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“…there is ample evidence that IFN-a is overproduced by many patients with active 
SLE … and may have direct effects…”
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Clinical applications of IFN-a blockade in systemic 
lupus erythematosus

The immune system relies on a wide variety of 
cytokines for controlling infections, and also 
for dampening the inflammatory reaction in 
order to avoid excessive tissue damage. Among 
these cytokines, those of the type I interferon 
(IFN) family are essential mediators of anti
virus defense [1]. In fact, the type I IFNs were 
detected as a result of their protective effects 
against established viruses infecting more cells. 
Thus, for many years, IFN-a2a and -2b have 
been successfully used in the therapy of chronic 
viral hepatitis  [2]. In addition, its blockade of 
cell proliferation, proapoptotic effects [3] and 
anti-angiogenic properties have led to the use 
of IFN-a in melanoma patients [4]. However, 
under such therapy, autoimmunity is not 
uncommon [5,6] and viral infections associated 
with IFN release can lead to flares of auto
immune diseases [7]. This involvement of IFN-a 
in immuno–inflammatory events makes it an 
interesting target in rheumatology.

All type I IFNs use the same receptor, con-
sisting of the IFN-aR1 and -R2 chains [8,9], 
which bind to the Janus kinases, Jak1 and 
Tyk2, respectively, for transducing their sig-
nals  [10,11]. By contrast, IFN-g, the single type 
II IFN, employs Jak1 and Jak2 for its signal 
transduction. While the pathway of IFN-g ends 
in the phosphorylation of serine and tyrosine 
and subsequent nuclear localization of dimers 
of signal transducer and activator of transcrip-
tion (STAT) 1, IFN-a mainly induces forma-
tion of a heterotrimer of STAT1 and STAT2 
with IFN regulatory factor-9 [12]. In addition, 
IFN-a induces the phosphorylation of STAT4 
dimers, which play an important role in enabling 
IFN-g production [13,14], and leads to the pres-
ence of phosphorylated STAT1 dimers in macro
phages [15]. These transcription factors directly 
lead to the various effects exerted by IFNs.  

There is signif icant evidence that some 
of these effects are problematic in systemic 
lupus erythematosus (SLE). The therapeutic 

application of type I IFN, but also IFN-g, may 
provoke drug-induced lupus [16,17]. Moreover, 
mouse model data suggest an influence of type I 
IFNs on lupus [18], even though IFN-g appears 
to be predominant in the mouse [19]. How could 
this happen? There are several pieces of evidence 
that may help us to understand these effects. 
First, IFNs lead to cell death, both by preparing 
them for apoptosis and by stimulating killer 
cells. In SLE, dead cells may not be sufficiently 
removed [20], thus exposing the body to an over-
load of autoantigens [21]. Second, IFNs activate 
dendritic cells, which can then effectively pres-
ent these autoantigens [22]. Third, IFNs may 
also keep autoimmune T cells alive and promote 
antibody production by B cells. 

In contrast with their proposed role in 
lupus pathogenesis, type I IFNs are normally 
produced when cells become infected with 
a virus and they contribute to an effective 
host response. Intracellular viral RNA binds 
intracellular RIG  I-like helicases, activat-
ing IFN regulatory factors and NF-kB [23]. 
Alternatively, Toll-like receptors of uninfected 
dendritic cells, which detect viral RNA or 
DNA in their endolysosomes, induce the same 
signaling events [24] that lead to potent type I 
IFN induction [25]. Indeed, in the peripheral 
blood, plasmacytoid dendritic cells are the 
main producers of IFN-a [26]. 

In SLE there is an abundance of immune 
complexes containing DNA and/or RNA. Like 
viruses, these immune complexes can trigger 
Toll-like receptors, inducing IFN-a produc-
tion as well as the production of other cyto-
kines such as TNF [27]. Along this line, there is 
ample evidence that IFN-a is overproduced by 
many patients with active SLE [28–30] and may 
have direct effects, as evidenced by changes in 
mRNA patterns [31–33] and by increased expres-
sion of STAT1, which itself is an IFN-dependent 
gene  [34]. Thus, type I IFNs likely constitute 
a positive feedback loop in SLE pathogenesis, 
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wherein viral infection and immune complexes 
induce IFNs, the effects of which increase the 
amount of available autoantigen, foster the pro-
duction of affinity-maturated autoantibodies 
and make IFN signaling even more effective.

Accordingly, one would expect to see bene
ficial effects of therapeutic interference with 
this feedback loop by means of blocking the 
type  I  IFN receptor or (presumably several) 
type  I IFNs. Indeed, such an approach has 
been used in patients with SLE [35,36]. In a first 
safety trial, the anti-IFN-a monoclonal anti-
body MEDI-545 dampened the IFN signature 
in a dose-dependent way, not only in peripheral 
blood but also in skin samples [36]. Moreover, 
other proinf lammatory molecules, such as 
TNF, were likewise down-modulated, which 
is consistent with the idea of interrupting a 
feedback loop. Compared with placebo, this 
approach appeared to reduce both overall SLE 
activity, as measured by the SLE disease activ-
ity index, and the number of SLE flares  [35]. 
Most importantly, no obvious safety signals 
were reported [35].

“…safety will have to be monitored very 
carefully in longer term therapy and with 

particular vigilance with regard to 
virus infections…”

Therefore, IFN-a blockade is being tested in 
controlled clinical trials in SLE [101], and given 
the similar lines of evidence, it will also be 
tested in polymyositis/dermatomyositis [37–39]. 
Such trials will ultimately prove or disprove 
this concept. However, for the time being, 
there is some room for educated guessing: 
given that subsets of patients display the clas-
sical IFN signature, one would expect these 
patients to be more likely to respond to IFN 
receptor blockade. In view of the association 
of type I IFN levels with disease activity, one 

might also argue that a type I IFN blockade 
would probably diminish activity rather than 
cure the disease. Under these circumstances, 
type I IFN receptor blockade may be an inter-
esting option, along with other agents, in 
treating severe lupus flares or in maintaining 
remission following flares.

On the other hand, safety will have to be 
monitored very carefully in longer term therapy 
and with particular vigilance with regard 
to virus infections and even tumor surveil-
lance. While blockade of both the type I and 
type II IFN systems would likely show dramatic 
effects in this regard [40,41], incomplete block-
ade of type  I  IFN is probably more benign. 
Nevertheless, both severe acute and chronic 
virus infections could cause problems, and it 
remains to be seen how much IFN blockade is 
feasible from this perspective.

In conclusion, the type I IFN system is a 
plausible target for therapeutic blockade for the 
treatment of severe SLE, and probably for auto-
immune myositides treatment as well. Clinical 
trial data are still very limited, but there is hope 
that this concept will realize success as a feasi-
ble and effective therapy for some patients with 
a severe SLE flare or ongoing moderate activity 
associated with evidence of IFN pathway acti-
vation. Even after efficacy and safety have been 
secured, there is a need for a more profound 
understanding of the exact pathophysiological 
processes that involve IFNs. 
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