
the Karolinska Hospital in Stockholm used adjuvant 
IFN-a for long-term maintenance therapy (duration 
of treatment ranging from 17 months to 5 years) fol-
lowing osteosarcoma resection without adjuvant chemo- 
therapy, reporting 10-year sarcoma-specific survival of 
43% at long-term follow-up, suggesting that IFN-a 
may be highly effective in maintaining remission [93]. 
In contrast, COSS-80 (Table 1) tested the addition of 
adjuvant IFN-b to postoperative chemotherapy versus 
chemotherapy without IFN in a randomized trial, and 
did not observe improvement in outcome with use 
of IFN-b [28]. However, as noted by the Karolinska 
investigators, both the dose used and the duration 
of treatment with IFN-b in the COSS-80 trial were 
much reduced than used in the Swedish series [93]. The 

potential benefits of IFN in combination with first-line 
chemotherapy are currently under further investigation 
in the EURAMOS-1 trial sponsored by the Children’s 
Oncology Group (COG) in the USA (Figure 2) [217]. 
In this Phase III trial, following MAP induction, good 
histologic responders are randomized to receive or not 
receive PEGylated IFN-a2b as long-term (74-week) 
maintenance following adjuvant chemotherapy [218]. 
Since patients who relapse within 2 years of entering 
first remission fare poorly compared with patients with 
longer remissions [58], maintenance strategies that pro-
long the first remission hold great potential in improv-
ing survival rates. Since the EURAMOS-1 trial antici-
pates accruing 2300 patients, significant insight into 
the activity of IFN-a2b in prolonging remission should 
be gained.

EWS
EWS is the second most common primary tumor 
of bone in young adults, diagnosed at an incidence 
of three per 1 million per year in white Caucasians, 
and occurring very rarely in individuals of African 
and Asian descent [94,95]. EWS affects approximately 
560 people in the USA per year [94] and accounts 
for approximately 40% of bone tumors in children 
and adolescents [96]. At diagnosis, the median age is 
15 years, and there is a 1.5:1 male: female ratio [95]. 
These statistics include the histologically and geneti-
cally similar Askin tumor of the chest wall and periph-
eral primitive neuroectodermal tumors of soft tissues, 
which together with EWS comprise the Ewing’s fam-
ily of tumors [97]. The malignant phenotype of these 
tumors is driven by proteins resulting from a stereotypi-
cal set of chromosomal translocations, most commonly 
the t(11;22)(q24;q12) generating the EWS-FLI1 fusion 
gene present in approximately 85% of EWS cases, 
although other fusion genes (usually involving EWS) 
can be present [98,99].

With modern multidisciplinary management, 
including chemotherapy, surgery and radiotherapy, 
patients with localized EWS can expect 5-year OS of 
approximately 70%, although this declines to 20–30% 
in metastatic disease [100]. Multiple reports have sug-
gested that age over 15 years, size greater than 8 cm 
or 200 ml, and the presence of distant metastases cor-
relates negatively with survival [100–107]. Other putative 
negative prognostic factors include male sex, elevated 
LDH at diagnosis, first remission less than 2 years, 
poor histologic response to neoadjuvant chemotherapy 
(defined as macroscopic viable tumor nodules remain-
ing after induction [108]), and axial primary tumor loca-
tion [100–102,104,108]. Site of metastasis is also associated 
with prognosis, with the presence of extrapulmonary 
metastases associated with lower EFS and OS compared 
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with isolated lung lesions [100,107]. Based on several prog-
nostic factors, risk-stratification schemes have been used 
in several trials [109,110].

VACA for localized EWS
Prior to the introduction of systemic chemotherapy to 
EWS therapy, treatment relied almost exclusively on local 
control modalities [4,111]. Since patients usually relapsed 
despite radical surgery, it was proposed that microme-
tastases were present in the majority of patients with 
grossly localized disease at diagnosis, and so adjuvant 
therapy was investigated [112]. In early trials of mono-
therapy with various chemotherapy agents, vincristine, 
cyclophosphamide and actinomycin D were observed to 
possess activity against EWS [113–116]. At the NCI, pro-
gressive combination of these agents together with radio-
therapy was trialed in patient series, observing marked 
improvement in outcomes [112]. In this study, the third 
combination of drugs used was vincristine, actinomycin 
D and cyclophosphamide – a regimen that has come to 
be known as VAC (Tables 3 & 4) [112].

In 1973, doxorubicin was shown to be an active agent 
against EWS [117], providing a fourth therapeutic drug. 
At Memorial Hospital, this was combined with VAC 
(the VACA regimen) and local radiotherapy in a small 
series of 12 patients, ten of whom had localized disease. 
At follow-up ranging from 10–37 months, all patients 
were disease-free [118]. The Intergroup Ewing’s Sarcoma 
Study (IESS)-1, commencing in the USA in 1973, was 
designed to assess the benefit of doxorubicin as part of 
adjuvant therapy in EWS. This randomized trial was 
comprised of three arms: VAC, VACA and VAC with 
bilateral pulmonary irradiation [119]. This trial reported 
superior DFS in the VACA arm compared with both of 
the other arms [120,121], confirming the importance of 
doxorubicin as an adjuvant drug and installing VACA 
as standard therapy for EWS. 

Neoadjuvant chemotherapy was proposed by Rosen 
and colleagues in 1978 with their T-6 protocol, which 
utilized an induction regimen of seven drugs (HDMTX, 
actinomycin D, cyclophosphamide, doxorubicin, bleo-
mycin, 1,3-bis [2-chloroethyl]-1-nitrosurea and vincris-
tine) followed by surgery, radiation or both for local con-
trol, and then consolidation with the T-2 protocol [122]. 
Of 28 patients with localized EWS treated with T-6, 
82% were reported disease free at 12–46 months [123]. 
The neoadjuvant approach was also examined in the 
Cooperative Ewing’s Sarcoma Study (CESS)-81, where 
93 patients with localized EWS received two cycles of 
VACA as induction, followed by local control, and then 
two more cycles of VACA consolidation therapy. 6-year 
DFS in this trial was 55% [124]. The strategy of using 
VACA induction and consolidation has been further 
validated in the First Ewing’s Tumour Study (ET-1) trial 
from the Children’s Cancer Study Group (UKCCSG) 
and the EW88 trial from France [104,125]. 

Current investigation: modern VACA-IE, 
risk stratification & dose intensification in 
localized EWS
Although the development of neoadjuvant VACA com-
bined with multidisciplinary local control resulted in 
a marked improvement in outcomes in EWS, many 
patients with localized disease still relapsed. Early tri-
als reported that ifosfamide with or without etoposide 
could induce responses in EWS patients [40,126]. This 
led to the addition of IE to EWS treatment regimens. 
The REN-2 study performed at the Rizzoli institute did 
not show a benefit of adding IE to VACA (VACA-IE) as 
compared with historical controls who received VACA 
alone in patients with localized disease [127]. In contrast, 
the British ET-2 trial and studies at Memorial Hospital 
and the NCI all supported the addition of ifosfamide 
in patients with localized disease, warranting further 
investigation in front-line therapy [125,128–130]. 

In 1988, the CCG and POG in the USA opened 
protocol INT-0091, a Phase III, randomized trial com-
paring VACA or VACA alternating cycles with IE in 
EWS [131]. A total of 398 patients with localized EWS 
were enrolled. 5-year EFS was 54% with VACA and 
69% with VACA-IE (p = 0.005), indicating a significant 
improvement in outcome with the inclusion of IE in 
front-line therapy [131]. As a result of this study, VACA-
IE-based protocols have become the standard of care for 
localized EWS in the USA (Figure 4).

Multiple studies have attempted to risk-stratify 
patients based on established prognostic factors in 
EWS, with more aggressive treatment reserved for 
‘high-risk’ patients. One trial utilizing such a strategy 
was CESS-86, which recruited patients with localized 
EWS in Western Europe from 1986 to 1991. Patients 

Table 3. Chemotherapy regimens in Ewing’s sarcoma.

Regimen Components

VAC Vincristine, actinomycin D and cyclophosphamide

VACA Vincristine, actinomycin D, cyclophosphamide and 
doxorubicin

VAIA Vincristine, actinomycin D, ifosfamide and doxorubicin

IE Ifosfamide and etoposide

VDC Vincristine, doxorubicin and cyclophosphamide

EVAIA Etoposide, vincristine, actinomycin D, ifosfamide and 
doxorubicin

VIDE Vincristine, ifosfamide, doxorubicin and etoposide

VAI Vincristine, actinomycin D and ifosfamide

Bu-Mel Busulfan and melphalan
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with tumors larger than 100 ml or 
located at axial sites were classified 
as ‘high-risk’ and received VAIA, 
and patients with smaller, periph-
eral tumors were classified as ‘stan-
dard risk’ and received VACA. At a 
median study period of 133 months, 
10-year EFS did not differ between 
the two strata [105], suggesting that 
high-risk patients benefited from 
incorporation of ifosfamide in place 
of cyclophosphamide, supporting 
the concept of risk-stratified therapy.

The CESS and UKCCSG study 
groups merged as the Intergroup 
Cooperative Ewing’s Sarcoma 
Studies (EICESS). The Phase III 
EICESS-92 randomized trial aimed 
to determine if survival would be 
adversely affected by substitut-
ing the presumably more toxic 
ifosfamide for cyclophosphamide. 
Standard-risk patients (def ined 
as localized tumors smaller than 
100 ml) were randomized to either 
VAIA or VACA consolidation fol-
lowing VAIA induction and local 
control. High-risk patients (tumor 
larger than 100 ml or the presence 
of metastases) were randomized to 
either VAIA or VAIA with etopo-
side (EVAIA) for both induction 
and consolidation [109]. Among 
standard-risk patients, 3-year EFS 
rates were nearly identical between 
the arms; however, unexpectedly, 
VACA was associated with higher 
rates of toxicity compared with 
VAIA [109], supporting the use of 
ifosfamide in localized EWS [132]. 
Among high-risk patients, differ-
ences in EFS between the VAIA 
and EVAIA consolidation arms 
were nonsignif icant, although 
interpretation of these data is 
challenging due to the hetero- 
geneity of the patients included 
in the high-risk stratum. Among 
high-risk patients without metas-
tases, there seemed to be a trend 
toward a benefit of EVAIA (3-year 
EFS HR: 0.80; 95% CI: 0.58–1.09; 
p = 0.18) [109], potentially supporting 
a benefit of etoposide. Ta
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Risk-stratified therapy for EWS was also investi-
gated in the European Ewing tumor Working Initiative 
of National Groups Ewing Tumor Studies (EURO-
EWING)-99 trial (Figure 5) [219]. Three distinct risk 
strata have been defined based on histologic response 
to induction chemotherapy, the presence of metasta-
ses and the site of metastases [133,134,219]. Following 
induction with vincristine, ifosfamide, doxorubicin 
and etoposide (VIDE), patients with localized disease 
with a good histologic response were randomized to 
complete eight cycles of vincristine, actinomycin D 
and ifosfamide (VAI), or one cycle of VAI followed 
by seven cycles of VAC, while patients with a poor 
histologic response were randomized to seven cycles of 
VAI or one cycle of VAI followed by high-dose therapy 
with busulfan and melphalan (Bu-Mel) with autolo-
gous stem cell support [133]. Results from the arms of 
the trial including patients with localized EWS are 
not yet published.

Intensification of front-line regimens has been 
investigated in the preceding decades. Intensification 
of VACA in localized, nonpelvic EWS was tested in 
the IESS-2 trial where these drugs were administered 
either as a ‘moderate-dose continuous method’ or a 
‘high-dose intermittent method’. Significantly improved 
5-year DFS was reported in the high-dose intermittent 
arm (68 vs 48%; p = 0.02) [135]. The REN-3 prospec-
tive, single-arm trial of 157 patients at the Rizzoli 
Institute utilized intensified induction chemotherapy 
compared with the regimen used in the REN-2 trial, 
reporting a 5-year EFS of 71% compared with 54% in 
REN-2 [127,136]. Five-drug induction analogous to that 
utilized in REN-3 has become the standard in modern 
EWS chemotherapy. The POG-CCG designed protocol 
INT-0154, a randomized Phase III trial comparing a 
standard-dose schedule VDC-IE with the same drugs 
given in a dose-intensified schedule. No statistically 

significant difference in 5-year EFS was observed 
between the treatment arms, although the intensi-
fied arm was associated with higher rates of toxicity 
and secondary solid tumors [137]. On the other hand, 
preliminary results of the COG AEWS0031 study, a 
Phase III, randomized study wherein patients receive 
cycles of VDC-IE every 2 or 3 weeks, suggest that 
intensification of this regimen through interval com-
pression improves 3-year EFS, especially for certain 
subsets [138]. Therefore, future therapy for EWS may 
employ intensified, compressed regimens.

Metastatic & relapsed EWS
Despite the progress made by several intergroups work-
ing in parallel to improve survival rates in localized 
EWS during the latter half of the 20th century, this 
progress did not translate to significant improvement in 
the prognosis of primary metastatic EWS, with 5-year 
OS remaining approximately 30% [139,140]. The two 
large, Phase III, randomized trials performed during the 
1990s – EICESS-92 and INT-0091 – included patients 
with metastatic EWS. The EICESS-92 trial reported 
no difference in EFS between the VAIA or EVAIA 
arms among patients with metastases within the high-
risk stratum (3-year EFS HR: 0.96; 95% CI: 0.67–
1.39; p = 0.84), suggesting no benefit of etoposide in 
metastatic EWS [109]. In the INT-0091 trial, among 
120 patients with metastases, no benefit was observed 
when comparing outcomes of patients with metastases 
who received VACA-IE compared with VACA (8-year 
EFS was 20% for both arms) [141]. The POG/CCG 
investigated intensification of VDC-IE in 110 patients 
with metastatic EWS in a Phase II study (9457), and 
reported 24% 2-year EFS, concluding that the intensi-
fied regimen provided no overall benefit compared with 
INT-0091 [142]. Based on the results of the INT-0091 
and 9457, VACA is a commonly used front-line regimen 
for metastatic EWS in the USA.

Another area of study in metastatic EWS has been 
high-dose therapy [143–145]. Recent trials utilizing 
this strategy have reported mixed results. The CCG 
reported a Phase II trial of induction with VDC-IE 
and consolidation with melphalan, etoposide, total 
body irradiation with autologous stem cell support 
in 32 patients with EWS metastatic to bone and/or 
bone marrow. The investigators reported 2-year EFS 
of 20% [146]. Oberlin et al. investigated consolidation 
with high-dose Bu-Mel with autologous stem cell sup-
port in 97 patients with primary metastatic EWS. This 
approach achieved 52% 5-year EFS in patients with lung 
metastases only, 36% in patients with bone metastases 
only, and 4% in patients with bone marrow involve-
ment [147]. The EURO-EWING-99 trial (Figure 5) uti-
lized consolidation with Bu-Mel in 281 patients with 
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Figure 4. Example VDCA-IE schema (also known as VACA-IE schema). 
Therapy begins with VDC, alternating with IE, with cycles every 3 weeks. 
Local therapy typically occurs after week 12. After cumulative doxorubicin 
dose reaches 375 mg/m2, VDC cycles are replaced with VAC.
Doses are expressed as total dose per cycle. 
A: Actinomycin D 1.25 mg/m2; C: Cyclophosphamide 1200 mg/m2; 
D: Doxorubicin 75 mg/m2; E: Etoposide 500 mg/m2; I: Ifosfamide 9 g/m2; 
V: Vincristine 1 mg/m2. 
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primary disseminated multifocal EWS in the highest-
risk arm. 3-year EFS with this regimen was reported 
as 27%. However, by identifying negative prognostic 
factors in this large patient cohort (tumor larger than 
200 ml, age over 14 years, greater than one focus of 
bone metastasis, bone marrow involvement, and lung 
metastases), the investigators reported that patients 
with three or fewer of these high-risk factors had a 
50% 3-year EFS [134]. Therefore, these recent studies 
indicate that high-dose consolidation strategies may 
benefit patients with metastases only to lung and the 
subset of patients with disseminated EWS with few 
‘high-risk’ features. It should also be noted that local 
control via surgery or radiotherapy or a combination 
of these modalities with chemotherapy provides benefit 
even in patients with primary, disseminated, multifocal 
EWS [148,149]. 

Relapse of EWS following remission occurs in 
30–40% of patients and is associated with a poor 
prognosis, with 5-year postrecurrence survival esti-
mated to be less than 20%, with fewer than 15% of 
patients achieving a second remission [150–152]. Factors 
negatively impacting postrecurrence prognosis include 

recurrence less than 2 years after initial diagnosis, 
elevated LDH at initial diagnosis, and local and meta-
static disease at first recurrence [153]. Several second-
line therapies for relapsed or primary refractory EWS 
have been investigated, although few have been tested 
in Phase II or III trials. A therapeutic window was 
designed in the POG/CCG 9457 Phase II study to 
examine the response to topotecan alone or combined 
with cyclophosphamide in primary metastatic disease, 
with 21/37 patients having a partial response to the 
combination [142]. In a separate report of 49 evaluable 
patients with relapsed or refractory EWS, 16 showed a 
partial response to topotecan and cyclophosphamide 
[154]. The combination of carboplatin, etoposide and 
cyclophosphamide was shown to induce response in 
26% of patients with relapsed and refractory EWS in 
a small trial of 39 patients [155]. A Phase II study using 
high-dose ifosfamide (15 g/m2) as salvage therapy in 
previously treated EWS patients reported 12 out of 
35 patients with response, with two patients having 
a complete response [156]. Temozolomide plus irinote-
can has induced responses in four out of 16 and 12 
out of 19 evaluable patients in two retrospective series 

R1 and R2:
localized or

lung metastases

R3:
bone, bone marrow,

multifocal metastases

VIDE
×6

VIDE
×6

Local treatment

Localized disease, 
good response

Localized disease,
poor response,

lung metastases

Randomize

VAI × 1,
VAC × 7

VAI × 8

VAI × 7

VAI × 1,
Bu-Mel

VAI × 1, 
high-dose chemotherapy

Randomize

Figure 5. EURO-EWING-99 schema. EURO-EWING-99 uses a risk-stratification scheme where patients with localized disease or lung 
metastases are assigned to R1 and R2, which both undergo induction with VIAE. Following local therapy, good histologic responders 
are randomized to receive either one cycle of VAI and seven cycles of VAC or eight cycles of VAI (R1). Poor histologic responders or 
patients with lung metastases are randomized to seven cycles of VAI or one cycle of VAI followed by Bu-Mel with stem cell support. 
Patients with nonlung metastases or multifocal disease undergo induction with VIAE, local therapy, one cycle of VDI, followed by 
high-dose therapy.  
A: Actinomycin D; Bu: Busulfan; C: Cyclophosphamide; D: Doxorubicin; E: Etoposide; I: Ifosfamide; Mel: Melphalan; V: Vincristine. 
Adapted from [133].
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[157,158]. The combination of gemcitabine and docetaxel 
was reported to induce three complete responses and 
one partial response in a series of six pediatric patients 
with relapsed or refractory EWS [159]. Taken together, 
these studies have identified several active salvage regi-
mens; however, response rates are variable and are not 
consistently observed. 

Current investigational therapies in EWS
Several studies are currently investigating novel thera-
pies for EWS based both on prior preclinical research 
and clinical trials (Table 5) [64,110]. In vitro studies have 
shown that targeting EWS-FLI1 by antisense strategies 
can abrogate the undifferentiated malignant phenotype 
of EWS cell lines [160], demonstrating that EWS-FLI1 
is a potential therapeutic target. However, this target-
ing technique is not readily translatable to the clinical 
setting. Moreover, EWS/FLI1 acts as an intracellular 
transcription factor, which would likely prove to be an 
elusive target for therapies due to its lack of catalytic 
activity [161]. Thus, direct EWS/FLI1 transcriptional 
target genes, proteins that collaborate with EWS/FLI1 
to drive the malignant phenotype, or proteins that 
regulate EWS/FLI1 levels or activity may prove to be 
optimal targets for novel therapies. Although efforts 
employing this strategy have thus far yielded little suc-
cess [161,162], other therapeutic strategies targeting pro-
teins driving the EWS malignant phenotype are under 
active investigation.

Expression of IGF-1R is required for transformation of 
fibroblasts by EWS/FLI1, and IGF-1R signaling induces 
growth of EWS cell lines [163,164]. Therapy directed 
against IGF-1R can inhibit EWS cell growth in vitro 
and in xenografts [165–167]. Promising responses were 
observed using an anti-IGF-1R antibody (AMG 479) 
in patients with previously treated EWS in a Phase I 
study [168]. A Phase I study of the anti-IGF-1R antibody 
figitumumab treated 16 patients with EWS in an expan-
sion cohort. Two patients had an objective response and 
six patients had stable disease [169]. Additional Phase II 
studies have been completed and have been reported in 
abstract form with variable response rates, but approxi-
mating 10% [220,221]. There is a clear signal that target-
ing this pathway is clinically important for a subset of 
EWS patients. Unfortunately, we have yet to identify 
the patients who may benefit, the optimal drug and 
schedule, and ways to avert drug resistance. Both the 
biological rationale and the clinical experiences of tar-
geting IGF-1R in EWS and other sarcomas are reviewed 
extensively elsewhere [170,171].

Inhibition of mTOR activity in EWS cells inhibits 
cell motility downstream of IGF-1R signaling [172]. 
Treatment of EWS cell lines with rapamycin down-
regulates EWS/FLI1 protein, induces an EWS/FLI1 

‘off ’ gene signature, and inhibits EWS cell proliferation 
[161,173,174]. In a Phase I trial of the mTOR inhibitor 
deforolimus, a patient with advanced, refractory EWS 
exhibited a partial response [175]. A Phase I/II trial 
of temsirolimus with liposomal adriamycin in recur-
rent sarcoma is currently recruiting patients [222]. A 
Phase II study testing the combination of IGF-1R and 
mTOR inhibition in relapsed or refractory sarcoma is 
also ongoing [223].

Intracellular signaling cascades regulating EWS cell 
function can be targeted through the use of kinase 
inhibitors. The Src kinase inhibitor dasatinib inhibits 
EWS cell growth [176], and is currently being used in 
a Phase I/II trial in combination with ifosfamide, car-
boplatin and etoposide in advanced pediatric cancers, 
including EWS [219]. A Phase II trial is assessing the 
efficacy of dasatinib as monotherapy in advanced sar-
comas [224]. However, preliminary results of this trial 
showed no benefit in advanced EWS [83]. The kinase 
inhibitor sunitinib inhibits the PGDF and VEGF recep-
tors, FLT3 and KIT, and inhibits EWS cell line growth 
as xenografts. A Phase II trial was recently completed 
assessing the effect of sunitinib in advanced and recur-
rent sarcomas, including EWS [225]. Results of this trial 
are pending.

An ongoing trial is assessing antiangiogenic thera-
pies in EWS. Expression of EWS/FLI1 in fibroblasts 
induces expression of VEGF [177,178], and VEGF deple-
tion inhibits EWS tumor growth in  vivo  [179–181]. 
Moreover, patients with EWS have elevated serum 
levels of VEGF [182,183]. The activity of bevacizumab 
was recently tested in recurrent or refractory EWS in a 
Phase II trial coordinated by COG. Patients were ran-
domized to receive either chemotherapy with vincris-
tine, topotecan and cyclophosphamide or these agents 
together with bevacizumab [226]. Results of this trial 
have not yet been published.

Expression of EWS/FLI1 induces gene expression 
programs that markedly shift cellular phenotype from 
a normal, highly differentiated cell to that of a prolifera-
tive, invasive, poorly differentiated cell [160]. Immune 
therapies are based on the premise that these deranged 
tumor cells could be recognized as abnormal, foreign 
cells by naive leukocytes from healthy donors. Multiple 
Phase II trials are testing the validity of transplanting 
allogeneic stem cells or specific leukocyte subpopula-
tions from healthy donors in advanced solid tumors, 
including EWS [227–229].

Both front-line and salvage cytotoxic chemotherapy 
regimens are also under active investigation. Given its 
activity against EWS [142,154], COG is coordinating a 
multicenter, Phase III trial assessing the role of topote-
can in front-line therapy regimens for EWS. Patients 
are randomized to receive either VAC-IE or VAC-IE 
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incorporating cycles of vincristine, topotecan and 
cyclophosphamide in place of some VAC cycles [230]. 
EURO-EWING-99 examined two different consolida-
tion regimens in patients with localized EWS and good 
histologic response to VIDE induction (Figure 5). 

Given the poor prognosis of metastatic EWS, several 
trials are addressing front-line induction regimens and 
consolidation with high-dose therapies. EWING 2008 
is a randomized trial that uses a similar risk stratifica-
tion scheme to EURO-EWING-99 designed to assess 
the role of high-dose therapy in conjunction with auto-
logous stem cell reinfusion in patients with high-risk 
disease. Other arms of the study examine the use of 
fenretinide and/or zoledronic acid to chemotherapy in 
standard risk patients [219]. 

Future perspective
With the advent of chemotherapy in the middle of the 
20th century, great progress was made in prolonging the 
previously dismal long-term survival of patients with 
osteosarcoma or EWS. Modern multidrug neoadjuvant 
chemotherapy regimens evolved from innovative, com-
plementary clinical trials that progressively prolonged 
OS in nonmetastatic osteosarcoma and EWS to nearly 
70% by the turn of the millennium. However, this prog-
ress has impacted survival in metastatic and relapsed 
disease to a much lesser extent. Due to the rarity of these 
tumors, it is difficult to efficiently accrue patients for 
rigorous, randomized trials testing novel therapies, and 
so trials are often small, not randomized, and require 
decades to complete. 

Despite the relatively stable survival rates in osteo- 
sarcoma and EWS in the past decade, preclinical 
research on the biology of these tumors has begun to 
elucidate the signaling networks that drive tumor pro-
gression, presenting novel candidates for therapeutic 
intervention. Many early trials using highly targeted 
therapies against these molecules have produced 

promising results. Several ongoing trials are testing the 
activity of small molecules and antibodies inhibiting 
signaling pathways crucial for tumor cell proliferation, 
survival, and metastasis that, when used therapeutically, 
should cause reduced systemic toxicity compared with 
conventional cytotoxic chemotherapy. In the study of 
these novel targets and agents originally identified in the 
laboratory (e.g., anti-IGF-1R antibodies, mTOR inhibi-
tors and bisphosphonates), it will be critical to incor-
porate well-designed correlates in order to identify the 
patients most likely to benefit. It is clear that targeted 
therapy is only of benefit in a relatively small subset of 
patients treated in the relapsed, refractory setting. In 
order to progress, we must understand when (front-line 
vs relapsed), why (biologic basis for the target), what 
(most effective agent in class) and how (optimal drug 
schedule) to use a novel agent in the patient popula-
tion most likely to benefit. This will only come with 
collaborative translational and clinical efforts. Current 
agents being evaluated include anti-IGF-1R therapy 
and mTOR inhibition in EWS, and bisphosphonates 
and antivascular agents in osteosarcoma, while further 
investigation into potential agents such as PARP inhibi-
tors and notch inhibitors are warranted. With further 
study of these agents in combinations as well as the 
identification of new agents, it is hopeful that the cur-
rent plateau in outcomes for osteosarcoma and EWS 
patients will rise again.
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Executive summary

 ■ Front-line therapy of osteosarcoma and Ewing’s sarcoma (EWS) requires multidisciplinary treatment modalities, including surgery, 
neoadjuvant and adjuvant combination chemotherapy, and radiotherapy in select cases.

 ■ Significant progress has been made in improving survival in localized osteosarcoma and EWS; however, the prognosis for primary 
metastatic and relapsed disease remains poor.

 ■ Front-line chemotherapy for localized and metastatic osteosarcoma includes methotrexate, doxorubicin and cisplatin.
 ■ Front-line chemotherapy for localized EWS includes vincristine, doxorubicin, cyclophosphamide, actinomycin D, ifosfamide 
and etoposide.

 ■ Patients with metastatic EWS are typically treated with vincristine, doxorubicin, cyclophosphamide and actinomycin D. High-dose 
chemotherapy with stem cell support as consolidation continues to be under investigation and may prove to be beneficial for 
patients with widely disseminated EWS.

 ■ The EURAMOS-1, EURO-EWING-99 and EWING 2008 trials should provide significant insight into front-line therapeutic strategies 
for osteosarcoma and EWS.

 ■ Current trials are investigating several targeted therapies for osteosarcoma and EWS in relapsed or refractory disease. The most 
promising agents may be trialed in combination with front-line therapies in future clinical trials.
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