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CD4+ T-cell subsets in rheumatoid arthritis

Evidence for roles of T cells in 
rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic inflam-
matory disease of the joints that results in dis-
ability and premature mortality [1–3]. Its exact 
pathogenesis remains uncertain. However, auto-
immune processes appear critical as evidenced by 
major histocompatibility complex linkage [4,5], 
the presence of circulating auto antibodies (rheu-
matoid factor, anticollagen antibodies and more 
recently anti-citrullinated peptide antibodies 
[ACPA]) and the infiltration of the synovial tissue 
with lymphocytes often arranged in aggregates or 
forming ectopic germinal center-like structures 
[6,7]. In the 1980s, this evidence led to a model 
in which T cells orchestrate the local inflamma-
tory response with an arthrogenic agent (virus, 
bacterial or autoantigen) stimulating T cells 
to expand locally, activating the local environ-
ment (fibroblasts and endothelial cells) to recruit 
other immune cells (B cells and macrophages) 
[8]. The idea that synovitis was an antibody-
mediated process was abandoned in the 1990s 
in favor of a multiple cell type-mediated model 
involving antigen-presenting cells, B and T cells 
with a major role for macrophages. Notably at 
this time evidence emerged for the presence of 
macrophage-derived products in the joint, while 
it was more difficult to detect T cell-derived cyto-
kines [9,10]. A few years later, and increasingly, 
accumulating evidence points to a major role for 
synovial fibroblasts [11,12]. 

The original ‘T-centric paradigm’ however, 
also presented a number of difficulties. The 
model centers on activated T cells, but in RA, 
infiltrating T cells appear predominantly inac-
tive [13]. As a result of autoantigen stimulation, 
synovial T cells should be clonal. Although 
T cells specific for autoantigens have been 
isolated from the joint [14–16], polyclonality is 
more often observed [17,18]. T cell-derived cyto-
kines should be produced at the disease site 
and although some T cell cytokines are present 
they are not in abundance and are actually pro-
duced by non-T cells [9,19]. Combined with the 
failure to identify a common antigen (either 
native antigen, neo-antigen released during 
inflammation or an infectious agent) and the 
lack of IL-2 production [9], this evidence led 
to the concept that T cells in RA have only a 
‘passive or irrelevant role’ [13]. It remains dif-
ficult to resolve these competing schools of 
thought and the role of T cells may be more 
crucial in the initial phases of RA whereas the 
evidence for a T-cell primacy in established, 
chronic synovitis remains more controversial, 
suggesting that disease duration may indeed 
be a major factor. The characterization of par-
ticular states of T-cell differentiation such as 
Treg and, more recently, Th17 cells may help 
to elucidate the roles of T cells in RA. In this 
review, we will discuss work on the general 
features of T cells in RA and in more detail, 
CD4+ T-cell subsets.

The exact pathogenesis of rheumatoid arthritis (RA) remains uncertain, however, autoimmune processes 
appear critical. In the past decades, several models implicated T cells at different levels; however, recent 
genetic advances have clearly indicated a role for T cells, maybe somehow limited to autoantibody 
positive disease. Processes involved in aging seem to occur early in RA and deviation from normal 
physiological pathways such as repertoire diversification, signaling, differentiation, polarisation or 
regulation also characterized T cells from RA patients. Despite such evidence, T-cell targeted therapies 
did not appear to be particularly successful with the exception of costimulation blockade, the reasons 
for this failure remaining unclear. Importantly, T-cell subsets demonstrated interesting biomarker features 
that remain to be investigated in relation with early diagnostic, prognostic and prediction of treatment 
response.
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General features of T cells in rA
�n Genetic susceptibility

Heritability in RA has been estimated at approx-
imately 60%, with similar results in ACPA-
positive and ACPA-negative disease [20]. The 
association between susceptibility to develop RA 
and the inheritance of several human leukocyte 
antigens (HLA) class II alleles, that are involved 
in the presentation of antigens to T cells, is well 
established [21]. Indeed, the HLA-DRB1 genes 
have shown their importance in RA suscep-
tibility, notably for the DR1 and DR4 alleles 
carrying the now well-known ‘shared epitope’ 
amino acid motifs that share common biochemi-
cal properties and was shown to facilitate RA 
development and progression [22]. The contribu-
tion of the HLA genes to the overall genetic risk 
in RA has been estimated to range from 30 to 
50% [23,24].

Recent genome-wide association studies, sug-
gested a list of approximately 30 loci associated 
with RA in addition to gender [25–27]. However, 
the individual contribution of any one of these 
genes is very small and combined they contribute 
to less than 5% of the variance. Several loci are 
implicated in T-cell responses (PTPN22, CD2 
and STAT4) and cross-talk between T cells and 
other immune cells (CD40, CD28, CTLA4 
chemokines and receptors) [28,29], strongly sug-
gesting a genetic influence involving T cells 
independently and in addition to the HLA genes 
in RA susceptibility. A gene–gene interaction 
between two polymorphisms of the TNF recep-
tor (TNF-R) superfamily, TNFRSF14 and 
TNFRSF6B has also been demonstrated [30]. 
Interestingly the TNFRSF6B protein is involved 
in the modulation of T-cell activation and dif-
ferentiation and its ligand is overexpressed in 
RA synovium. Finally, a role for IL-12 in RA 
susceptibility has more recently been proposed. 
IL-12 is an inducer of IFN-γ production and is 
involved in driving T cells towards Th1 polariza-
tion. There was no direct association between 
IL-12 gene polymorphisms and RA [31–33] how-
ever, associations were reported with polymor-
phisms in the signal transducer and activator of 
the transcription 4 (STAT4) gene, which encodes 
a transcription factor involved in the signaling 
pathways of IL-12 and IL-23 [34].

�n T-cell aging & RA
Aging of T cells limits their ability to proliferate 
through telomere shortening. It has been a major 
limitation in immune reconstitution following 
high-dose chemotherapy in cancer [35], an issue 
that is now being addressed by supplementation 

of IL-7 post-therapy to increase T-cell develop-
ment. An unexpected consequence of T-cell 
depleting therapies in RA was prolonged periph-
eral blood lymphopenia, mostly affecting the 
CD4+ subset, for up to 7 years following both 
depleting mAb therapy [36,37] or autologous 
stem cell transplantation [38–40]. Although the 
implications of these findings remain uncertain, 
it was remarkable that these patients did not 
suffer increased mortality or infectious/malig-
nant complications despite prolonged CD4+ 
T-cell lymphopenia [37]. One possible explana-
tion may be that peripheral blood analysis was 
misleading and central lymphoid tissues were 
relatively unaffected. Alternatively, chronic 
exposure to inflammation may have impaired 
the ability of the RA immune system to recon-
stitute. Accelerated T-cell aging combined with 
telomeric shortening has however been associ-
ated with autoimmune responses, notably in 
RA [41,42], and RA CD4+ T cells specifically 
exhibit premature aging, as evidenced by a 
shortening of their average telomere length [43]. 
Aging of the immune system is also associated 
with a progressive loss of responsiveness, result-
ing in increased mortality and morbidity. Such 
age-associated changes have been attributed 
to both T and B cells, and is often associated 
with chronic low-grade inflammation (termed 
‘inflamm-aging’) [44]. Both naive and memory 
T cells in RA displayed poor homeostatic prolif-
eration in response to lymphopenia and this was 
the main factor limiting reconstitution. Using 
measurement of T-cell receptor excision circles 
[45] and analysis of T-cell subset differentiation 
(naive and memory cells [46]) we confirmed that 
the cause of prolonged lymphopenia in RA was 
not related to thymic deficiency. In RA indeed, 
the thymus has an intact reserve although it 
exhibits a very slow and diminished response to 
lymphopenia [47]. We associated these deficien-
cies with an RA-specific lack of IL-7 response 
to lymphopenia [47]. To date, the mechanism 
by which this response is lost remains unclear 
however we have hypothesized that exposure to 
TNF-a may have a negative effect on produc-
tion of circulating IL-7 as shown for stromal cells 
in the bone marrow [47].

�n T-cell repertoire distortion in RA
Significant distortions of the T-cell receptor 
(TCR) repertoire were reported in RA [17,48]. 
Usage of TCR β-chain sequences in CD4+ 
T cells in healthy individuals shows high diver-
sity with all sequences used. In RA patients 
however, certain β-chains showed tenfold higher 
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usage whereas others were absent, suggesting 
marked contraction [48]. Such dominant clono-
types, preferentially utilizing V-β 3, 14 and 17, 
were identified in the synovial fluid CD4+ T-cell 
repertoire suggesting further local clonal expan-
sion [17]. Similar usage of V-β was reported for 
CD8+ T cells [49,50]. However, this phenomenon 
was not restricted to the memory compartment 
but also observed in the naive CD4+ T-cell rep-
ertoire [48] suggesting abnormalities in the gen-
eration of the repertoire rather than shaping of 
the repertoire by antigen-driven proliferations. It 
was proposed that these alterations were imposed 
by the HLA-DRB1 allele itself, its expression 
resulting in the preferential selection of certain 
V-β segments and also J-β elements in healthy 
controls [51,52]. This imposes a particular rigidity 
on the TCR molecule and contributes to shaping 
of both naive and total CD4+ T-cell repertoire 
whereas responses to antigen encountered in the 
environment mostly add shaping to the memory 
T-cell repertoire. Clone frequencies also varied 
independently of each other, suggesting active 
stimulation by several antigens.

�n Abnormal signaling
RA patients have an increased vulnerability to 
infections and malignancies, particularly malig-
nancies of the immune system [1,53]. Although 
some of this immune dysfunction may be attrib-
utable to immunosuppressive therapy and non-
specific effects of chronic disease, there is also 
evidence implicating intrinsic disease factors. For 
example, T-cell Ca2+ responses from RA patients 
were globally reduced with a large proportion of 
cells not responding at all [54]. Antigen stimu-
lation-mediated proliferation was also reduced. 
However, the surface expression of TCR (CD3) 
was not altered suggesting abnormalities down-
stream of the cell surface signal acquisition, 
specifically the tyrosine phosphorylation of 
the TCR-ζ chain and phosphorylation cascade 
between LAT and Zap70 [55,56]. Furthermore, 
RA synovial T cells, despite evidence of previ-
ous activation (memory phenotype), showed 
hyporesponsiveness to mitogen stimulation 
compared with blood and hardly produced any 
cytokines [57]. This later defect was associated 
with a deficit in redox-regulating enzyme (glu-
tathione) [56,58]. Chronic exposure of T cells to 
TNF-a also inhibits signaling through the TCR 
[59]. Anti-TNF therapy in RA patients however, 
reverses some of these in vivo and in vitro defects, 
most notably the TCR [59] and calcium signaling 
[37,60]. Abnormal RAP1 signaling during TCR 
stimulation was also reported in RA synovial 

T cells [61,62] and restoration of RAP1 signaling 
in the collagen-induced arthritis model suggested 
potential therapeutic benefit [63]. 

A mouse model with spontaneous develop-
ment of arthritis by 6–7 months of age has 
brought further evidence that dysregulated 
T-cell signaling may give rise to arthritis [64,65]. 
In this model, the gp130 signaling chain shared 
by several cytokine receptors (including IL-6, 
IL-11, LIF, oncostatin M and others) was 
mutated (gp130F759/F759) in order to enhance 
signaling, bypassing a negative feedback loop 
by which phosphorylation of a tyrosine in posi-
tion 759 would attenuate gp130 signaling. These 
mice are born normal but develop a phenotype 
associated with activated T cells, sustained 
activation of JAK-1 and STAT-3 (even in the 
absence of IL-6), the presence of autoantibodies, 
as well as the perturbation of thymic selection 
allowing auto-reactive T cells to escape selec-
tion. CD4+ T-cell proliferation was necessary 
for the development of arthritis [66] and memory 
T cells were also predominant and hyper-reactive 
to lower levels of stimulation [64]. The develop-
ment of the disease was shown to be dependent 
on CD4+ T cells but also on cytokine (but not 
necessarily IL-6) signaling through gp130 in 
non hematopoietic stromal cells [66]. Conditional 
inhibition of STAT3 activation in stromal cells 
in these mice resulted in specific downregulation 
of IL-7 production but had no effect when per-
formed in lymphoid cells. Anti-IL-7 antibodies 
were sufficient to abrogate both T-cell prolifera-
tion and disease development. In another mouse 
model, the SKG-ZAP70w163c mice, also develop 
spontaneous arthritis with synovitis, autoanti-
bodies and bone and cartilage erosion [67]. In 
this model however, T cells were hyporespon-
sive and thymic selection was perturbed allowing 
specific selection of arthritogenic T cells. With 
a lower threshold of signal being required to 
develop Th1 response, these T cells appeared 
to be activated by cytokines expressed locally in 
the synovial environment rather than by anti-
gens, although, thymic alteration of the develop-
ment of regulatory mechanisms (Treg, naturally 
occurring Treg) was also invoked to explain how 
hyporesponsive T cells could be responsible for 
the development of disease.

T-cell subsets in rA
�n Naive & memory subsets

One of the main characteristics of the immune 
system is its ability to develop memory over time. 
With aging, existing naive T cells are preserved 
through slow turnover and long lifespan [58,68], 
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however the thymus slowly loses its ability to 
produce new naive cells (notably illustrated in 
[46]). The breadth of the naive T-cell repertoire 
is therefore slowly reduced with consequences 
for older individuals in both their ability to 
respond to new antigen stimulation and vac-
cination, and a predisposition to cancer [69]. 
Conversely, cumulative exposure to foreign 
pathogens and environmental antigens promotes 
the accumulation of memory T cells with age 
[70]. Isoforms of the tyrosine phosphatase CD45, 
along with expression of a number of other cell 
surface markers are frequently used to distin-
guish ‘naive’ from ‘memory’ T cells. Classically, 
CD45RA expression declines following activa-
tion of naive CD45RA+ cells, with a concomi-
tant rise in the expression of CD45RO. In RA, 
this classic differentiation model is perturbed 
and double-positive CD45RA+/CD45RO+ are 
present [46]. L-selectin (CD62L) is another clas-
sic naive T-cell marker (CD45RA+CD62L+) 
with homing for lymph nodes. In RA, CD62L is 
lost on a subset of CD45RA+ cells [46], however, 
these cells remain naive with respect to antigen 
stimulation [46] but express chemokine receptors 
for trafficking to sites of inflammation [71]. We 
hypothesized that this is the result of cytokine 
activation of naive T cells enabling the need for 
an antigen to be bypassed [68,72].

CD27, a member of the TNF-R family, 
is expressed on naive T cells, and is gradu-
ally switched off in effector/memory cells [73]. 
CD27 expression distinguishes two subsets 
of CD4+ CD45RO+ memory T cells: effector 
cells CD27-, displaying a high antigen recall 
response and a resting population CD27+ or 
central memory population, lacking antigen 
recall response, and requiring costimulation for 
re-activation [74]. This central memory popula-
tion, identified using the alternative phenotype 
CD45RO+CD45RA+CD62L+ is lost in RA [46]. 
CCR7 (CD197) is a chemokine receptor medi-
ating trafficking of lymphocytes between sec-
ondary lymphoid organs [75]. CCR7 is expressed 
on the vast majority of naive peripheral blood 
T cells that also express CD27 and CD62L 
[76]. In RA, naive and memory T cells express 
abnormal chemokines receptor patterns in rela-
tion with inflammation and inflamed tissue 
homing [71].

�n CD28null subset
CD4+CD28null T cells are oligoclonal lym-
phocytes rarely found in healthy individuals 
younger than 40 years of age, but more fre-
quently observed in the elderly and in patients 

with chronic inf lammatory diseases. They 
are the most consistent biological indicator of 
immune aging in humans and predict immune 
incompetence [77]. Contrary to paradigm, 
CD4+CD28null T cells are terminally differ-
entiated effector memory cells, expressing phe-
notypic markers for tissue infiltration and dam-
age [78]. They are functionally active and persist 
because of altered responses to apoptosis-induc-
ing signals, notably Fas-mediated apoptosis [79]. 
These CD4+CD28null T cells form large and 
long-lived clonal populations, with potent effec-
tor memory functions with regard to their pro-
liferation and cytokine-secretion profiles (pro-
ducing high levels of IFN-γ notably), exhibiting 
autoreactivity and cytolytic activity representing 
a functional specialization for killing [18,80,81]. 

Large expansions of CD4+CD28- T cells 
have been reported in the blood of a third of 
RA patients [80,82]. However, only when patients 
are cytomegalovirus seropositive [83]. Such cyto-
megalovirus reactivity was most prominent 
in patients with low reactivity to other tested 
autoantigens, suggesting that they may not 
play a direct role in autoimmune disease [78]. 
The frequency of CD4+CD28null T cells cor-
related with extra-articular involvement (nod-
ules), but not with disease duration or severity 
of joint destruction [80]. These cells were how-
ever excluded from the joints in most patients 
[80]. The repertoire of CD4+CD28null cells in 
RA was also grossly skewed with the presence 
of expanded clones, with a dominant usage of a 
single V-β 14 element [81,84]. The fact that this 
marked oligoclonality of CD4+CD28null T cells 
was specific to RA patients initially suggested 
a pathogenic role for these cells. However, the 
preferential use of V-β 14 may more likely reflect 
the general HLA shaping of the T-cell repertoire 
in RA [84]. 

Killer Ig-like receptors (KIRs; KIR2DS2, 
KIR2DL2 and KIR3DL2) are expressed on 
CD4+CD28null T cells in RA [85–87] bridging 
functions of the innate and adaptive immune 
systems. KIRs were successively acquired 
within each CD28null clone following the ini-
tial clonal expansion [88]. Increased frequency 
of CD4+CD28- cells in RA patients was also 
associated with evidence of atherosclerotic 
changes including arterial endothelial dysfunc-
tion and carotid artery wall thickening [89]. 
CD4+CD28null T cells express functional IL-12 
receptor. Costimulation in the presence of IL-12 
restored the expression of a functional CD28 
as well as CD25 and CD40L in RA in  vitro 
[90]. Finally, TNF-a was shown to induce the 
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transcriptional silencing of the CD28 gene sug-
gesting a direct link between inflammation and 
development of CD28null cells.

�n CD57+ T cells
Increased frequency of CD3+ T-cell popula-
tions expressing the accessory molecule CD57 
was observed in patients with acquired immune 
deficiency syndrome [91]. CD3+CD57+ T cells 
are present in normal individuals and expand 
during aging. They show a distinct phenotype 
of advanced differentiated memory cells. The 
same clonal expansion was observed in both 
CD57+ and CD57- cells suggesting a common 
origin, which was also evidenced by a similar 
clonal T-cell cytokine profile (for IL-2, IL-4 and 
IFN-γ) [92]. Most CD3+CD57+ T cells are CD8+ 
T cells (80%) but CD4+CD57+ T cells are also 
present [93].

In RA patients, CD57+ T cells are found in 
blood, joint fluid, synovial membrane and bone 
marrow [94]. Their frequency in blood corre-
lated with disease duration and presence of a 
significant population of CD4+CD57+ cells was 
also associated with the presence of rheumatoid 
factor [95]. CD4+CD57+, but not CD8+CD57+ 
T-cell frequency correlated with some measures 
of disease activity such as erythrocyte sedimen-
tation rate [96]. CD4+CD57+ cells in RA pres-
ent a restricted repertoire, suggesting a strong 
antigenic pressure in selecting clones expressing 
CD57 [95], in contrast to the TCR V-β usage 
of the CD8+CD57+ population which was 
restricted to the common RA repertoire [97]. A 
third of CD3+CD57+ T cells produced IFN-γ, 
whereas only approximately 3% produced IL-4 
in RA [96]. Expression of CD28/CD57 on 
T lymphocytes is often reciprocally related [83]. 
In contrast to CD28null cells, CD57(+) T cells 
showed a greater susceptibility to apoptosis due 
to an increased production of active caspase-3, 
an increase expression of Fas and Fas-ligand 
(FasL) as well as CD3-ζ level but a loss of sur-
vivin [98]. CD3(+)57(+) cell leukemia is frequently 
observed in RA [94].

Cd4+ T-cell polarization
Innate immunity responds to pathogenic 
microbes in a nonantigen-specific manner and 
does not result in immune memory. Adaptive 
antigen-specific immunity occurs in a second 
phase, orchestrated by dendritic cells present-
ing antigen to naive T cells. Naive T cells then 
undergo polarization towards different cell sur-
face and cytokine expression patterns. This is 
achieved by programmed alterations of gene 

expression regulated by structural changes in 
chromatin (T-bet for Th1 and GATA3 for Th2) 
Although an over-simplification, the Th1/Th2 
paradigm remains useful to understand pro-
gression along the road of T-cell differentiation 
particularly when the maintenance and irrevers-
ibility of these CD4+ states is not challenged [99] 
as opposed to the Th17 state (see below, [100]). 
The nature and strength of the costimulation 
signal delivered by dendritic cells also drives 
T cells towards immunity or tolerance by deliv-
ering polarizing or tolerizing molecules promot-
ing effector or suppressive responses [101]. The 
sequential generation and balance of effector 
T-helper subset cells (of the Th1, Th2 and more 
recently of the Th17 types) and Treg is central to 
the development of autoimmunity. In an animal 
model of experimental lineage determination 
from a naive T-cell population, IL-17 production 
occurs first followed by a decline associated with 
the appearance of IFN-γ-producing Th1 cells. 
Regulatory T cells appeared during the recov-
ery phase of the disease [102]. Autoimmunity 
was suggested to predominantly relate to Th1 
cells and the production of IFN-γ [103] how-
ever, IFN-γ was shown to be protective in other 
models of autoimmunity. TNF-a was found to 
enhance Th1 polarization by acting on IL-12 
production in antigen-presenting cells and the 
expression of the IL12R on T cells [104].

�n Th1/Th2 polarization in RA
The profile of cytokines expressed in the joints of 
RA patients is predominantly a Th1 profile. Th1 
cell frequency and IFN-γ production are elevated 
in RA and remain so in clinical remission and 
following anti-TNF therapy [70,105]. This suggests 
a Th1-driven disease resulting from an imbalance 
between Th1 and Th2 cells and hence insuffi-
cient Th2 to downregulate inflammation. T-cell 
clones derived from RA blood cells were mainly 
of the stable CD4+Th1 type [106], whereas, the 
few CD4+ Th2 and CD8+ T-cell clones produced 
were unstable and shifting back to Th0 and Th1 
or cytotoxic T cells (Tc1 and Tc2) respectively, 
suggesting incomplete commitment towards 
either subset. 

Despite compelling evidence for RA being a 
Th1-driven disease, defective Th1 polarization 
in RA has also been reported. In vitro differen-
tiation of the T cells of early RA patients (treat-
ment naive) into either Th1 or Th2 revealed no 
alteration in the pattern of secreted cytokine, 
however severe impairment in differentiation 
was observed [107]. Th1 cells mostly produced 
IFN-γ with reduced IL-2 production and very 
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few double-positive IL-2/IFN-γ cells. Expression 
of T-bet mRNA was positively correlated with 
IFN-γ levels, but negatively correlated with 
C-reactive protein levels [108], and IFN-γ pro-
duction from RA patients’ blood cells was sig-
nificantly reduced [109]. IL-18 was able to rescue 
this phenotype in synovial T cells but not in 
the blood. This suggests that in RA, a polar-
ized Th1 immune response may be present in 
the synovium but is suppressed in the peripheral 
circulation. 

IL-7 is another important cytokine for the 
early events leading naive T cells towards Th1 
polarization [110,111]. We have associated low 
levels of circulating IL-7 with reduced thymic 
T-cell development and T-cell function in the 
periphery of RA patients [112,113]. High levels of 
IL-7 were also directly correlated with higher 
levels of IFN-γ but not TNF-a, TGF-β or IL-2 
[114]. Using the expression between T-bet and 
GATA3 as surrogate measures of Th1 polariza-
tion, we also showed that IL-7 levels were sig-
nificantly associated with T-bet but not GATA3 
expression, suggesting that the peripheral Th1 
polarization impairment in RA may possibly be 
related to low levels of circulating IL-7. On the 
other hand, Th2 polarization of naive T cells 
from RA patients showed no impairment [115]. 
However polarization conditions required the 
provision of exogenous IL-4 compared with 
healthy controls. Animal models have also shown 
that TNF-a favours the development of Th1 
cells [104]. However, more recent work suggests 
it can do the same for Th17 cells. Neutralizing 
anti-IL-12 antibodies in the collagen-induced 
arthritis (CIA) model, before the onset of arthri-
tis did not lower the incidence of arthritis, but 
dramatically attenuated the severity of the dis-
ease [116] associated with reduced IFN-γ, TNF 
and IL-6 levels. Blocking of TNF in CIA mice 
also showed efficient inhibition of disease [117], 
however a synergy with IL-12 blockade showed 
a greatly enhanced effect. In contrast, repeated 
administration of IL-4 to the CIA model resulted 
in a shift of the Th1/Th2 balance and signifi-
cantly delayed onset. This did not affect severity 
of disease, but a decrease in TNF-a secretion by 
synovial cells was observed [118] suggesting that 
IL-4 works by downregulation of Th1 responses 
rather than upregulation of Th2 responses.

�n Th17 polarization
Over the past 5 years, a considerable amount of 
interest has been raised in the immuno logical 
community about new polarization subsets. 
CD4+ T cells that preferentially produce IL-17A 

and IL-17F can be generated as a separate lin-
eage, now termed Th17 [33,68,119]. Consequently, 
further subsets preferentially expressing par-
ticular cytokines were discovered (see below). 
Th17-secreting cells express the RORγt as a 
key transcription factor for their differentiation 
[120]. They were initially discovered in mice and 
later explored in humans. However, while the 
presence of Th17 was demonstrated in vivo in 
humans, their relevance to health and disease 
pathogenesis is only just being understood [101]. 
In addition to their contribution to host defense 
against extracellular bacteria and fungi [121], they 
are also thought to be pivotal in the development 
of autoimmune diseases such as RA under patho-
logic conditions [94,121–129]. Major differences 
exist between murine and human Th17 cells, 
most notably with respect to their mechanism 
of generation and their phenotype. In addition, 
the role and function associated with Th17 in 
mice may not be transposable to humans [101,124].

Studies in animals suggested a pathogenic role 
for Th17 cells in several autoimmune disorders 
and notably RA [130–133]. Antibodies blocking 
IL-17 reduced inflammation and bone erosion 
in CIA [134,135] and consistently, IL-17-/- knock-
out mice are also resistant to CIA [132]. However, 
whether human autoimmune disorders, 
including RA, are prevalently Th1- or Th17-
mediated is still unclear as questioned recently 
by Annunziato and colleagues. Moreover, it is 
still unclear whether or not the pathogenic role 
attributed to Th17 cells in human immunopa-
thology was prematurely inferred from animal 
studies [100,123].

Nonetheless, elevated IL-17 levels were found 
in RA, SLE and psoriasis patients [136], how-
ever Th17 cell frequency is not elevated in the 
blood of RA patients compared with healthy 
controls [105,137]. Increased Th17 cell frequency 
was observed in synovial fluids whilst frequency 
of tissue Th17 was no more numerous than in 
blood [137]. CD14+ monocytes isolated from RA 
joints with an in vivo activated phenotype read-
ily induced Th17 differentiation in vitro from 
memory CD4+ T cells but not Th1 or Th2 [122]. 
Activation was TNF and IL-1β independent, 
in contrast to LSP-activated CD14+ monocytes 
which required cell–cell contact. Antigen presen-
tation-independent differentiation of Th17 cells 
using TLR-4- or TLR-8/7-conditioned media 
from stimulated RA patients peripheral blood 
mononuclear cells was also possible with IL-1β, 
IL-6 and IL-23 as essential inducers and TGF-β 
as the enhancer [138]. Memory CD4+ T cells iso-
lated from early RA patients (treatment naive) 
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and stimulated with anti-CD3/anti-CD28 could 
also produce higher amounts of IL-17, TNF-a, 
IL-22 and IFN-γ but low levels of IL-4 [139]. In 
the presence of VitD3 (1,25[OH] vitamin D-3) 
this stimulation was inhibited. Promoter gene 
regulation via epigenetic mechanisms was also 
demonstrated [140]. Furthermore, osteopontin 
produced by RA synovial fibroblasts specifically 
induced the expression of IL-17 by T cells inde-
pendently of IL-6 stimulation [103]. The pheno-
type of synovial Th17 was altered compared with 
blood cells with higher expression of the TNF-R, 
but lower IL22-R and IL-23R and increased pro-
duction of cytokines such as IFN-γ. The expres-
sion of CCR6 on Th17 cells also diminishes in 
remission [105].

In human tissue however, only a small pro-
portion of IL-17 is produced by Th17 cells, as 
opposed to animal models of arthritis where 
IL-17 is mostly produced by T cells suggest-
ing an alternative source of IL-17 production. 
Surprisingly, IL-17A expression was mostly colo-
calized within mast cells [141], where the produc-
tion of IL-17 was conditioned by the expression 
of ROR-C in response to stimulation by TNF-a, 
IgG complexes or C5a. Fibroblasts have since 
been explored and, as for many other cytokines, 
have also been found to express IL-17 in RA 
synovial tissue. Nevertheless, IL-17 was shown 
to activate a number of pathways involved in 
recruiting immune cells to sites of inflammation 
by producing chemokines (notably CXCL1, 2, 5, 
8, 9, 10 and CCL2, 20 [136]), enhancing inflam-
mation through cytokine production (IL-6 
and TNF-a) and acute phase response (serum 
amyloid A [125] and C-reactive protein [126]), and 
participating in tissue damage (MMP1, MMP3, 
MMP9, MMP13 and TIMP1) [127–129]. Most 
importantly, these led to significant bone loss 
mediated by osteoclasts [142]. Notably, the discov-
ery of Th17-induced osteoclatogenic activity has 
been able to explain how bone damage can occur 
in the presence of IFN-γ which has long been 
known for its antiosteoclastogenic effect [143].

At the current time however, the role of the 
plasticity demonstrated between Th17 and other 
polarization subsets remains a major point to 
understand [100,144]. Th1 and Th2 cells are both 
in a stable state of differentiation, although some 
degree of overlap in their cytokine expression 
profile can be observed with repeated stimula-
tion with the opposing cytokine triggers [145,146]. 
In contrast, the transient nature of the Th17 
phenotype is now well established in humans 
and was thereafter further demonstrated in 
mice. Human Th17 cells also present features 

that are incompatible with the Th17 paradigm 
established in mice. For example, human T-cell 
clones often present a mixed phenotype termed 
Th1/Th17 as well as expressing markers for 
both subsets [147]. Of major importance was the 
discovery that in the presence of IL-12, human 
Th17 clones transform into Th1 cells, whereas 
Th1 cells do not, providing further evidence that 
human Th17 cells are unstable and can shift to a 
Th1 profile. Th17 clones could also be induced 
to produce IL-4 (Th17/Th2 cells), most notably 
in patients with asthma [148]. This high degree 
of plasticity inherent to the human Th17 pheno-
type is therefore becoming more apparent and 
the dynamic relationship between subsets is more 
complex than originally thought, questioning the 
initial assumption that Th17 cells are responsible 
for a number of autoimmune diseases.

�n Other polarization subsets
Subsets of CD4+ T cells able to produce IL-9 or 
IL-22 have recently been described in mice models 
and termed Th9 or Th22 [149–153]. IL-9 is however 
produced by other T-cell subsets (notably Th2, 
Th17) and a role in regulating pathogenic ver-
sus protective mechanisms of immune responses 
has been suggested due to the role of IL-9 in the 
differentiation of other subsets notably Th17 
and Treg [151,153]. A specific transcription factor 
for Th9 polarization has not been identified. A 
putative role for Pu.1 [154] and the possibility that 
Th9 are a subset of Th2 cells have still not been 
fully discarded [155]. Several recent publications 
implicated Th9 in multiple sclerosis by analogy 
with animal models. To our knowledge, Th9 have 
not yet been investigated in RA. Human Th22 
cells were differentiated from naive cells in the 
presence of IL-6 and TNF [152,156]. Several reports 
have identified Th22 cells in human, notably in 
psoriasis and psoriatic arthritis. Th22 cells were 
recently detected in RA patients in higher num-
bers than in osteoarthritis and healthy controls 
[157], furthermore, their frequency was correlated 
with disease activity and inflammatory markers 
(C-reactive protein). Blocking their differentia-
tion or plasticity has therefore been proposed as 
potential therapeutic intervention [158]. Follicular 
T cells (Thf) were described a decade ago as cells 
present in tonsil and secondary lymphoid tissue 
[159,160]. These Thf cells are characterized by the 
expression of Bcl6 localized in the T cell/B cell 
zone of germinal centers [161,162], and appear to 
have an essential role in the provision of T cell help 
to B cells. To date, the role of Thf in RA synovitis 
has not been fully explored however, the presence 
of ectopic germinal centers has been described in 
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approximately one-third of patients [163]. The pres-
ence of high levels of IL-7 in the RA synovium 
may also contribute to the differentiation of such 
lymphoid structures [164,165].

regulation & Treg
The concept of T-cell-mediated immune sup-
pression has received renewed interest, follow-
ing the association over a decade ago between 
high-expression levels of the cell surface marker 
CD25 and regulatory capabilities. This discovery 
enabled the identification, quantification, purifi-
cation and analysis of naturally occurring Treg 
[166,167]. However, evidence of thymic-derived 
T cells acting as regulators in animal models of 
arthritis was reported in the late 1970s [168–170].

In humans, concavalin A-induced T-cell pro-
liferation was shown to produce an autologous 
Leu-2+ CD8+ T-cell population with suppres-
sive activity, defined as the ability to inhibit the 
response of fresh allogenic T cells when used in 
an in  vitro mixed leukocyte reaction [171–173]. 
RA patients showed reduced suppressive capa-
bilities by this population, which were however 
normalized in clinical remission and the pres-
ence of autoantibodies also appeared to decrease 
this suppressive activity [174,175]. No differences 
were observed between severe and less active 
disease [174]. This was the first suggestion that 
patients with active RA had abnormal suppres-
sor cell function. The energy associated with RA 
was therefore investigated and associated with 
relatively normal nonspecific suppressive func-
tion, although individual patients could show 
strikingly abnormal profiles [176,177]. The ratio 
of CD4+/CD8+ T cells was then used to assess 
the loss of this regulatory population which was 
marked in SLE but less so in RA [178].

Further work demonstrated that induction of 
these CD8+ suppressive T cells relied on the pres-
ence of a CD4+ T-cell subset which expressed 
the homing receptor Leu8 [171]. Using the CIA 
model, the existence of a suppressive CD4+ 
T-cell population with a memory phenotype 
was confirmed using transfer experiments [179]. 
Antibodies binding to Leu8 were also shown 
to cause Leu8+ B cells to inhibit their immu-
noglobulin synthesis, however, inhibition was 
abrogated by the addition of lymphokines (now, 
called cytokines) [180,181]. Later with the advance 
of two-colour flow cytometry and the discovery 
and increased availability of monoclonal antibod-
ies, a reduction in frequency of this suppressive 
Leu8+CD4+ T-cell subset in RA was shown to 
be directly related to disease activity (Lansbury’s 
index) [182]. However the use of different 

methods made the field extremely controversial. 
Interestingly, response to the drugs used at this 
time correlated with normalization of this subset 
whereas in patients with disease which remained 
active a further loss was observed [182].

�n Naturally occurring Treg in RA
The CD4+CD25high Treg phenotype is now 
widely recognized. Treg have been implicated in 
a number of conditions, including autoimmu-
nity [183–188], tumor immunity [189,190], response 
to pathogens [191,192] and transplantation [193]. 
Quantifying Treg in human health and disease 
has therefore become an important issue, with 
a number of hypotheses based on whether or 
not Treg number and function are altered. Flow 
cytometry has been the method of choice for rapid 
quantification of the Treg subset, but in humans 
this has proven to be a challenge and a number 
of studies have reported conflicting data, with 
similar [194], increased [195] or decreased [196,197] 
circulating Treg frequencies in RA. Treg presence 
was demonstrated in synovial tissue and fluid [184] 
at a consistently higher frequency compared with 
blood [194,195,198], suggesting an active recruitment 
of Treg to the affected joint. No functional defect 
in circulating [195,199] and synovial cells [198] could 
be identified in terms of inhibiting proliferation, 
suggesting an intact capacity and allowing them 
to contribute to dampening of local inflamma-
tion. These data were challenged by other reports 
of reduced suppressive function for blood-derived 
Treg [200–202], thereby leaving us with conflict-
ing data. Synovial fluid Treg showed enhanced 
suppressive capacity; however this was counter-
balanced by the activated phenotype of T cells 
[195]. Cytokines produced in coculture suppres-
sion assays from RA synovial fluid and peripheral 
blood showed reduction in both Th1 and Th2 
factors, including IL-17 [198]. Enhanced suppres-
sive capabilities [195,203] and differences in Treg 
phenotype (expression of activation markers such 
as FOXP3, cytotoxic T-lymphocyte antigen 4 
[CTLA-4], glucocorticoid-induced TNF-R 
[GITR], HLA-DR, CD69 and OX40 [194,195,203]) 
were however identified in RA synovial Treg. 
More recent work following the identification 
of additional markers, including Foxp3 and low 
expression of the IL-7R (CD127) [204,205], has not 
fully resolved these issues however, more consis-
tent reduction in CD4+CD25highFoxp3+CD127low 
Treg frequency in RA patients is now reported 
compared with healthy controls [206,207].

Since studies of human Treg have relied on 
in vitro assays, potential interference by an inflam-
matory local microenvironment was not taken 
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into account. Synovial fluid Treg, with surface 
expression of TNF-RII and IL-7R, are susceptible 
to regulation by these cytokines. Treg functional-
ity in RA was therefore abrogated in the presence 
of TNF-a, notably with regards to their ability 
to secrete cytokines. In humans, circulating Treg 
frequency correlated inversely with markers of 
bone resorption [208]. TNF-a has a direct effect 
on Treg’s ability to inhibit osteoclast differentia-
tion in mice [209] whilst the bone protection medi-
ated by Treg was independent of the suppression 
of inflammation in the hTNF-Tg model [208]. 
In vitro, TNF-a abrogates the suppressive activ-
ity of Treg by reducing Foxp3 expression [202]. In 
contrast, IL-6 did not influence Treg-mediated 
suppression. We showed that IL-7 also abolished 
Treg activity, however our data suggest that this is 
mediated by increased effector function of T cells 
rather than by directly affecting Treg [Churchman 

SM et al., Modulation of peripheral T-cell function by 

interleukin-7 in rheumatoid arthritis (2012). Manuscript 

in preparation].
When Treg were stimulated in the presence 

of IL-2/IL-15 they differentiated into IL-17-
producing cells with high expression of the 
Th17-related transcription factor ROR-γt [196] 
and were positively identified by CCR6 expres-
sion [197]. IL-1β, IL-6, IL-23 and IL-21 or TGF-β 
enhanced this phenomenon [210]. This conversion 
required epigenetic remodeling to erase the Treg 
phenotype. This plasticity of Treg cells in RA 
may explain why they are not capable of suppress-
ing responses at the disease site. Retinoic acid 
on the other hand was shown to promote Treg 
activity and prevent their conversion into Th17 
cells [211,212], even in the presence of IL-6 [213].

Effects of therapies on T-cell subset 
in rA
Lessons from years of treating RA with T-cell tar-
geted therapies should however, not be forgotten. 
Treatments that specifically deplete T cells (total 
lymphoid irradiation, thoracic duct drainage, 
high-dose chemotherapy with autologous stem 
cell transplantation or the AIDS disease) led to 
clear improvement in RA supporting the T-cell 
model [214]. Antibodies producing profound CD4+ 
T-cell depletion showed efficacy, but at the cost of 
excessive toxicity [215,216]. Nondepleting anti-CD4 
antibodies that induce immunological tolerance 
[37] had short-term clinical benefit [217]. Tolerizing 
anti-CD3 antibodies also demonstrated short-
term symptomatic improvement associated with 
an increase in regulatory T-cell numbers after 
treatment [112]. Progress in understanding T-cell 
tolerance and its modulation by costimulatory 

pathways, led to the development of new drug 
concepts, such as abatacept (CTLA-4-Ig) [218] 
and its successful use in RA [219]. Overall, these 
therapies directed at T cells have all showed clear 
clinical benefit but often with relatively short-term 
efficacy. The reasons for this failure are unclear 
but disease heterogeneity is likely to be a contrib-
uting factor. The inability to deplete or inactivate 
synovial T cells may be another explanation, and 
indeed, this raises the interesting point that T-cell 
trafficking of cells between joint tissue and the 
periphery is also an important consideration [220]. 
This is illustrated by the observation that follow-
ing lymphodepletion, clinical response and relapse 
correlated with the depletion and return of CD4+ 
T cells (but not CD8+, B cells or macrophages) to 
the synovium [47,71].

Since the development of biologic drugs a 
decade ago, the effect of these therapies on 
T cells have been explored in RA patients for 
blocking or depleting antibodies and decoy 
soluble receptor. A direct effect of inhibiting 
TNF-a was the restoration of CD28 expression 
on T cells [89,221] confirming the relationship 
between presence of CD28null cells and expo-
sure to chronic inflammation. Naive frequency 
was reduced early in RA progression however, 
the maintenance of a frequency close to age-
matched controls at baseline was associated with 
the achievement of remission in patients treated 
with either methotrexate (MTX) or anti-TNF 
[Ponchel F et al., Induction of remission in early RA can 

be predicted at baseline using T-cell subset analysis 

(2011), Submitted] [222]. Anti-TNF therapies in both 
early and established RA resulted in naive cell 
frequency increasing with time only in respond-
ers to MTX or biologics [222]. The inhibition 
of the spontaneous IFN-γ production and Th1 
response was also abrogated and the low IFN-
γ:IL4 expression ratio increased towards normal 
levels [223]. The low expression of Tbet was not 
affected by TNF blockade [114,223] as well as in 
remission induced by disease-modifying anti-
rheumatic drugs [47,71,114]. In contrast, both the 
frequency of Th17 cells and IL-17 production 
also decreased following TNF blockade [105] in 
relation with the unstable nature of this subset. 
Relapse in patients achieving remission both on 
disease-modifying antirheumatic drugs [Ponchel F 

et al., Unpublished Data] and on biologics [206] was 
best predicted by higher naive cell frequency as 
well as safe discontinuation of biologics drug 
[206]. The defect in cytokine expression in Treg 
was also corrected post anti-TNF therapy in asso-
ciation with a rise in the frequency of circulating 
Treg [200]. Our own data reproduced these results 
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in early RA showing a small increase in Treg 
(CD4+CD25highFoxp3+CD127low), which was not 
seen in MTX-treated patients [216] [Ponchel F et al., 

Induction of remission in early RA can be predicted at 

baseline using T-cell subset analysis (2011), Submitted]. 
In established RA, this increase was only tran-
sient. Other therapies also gave rise to an increase 
in Treg frequency in responders including IL-6 
blockade [Ponchel F et al., Unpublished Data], B-cell 
depletion [224] and recently, atorvastatin [225]. In 
contrast to these data, an increased frequency of 
Foxp3+ T cells was associated with RA patients 
relapsing after achieving remission on TNF-
blockade [206]. Foxp3 is also upregulated dur-
ing T-cell activation [226] and refinement of the 
Treg phenotype using CD4+CD25highFoxp3

+CD127lowCD62L+ cells was shown to associate 
higher Treg frequency with safe discontinuation 
of anti-TNF therapy in early RA [206].

Future perspective
Taken together, these findings provide substantial 
evidence for abnormal T-cell development and 
differentiation in RA, ranging from impaired 
thymic output to accelerated immuno-senes-
cence, abnormal polarization as well as defective 
capability linked to the presence of proinflam-
matory factors in their microenvironment. Over 
the next 5 years, a greater understanding of these 
phenomena should not only improve our under-
standing of the disease, but may also suggest novel 
therapeutic avenues.

Executive summary

Evidence for roles of T cells in rheumatoid arthritis

 � Beside the major histocompatibility complex-association (HLA-DRB1 notably) with rheumatoid arthritis (RA), infiltration of immune cells 
including T cells, B cells and macrophages in the synovial joint tissue and fluid remains the main feature of joint inflammation.

 � Formation of extopic secondary lymphoid tissue like structure suggested to a T-cell centric model where T cells orchestrate the 
inflammatory response.

 � However, the lack of common antigen, the nonproliferative nature of synovial T cell, the lack of T-cell-produced cytokine questioned 
this model in favour of a network of cellular response in established disease however, the driving role of T cells in very early disease 
remians an accepted fact. 

General features of T-cells in RA

 � Several genome-wide association studies suggest a list of approximately 30 loci related to T-cell pathways and T-cell interaction with 
other cells.

 � Accelerated T-cell aging evidenced by telomeric shortening as well as compromised thymic activity due to IL-7 deficiency. 

 � T-cell repertoire distortion imposed by the HLA-DRB1 allele shaping and preferential selection of certain V-β and J-β segments affect 
both the naive and the memory repertoires.

 � Abnormal signaling evidenced in several pathways: RAP1, Ca2+, TCR-CD3, phosphorilation cascades (LCK and ZAP70) and Red-OX 
balance.

T-cell subsets

 � Classic differentiation model is perturbed with cells presenting naive and memory propoerties.

 � The CD28null subset considered a biological indicator of immune aging and a predictor of immune-incompetence are often raised.

 � Presence of advanced differentiation memory CD57+ T-cells in nrelation with diseses activity. 

CD4+ T-cell polarization

 � Th1 cytokine profile (notably IFN-γ production) suggested a Th1 driven disease.

 � However, accumulation of evidence for defective Th1. 

 � Elevated IL-17 cytokine expression in synovil tissue and presence of Th17 cells.

Regulation & Treg

 � Conflicting results related to the frequency of naturally occurring Tregs in RA due mostly to technical issues with the deficition of their 
phenotype and method of charaterization.

 � Conflicting results as to their biological activity also due to difference of methodology.

Effect of therapied on T-cell subsets in RA

 � Many treatment option have targeted T-cells clear clinical benefit but with short term efficacy.

 � Clinical response (also to non-T-cell-targeted therapies) and relapse correlated with the depletion and return of CD4+ T cells (but not 
CD8 T cells, B cells or macrophages) to the synovium.

Conclusion

 � Evidence for abnormal T-cell development, signaling and differentiation.

 � A greater understanding of T cells’ biological response would improve our understanding of RA and suggest novel therapeutic avenues. 

 � The use of T cells for monitoring disease activity and predict response to therapy need to be explored further.
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For example, the therapeutic use of Treg has 
shown promising data in animal models; how-
ever overcoming the technical hurdles regarding 
their purification and expansion without losing 
their capacities as well as controlling the micro-
environment in which such cell-base therapy 
would be used (in order not to inhibit their func-
tion), remains an essential prerequisite. In addi-
tion, Treg specificity for an antigen has also been 
shown to be essential for the success of such thera-
pies [227] and this remains elusive in RA. Much 
work is needed to assess whether citrullination for 
example could provide such specificity.

Similarly, if it were possible to define the 
stage at which RA T cells deviate from normal 
maturational pathways, it may also prove pos-
sible in the future to address this abnormality. 
Thus, the specific removal of subsets associated 
with pathological function (Th17 cells) would 
offer an alternative strategy, however this con-
cept is limited by the identification of unique cell 
surface markers to enable targeting of therapies 
specifically to these cells. Limiting the triggers 

of development for such subsets may be more 
realistic and as such anti-IL12 and IL-23 may 
be relevant.

Progresses in monitoring disease and predict-
ing response to therapy are also needed clinically 
and T-cell subset as biomarkers hold promises 
in this respect [206]. In the future, building an 
immunological picture of patient using dysregula-
tion of T-cell subsets may prove potentially useful 
for guiding clinical decision. This is an important 
topic that we are actively pursuing. 
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