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MRI- or combined x-ray and MRI (XMR)-guided catheterization was introduced as an 
alternative to x-ray-guided catheterization to reduce radiation exposure and offer 
more comprehensive anatomical, hemodynamic and physiological data. However, 
developments have been slow to come into routine clinical practice. We report a 
10-year experience of solely MRI-guided and XMR catheterization in patients at our 
institution, review the developments in clinical MRI-guided and XMR catheterization 
and discuss future perspectives. This includes further results from our clinical trial on 
MRI-guided cardiac interventions.
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Improved surgical and interventional tech-
niques have improved outcomes for con-
genital heart disease [1], adding to the num-
ber and complexity of lesions needing serial 
monitoring or treatment. The role of MRI 
in the assessment of cardiac anatomy and 
function in congenital heart disease is well 
established and has the potential to replace 
diagnostic cardiac catheterization in selected 
cases [2–7]. However, x-ray-guided cardiac 
catheterization is still necessary for invasive 
hemodynamic data and cardiac interventions.

Role of MRI- & combined x-ray 
& MRI-guided catheterization
There has been interest in developing MRI 
as an alternative to x-ray for guiding cardiac 
catheterization because of three key draw-
backs of x-rays. The risk of tumor formation 
from repeated x-ray catheterization is well 
established [8–12]. The difficulty of visualiz-
ing the key cardiovascular structures during 
the manipulation of catheters and devices 
without multiple injections of iodine x-ray 
contrast agents is also particularly an issue 
in patients with congenital/structural abnor-
malities. Finally, being able to measure key 
physiological parameters such as pulmonary 

blood flow and ventricular volumes during 
cardiac catheterization is often important, 
but difficult under x-ray guidance.

MRI-guided and combined x-ray and 
MRI (XMR) catheterizations were first 
introduced into the clinical forum a decade 
ago [6] out of the need to address these draw-
backs. MRI can be considered as an adjunct 
or an alternative to x-ray during catheteriza-
tion procedures. Where invasive pressure 
measurements are required, MRI-guided 
and XMR cardiac catheterization has been 
proven to reduce the screening time and 
radiation dose [6,13]. Fluoroscopic screen-
ing is limited to guiding catheter position-
ing with the use of guide wires that are not 
MRI safe due to concerns around heating. 
Catheter manipulation under MRI has the 
advantage of soft tissue visualization not 
seen on conventional x-ray-guided cath-
eterization. Additionally, MRI allows for 
easy manipulation of imaging planes, thus 
reducing the need for multiple fluoroscopic 
projections to identify the area of interest. 
MRI also allows accurate quantification of 
ventricular volumes, cardiac output and flow 
within vessels, such as accurate quantifica-
tion of pulmonary blood flow. This can be 
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used in combination with an invasive catheter trans-
pulmonary pressure gradient to measure pulmonary 
vascular resistance accurately.

MRI catheterization in clinical practice
We reported the first clinical experience of MRI- and 
XMR-guided cardiac catheterizations at our institu-
tion [6,14]. MRI-guided and XMR catheterizations 
were subsequently validated against standard cardiac 
catheterization for the clinical assessment of pulmo-
nary vascular resistance (PVR) [6,13,15]. In the past 
few  years, the indications have widened to include 
assessment of anatomy and function, cardiac output 
and hemodynamic measurements during pharma-
cological stress [2,7,16]. This has included successful 
MRI-guided catheterization without the need for 
x-ray [6,13–15,17]. We have also described an initial clini-
cal experience of MRI-guided structural cardiac inter-
ventions using an MRI-compatible guide wire [18]. 
MRI catheterization has been described in the clinical 
setting, but this continues to be in a limited number 
of centers and in small numbers [2,6,13–15,17–23]. In fact, 
the total number of patients described in the literature 
combining all of these clinical studies and reports to 
date only equates to 142.

Single institution experience of clinical 
MRI-guided & XMR catheterization
We report a large 10-year experience of clinical MRI-
guided and XMR catheterization in patients at our 
institution, review the developments in clinical MRI-
guided and XMR catheterization and discuss future 
perspectives. This includes further results from our 
clinical trial on MRI-guided cardiac interventions.

MRI techniques
The techniques of MRI-guided and XMR catheter-
ization have been previously described [6,13,17,18,24,25]. 
The imaging requirements from MRI for the purpose 
of catheterization have also been extensively described 
[6,24,25]. MRI-guided and XMR catheterizations take 
place in a specifically designed catheterization labora-
tory with combined x-ray and MRI facilities (Figure 1). 
In our laboratory, we use a 1.5 T magnetic resonance 
(MR) scanner (Achieva, Philips, Best, The Nether-
lands) and a Philips BV Pulsera cardiac x-ray unit. 
In-room monitor and controls display MRI images 
and hemodynamic pressure traces. The table-top 
design allows patients to be moved from one modal-
ity to the other in a very short time. MRI-compatible 
patient monitoring and anesthetic equipment is used. 
A comprehensive standard operating procedure is in 
place, which has been extensive described by Tzifa 
et  al. [24], with a particular focus on safety within 

the MRI environment. All procedures are performed 
under general anesthesia. A heparin bolus of 50 IU/kg 
is given with activated clotting time monitoring once 
vascular access is obtained.

The ECG system employed during cardiac cathe-
terization is a commercial hemodynamic tracer system 
EP Tracer 102 (CardioTek BV, Maastricht, The Neth-
erlands). The invasive pressure component of the sys-
tem is used throughout the procedure. However, the 
ECG component is not MRI compatible and removed 
prior to transfer into the MRI bore. While in the MRI 
bore, the patient monitoring system used by the anes-
thetic team (Datex Ohmeda, GE, CT, USA), which is 
MRI compatible, is used for monitoring.

MRI protocols
In all patients, a similar MRI protocol is followed as 
described below to assess anatomy, ventricular func-
tion and vascular flow. A free-breathing, dual-phase 
respiratory-gated and ECG-triggered 3D steady-state 
free precision (SSFP) scan of the heart and great ves-
sels and 3D contrast-enhanced MR angiography 
is performed to elucidate intracardiac and vascular 
anatomy. The 3D SSFP image is acquired in a sagittal 
orientation (repetition time (TR): 3.4 ms; echo time 
(TE): 1.7  ms; flip angle: 90°; isotropic resolution: 
1–1.5  mm3;acquisition window: 60–75  ms; respira-
tory gating window: 3–5  mm). Contrast-enhanced 
MRI angiography was acquired with first-pass 3D 
angiography using 0.2 ml/kg bodyweight gadoterate 
meglumine (Dotarem, Guerbet, Villepinte, France).

To calculate ventricular volumes and function, 
short axis cuts of the ventricle(s) are obtained using 
retrospective ECG-gated SSFP 2D cine sequences 
(TR: 3.1–3.6  ms; TE: 1.6–1.8  ms; acceleration fac-
tor [SENSE acquisition]: 2; flip angle: 60°; field of 
view: 200–320  mm; slice thickness: 4–8  mm; in 
plane resolution: 1.3–2.0  mm; acquired temporal 
resolution: 30–40 phases; phase percentage: 80–100; 
breath-hold duration: 11–15 s; 10–14 slices).

To obtain blood flow measurements in major ves-
sels, through plane velocities are measured by means of 
through plane phase-contrast gradient-echo sequences 
perpendicular to the long axis planes of the vessel with 
either breath-hold or free-breathing flow-sensitive seg-
mented k-space fast-field echo sequence (approximate 
echo time: 3 ms; approximate repetition time: 5 ms; 
matrix: 128 × 256; field of view: 250–350 mm; flip 
angle: 15°; three signal averages for free-breathing 
sequences; retrospective gating; 40 acquired phases).

XMR-guided catheterization
For XMR catheterization procedures, catheters are 
positioned in the appropriate vessels and chambers 
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using guide wires where necessary under x-ray 
guidance. Once right and/or left heart catheterization 
is complete, MRI-compatible catheters (Wedge cath-
eter, Arrow, PA, USA) are left in place for continuous 
hemodynamic pressure monitoring and the patient is 
transferred to the MRI scanner on the sliding table. 
Cardiac MRI is performed to measure ventricular 
volumes, function and phase-contrast flows, as above, 
with simultaneous pressure measurements.

MRI-guided catheterization
Following an initial reference scan, an interactive 
sequence is used for determining and saving refer-
ence planes for catheter guidance. For example, for 
right heart catheterization, the following views are 
stored: sagittal and coronal views of the superior vena 
cava/inferior vena cava, four-chamber, right ventricu-
lar outflow tract, right heart two-chamber view, pul-
monary artery (PA) bifurcation, left PA sagittal and 
right PA coronal views.

During passive catheter tracking, a 2D SSFP 
sequence; balanced fast field echo; TE: 1.45 ms; TR: 
2.9 ms; matrix: 128 × 128), with a temporal resolution 
of 10–14 frames per second is used, in which the cath-
eter tip is seen filling the angiographic balloon with 
1 ml of carbon dioxide (Figure 2) [6,14]. The interactive 
mode also allows manipulation of the slice plane and 
other variables during scanning to follow the catheter 
manipulation (Figure 3). The operators can start and 
stop the MRI scan independently, switch between the 
four imaging planes displayed on an in-room console 
and move the imaging plane in either through plane 
direction using foot pedals that control the scanner 
console. Once catheters are in place, MRI imaging is 
performed to measure ventricular volumes, function 
and phase-contrast flows as above with simultaneous 
pressure measurements.

Physiological measurements
The following physiological measurements with values 
indexed to body surface area are calculated during the 
MRI-guided and XMR catheterization:

•	 The quantity and ratio of pulmonary and systemic 
blood flow is measured by phase contrast through 
plane imaging of the major vessels supplying the 
systemic and pulmonary circulation. In patients 
with multiple sources of pulmonary blood flow, 
each source is calculated separately. Where it was 
not possible to measure the blood flow from a 
particular source (e.g., Blalock–Taussig shunt), 

Figure 1. Hybrid x-ray and MRI facility at Evelina London Children’s Hospital (London, UK). The 5 Gauss line is demarcated by a 
change in the color of the flooring.

Figure 2. Balloon tip visualization with CO2 inflation of 
the balloon leading to artefact.
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this is inferred by measuring flow in the branch 
pulmonary arteries, or by measuring flow in major 
vessels on either side of the source or by measuring 
the difference between the superior vena cava and 
descending aortic flow.

•	 PVR:

( . )PVR wu m2
=

( / / )

( [ ] [ ]

minPA flow l m

Mean PA pressure mmHg mean LA pressure mmHg
2

-

Left atrial pressure is either measured directly or 
obtained from a pulmonary capillary wedge pressure 
accepting that pulmonary capillary wedge pressure 
only remains a reliable measure of left atrial pressure at 
values <15 mmHg. Units are expressed as woods units 

(wu) indexed to body surface area (wu.m2). Mean PA 
pressure is either measured in the main PA or branch 
PAs. Where branch PA flows and pressures are used, 
we measured individual lung PVR and calculated a 
total PVR.

R R R
1 1 1
Total RPA LPA

= +

Clinical protocols
Invasive pressure and phase-contrast flow are mea-
sured simultaneously and repeated under different 
physiological conditions. Throughout, we aimed for 
hemodynamic stability in the patient and normocar-
bia (PaCO

2
:4–5  kPa). Structured protocols used are 

described below and employed for both MRI-guided 
and XMR catheterization:

Figure 3. Planes for manipulation of images to guide catheter positioning during interactive scanning. 
The catheter tip here is seen in the left pulmonary artery.
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•	 PVR studies: baseline measurements are made in 
30% inspired oxygen. Patients undergoing revers-
ibility studies have repeat measurements 20  min 
after administration of inhaled nitric oxide at 
20 ppm and 100% inspired oxygen;

•	 Dobutamine stress studies: these studies involved 
measurements of cardiac output and invasive pres-
sures at baseline and repeated with dobutamine 
infused at a rate of 10 μg/kg/min for 10  min or 
once a stable heart rate or blood pressure rise had 
been observed and repeated at 20 μg/kg/min;

•	 Isoprenaline stress studies involved measure-
ment of aortic blood flow and pressure gradients 
across the site of aortic coarctation at baseline and 
with isoprenaline (isoprenaline sulfate) at a dose 
of 0.02  μg/kg/min increasing to a maximum of 
0.7 μg/kg/min. The dose is titrated upwards until 
the heart rate increased by ≥50% from baseline and 
maintained once a stress steady state was achieved.

Single institution results
A total of 214 studies were performed in 187 patients 
from a retrospective analysis of pediatric and adult 
patients who underwent MRI-guided and XMR car-
diac catheterizations in our institution between Feb-
ruary 2002 and February 2012. In total, 134 of the 
187 patients had previous surgical or catheter interven-
tions; 21 patients had a single repeat MRI-guided and 
XMR study and three patients had two repeat MRI-
guided and XMR studies. Median age and weight was 
4.5 years (4 days–64.7 years) and 15.4 kg (2.3–106 kg), 
respectively. Furthermore, 189 were XMR catheteriza-
tions; 25 were solely MRI-guided cardiac catheter-
izations, of which seven were part of the first-in-man 
clinical trial on MRI-guided cardiac interventions. A 
total of 110 studies led to a cardiac intervention and 
ten liver transplants at a median interval of 47  days 
(0–763 days) based wholly or in part on the XMR data. 
Median radiation dose for MRI-guided and XMR 
was 3.78 Gy cm2 (0.75 mSv; range: 0–57.5 Gy cm2), 
with a median screening time of 11.0  min (range: 
0–66.5  min). Details of the procedures are listed in 
order of: PVR; pharmacological stress studies; hybrid 
x-ray and MRI-guided interventions; and solely 
MRI-guided interventions.

PVR
PVR was assessed in 175 of 214 studies where there 
was a suspicion of raised PA pressures based on 
echocardiographic or clinical findings. Median age 
was 3.6  years (6  days–67  years) and weight 13.8  kg 
(2.3–122  kg). We and others [6,13,15] have previously 
shown that PVR calculated during MRI-guided and 

XMR catheterization is more accurate than the stan-
dard Fick technique, particularly following pulmonary 
vasodilation. It is institutional practice to base surgical 
decision-making for these patients on clinical findings, 
echocardiography and MRI data without routine diag-
nostic catheterization [7]. Patients progressing along 
the path of surgical single ventricle palliation undergo 
an MRI with simultaneous measurement of central 
venous pressure. Therefore, patients referred for MRI-
guided and XMR evaluation were of a cohort with a 
high suspicion of abnormal anatomy or hemodynamics 
requiring more thorough evaluation.

Pharmacological stress studies
In total, 46 patients underwent 54 MRI-guided and 
XMR catheterization studies to assess the hemo-
dynamic response to pharmacological stress. Three 
categories were defined:

•	 Preliver transplant assessments in patients with 
liver disease. Dobutamine stress studies were per-
formed to assess right ventricular  pressure and 
cardiac output response to stress in line with the 
criteria for assessment previously described [24,26];

•	 Patients with a functionally univentricular circu-
lation and coexisting resultant morbidity (protein-
losing enteropathy, plastic bronchitis, exercise 
intolerance (New York Heart Association class ≥2), 
in whom complete hemodynamic assessment com-
bined with cardiac output studies were performed 
at rest and with dobutamine stress;

•	 Patients with borderline coarctation of the 
aorta undergoing pharmacological stress with 
isoprenaline to assess the need for intervention.

Dobutamine stress studies in children and adults 
have been utilized safely [26–30]. It is our experience 
that given the correct monitoring, dobutamine at up 
to a dose of 20 μg/kg/min can be administered safely 
in children and adults during MRI-guided and XMR 
catheterization. Pharmacological stress studies using 
MRI-guided and XMR catheterization was applied in 
the assessment of patients with liver disease or function-
ally univentricular hearts, where accurate assessment 
of changes in the cardiac output and simultaneous 
recording of hemodynamic data is very helpful.

It is known that patients with fixed right heart 
obstruction are unable to raise their cardiac output at 
stress and this is relevant in the immediate postliver 
transplantation period where a substantial rise in car-
diac output is observed and, if not possible, can lead to 
poor outcomes [31–34]. It is therefore important to iden-
tify the presence and significance of any hemodynamic 
obstructions in order to deal with them prior to the 
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transplantation [2–5,16,26,35]. MRI-guided and XMR 
provides both anatomical and hemodynamic informa-
tion in one sitting, and we were able to identify patients 
who require interventions to relieve right ventricular 
outflow tract obstruction and were able to restudy them 
postintervention to confirm a reduction in right ven-
tricular pressure to values of less than half of systemic 
systolic pressures and increase in cardiac output of at 
least 40% with dobutamine stress who can then be put 
before forward for successful liver transplantation.

Isoprenaline stress studies in aortic coarctation pro-
vided an assessment of arch anatomy and invasive gra-
dients in patients deemed to have a borderline substrate 
for intervention at initial assessment. It unmasks impor-
tant gradients across the coarctation site not seen under 
resting conditions, thus providing further diagnostic 
information to plan management.

Combined x-ray & MRI-guided interventions
Combined x-ray-guided interventions and MRI imaging 
were performed in the early series of our clinical experi-
ence. This included one atrial septal defect closure, one 
device occlusion of a hemi-Fontan baffle leak and two 
coarctation stents. We were able to use the 3D anatomy 
acquired during the MRI as an anatomical model to 
guide the x-ray fluoroscopic intervention, which would 
have not been possible under MRI guidance alone 
because of the risk of heating of the guided wire or deliv-
ery devices used. The registration technique between the 
3D MRI anatomy and real-time fluoroscopy images has 
been previously described by our group [36,37] and that 
of Lederman et al. [38,39]. All of these interventions were 
performed under complete fluoroscopic guidance in the 
XMR suite and the patients were then transferred imme-
diately back to the MRI to assess the results of the inter-
vention. This type of technology [36], where preacquired 
3D anatomy from MRI or computed tomography (CT) 
is used to guide fluoroscopic interventions is now more 
widely available as a product from the imaging vendors 
in the standard x-ray fluoroscopic catheter laboratory 
setting (Figure 4).

Solely MRI-guided interventions
Seven patients aged 3–64  years were recruited in the 
clinical trial of MRI-guided interventions using a novel 
MR-compatible fiberglass guide wire [18]. Details of the 
first two patients in this group have been previously 
published [18]. Details of the patients and procedures are 
listed in Table 1. Median procedure and catheterization 
times were 180 and 110 min, respectively. Five patients 
underwent successful interventions for pulmonary valve 
stenosis (n  =  4) and native aortic coarctation (n  =  1). 
One patient with a left PA stent underwent right heart 
catheterization using the MRI-compatible wire, but the 

gradient across the stent was only 5 mmHg, hence no 
intervention was required. The last patient with severe 
aortic stenosis had an unsuccessful attempt at balloon-
ing the aortic valve. This was due to the inability to 
direct the guide wire or catheter into the ascending aorta 
against the high velocity jet of aortic stenosis.

All but the last patient were discharged home the day 
after the procedure with >50% reduction of the stenosis 
gradient in all five patients who had an intervention with 
no procedural complications. The last patient with an 
unsuccessful attempt at crossing the aortic valve returned 
to the catheterization laboratory for fluoroscopic-guided 
valvuloplasty a few weeks later. During initial screening, 
it became clear that a segment of the MRI-compatible 
guide wire had fractured during the MRI-guided pro-
cedure and was now left in the body, but could not be 
retrieved by snaring and a conservative approach was 
taken as it appeared well embedded in the vascular wall. 
The patient had a successful fluoroscopy-guided aortic 
valve balloon valvuloplasty. The patient subsequently 
had the wire surgically removed uneventfully with no 
further incidents. The clinical trial was discontinued 
at that point and the adverse event was reported to the 
Regulatory Authority.

Complications
There are no reported complications related to MRI-
guided and XMR catheterizations, which may in part 
be due to the nature of the few small series published 
to date. However, we know from larger series of com-
bined conventional diagnostic and interventional pedi-
atric cardiac catheterizations, the actual total compli-
cation rate is approximately 8.8%, with the majority 
of these being minor complications [40,41]. Mortality 
remains low at 0.14 [40] to 0.28% [42]. In our large 
cohort, there were three immediate complications, 
one late complication and no procedural deaths. One 
patient had a pulmonary hemorrhage during cardiac 
catheterization requiring an additional day of ventila-
tion on intensive care. The second immediate compli-
cation related to the fractured MRI-compatible wire as 
described above. The third patient had end-stage liver 
disease and experienced transient ventricular tachy-
cardia without loss of cardiac output during admin-
istration of dobutamine at 20  μg/kg/min. This was 
noted immediately and resolved on discontinuation of 
the dobutamine infusion with no active intervention 
required. The late complication was in an adult who 
was readmitted from the community having suffered 
from a deep vein thrombosis 4  days after the MRI-
guided catheterization. A CT angiogram confirmed 
multiple small pulmonary emboli. The patient was 
treated with standard anticoagulation therapy and 
made a full recovery.
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Radiation
Despite the need for x-ray fluoroscopy, the radiation 
doses in MRI-guided and XMR catheterization remain 
low. The median radiation exposure of 0.75 mSv over 
10 years compares favorably against conventional fluo-
roscopic diagnostic catheterization in contemporary 
literature of 10.8 mSv [43]. Our findings therefore sup-
port the argument that MRI-guided and XMR cath-
eterization reduces radiation exposure for congenital 
patients as reported previously [6].

Challenges in MRI catheterization
The developments in MRI catheterization have been 
subject to several reviews [25,27–29,44–47] and editorials 
[31–34,48], with an enthusiasm for the technique stress-
ing the excellent potential of this technique within 
routine clinical practice. However, MRI catheteriza-
tion has been slow to develop over the past decade and 
its current use remains limited to a few centers.

The challenges to this development have remained 
fairly similar in that time, with recent advances outlined 
below. These relate to the MRI environment, scanning 
capabilities and the availability of MRI-compatible 
guide wires, catheters and devices.

MRI environment
Most of the centers practicing XMR/MRI catheter-
ization have purpose-built XMR/MRI laboratories, 
which are expensive and require a skilled multidisci-
plinary team, which includes clinicians with expertise 
in MRI and cardiac catheterization supported by MRI 
physicists and other technical specialists to establish a 
successful clinical program. Where this is not avail-
able, centers can employ a combination of x-ray-guided 
catheterization in a separate laboratory, with subse-
quent transfer of the patient to the MRI suite with 
MRI-compatible catheters in situ for diagnostic studies 
provided patient safety is not compromised. Access to 
the patient during catheterization has also been limited 
by the bore size of the scanner, but this is less of an 
issue with the newer generation of MRI scanners with 
a wider bore. Additionally, improved MRI-compatible 
hardware is being developed for hemodynamic 
monitoring of patients [49].

Catheter tracking
Visualization of the catheters under MRI guidance 
has also been challenging. We employed passive 
catheter tracking in our unit, using the susceptibil-
ity artefact and resultant signal void from the carbon 
dioxide-filled balloon catheter balloon tips to track 
the catheter tip for manipulation [14]. Other groups 
have advocated using gadolinium-filled balloon tips 
in place of carbon dioxide for improved catheter tip 

visualization and steering [17]. Passive catheter track-
ing, however, lacks the ability to visualize the entire 
shaft of the catheter, which makes it susceptible to 
unrecognized coiling and twisting of the catheter. 
The alternative is active catheter tracking where the 
device is electrically connected to the MRI scanner 
and has a coil or antenna that is able to transmit or 
transmit and receive. Ratnayaka et al. [25] have sum-
marized the key aspects of comparison between active 
and passive catheter tracking. Active catheter tracking 
offers the best prospect for improved dynamic visual-
ization and with new technology, that addresses safety 
issues, should become much more widely used in the 
future [17,50,51].

MRI-guided interventions
In the past MR-guided interventions have only been 
performed in animals due to lack of MR compat-
ible and safe interventional equipment. These have 
included atrial septal defect device closure [52,53], tran-
septal puncture [54], stenting of aortic coarctation [55] 
and percutaneous implantation of aortic valve [56]. 
However, the lack of appropriate hardware has lim-
ited its application in humans where MRI remained 
an adjunct to x-ray guidance [19]. The availability of a 
new MR-compatible and safe fiberglass passive guide 
wire [57] led to a successful preclinical trial of solely 
MR-guided interventions leading to a first-in-man 

Figure 4. Image overlay demonstrating the position of the cardiac 
catheters in a rendered shell of the cardiac chambers and outflow tracts.
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Table 1. Interventional MRI-guided catheterizations in humans.

Patient Age 
(years)

Diagnosis Intervention Total 
procedure 
time (min)

Catheterization 
component of total 
procedure time (min)

Outcome

1† 6 Pulmonary valve 
stenosis

Balloon pulmonary 
valvuloplasty

220 120 Reduced peak 
gradient from 63 to 
22 mmHg

2† 42 Valvular and 
subvalvular 
pulmonary stenosis

Balloon pulmonary 
valvuloplasty

180 110 Reduced peak 
gradient from 110 to 
70 mmHg

3 5 Aortic coarctation Balloon aortic 
coarctation

110 40 Reduced peak 
gradient from 60 to 
30 mmHg

4 65 Valvular pulmonary 
stenosis

Balloon pulmonary 
valvuloplasty

230 120 Reduced peak 
gradient from 38 to 
24 mmHg

5 3.5 Tetralogy of Fallot 
postsurgical repair; 
valvular pulmonary 
stenosis

Balloon pulmonary 
valvuloplasty

180 110 Reduced peak 
gradient from 66 to 
18 mmHg

6 11 Partial AVSD, LPA 
stenosis (post-LPA 
stent)

Diagnostic 
catheter (LPA 
stent crossed with 
MR-compatible 
guide wire)

180 40 5 mmHg gradient 
across LPA stent; no 
intervention required

7 8 VSD and arch 
hypoplasia 
(postrepair); 
bicuspid aortic 
valve with valvular 
aortic stenosis

Attempted balloon 
aortic valve

180 60 Not possible to 
manipulate wire into 
ascending aorta due 
to high velocity jet of 
aortic stenosis

†Patients 1 and 2 were previously reported by Tzifa et al. [18]. 
 AVSD: Atrioventricular septal defect; LPA: Left pulmonary artery; MR: Magnetic resonance; VSD: Ventricular septal defect.

intervention performed by our group and applied to 
several other patients as described above [18]. Although 
we were able to demonstrate the feasibility of perform-
ing solely MR-guided diagnostic cardiac catheteriza-
tions, the prototype guide wire did not have adequate 
mechanical properties for safe application despite 
satisfactory preclinical testing.

Catheter & guidewire development
There needs to be further developments in MR-
guided catheter steering, which can be achieved either 
by using guide wires as mentioned previously or cath-
eter development. Recent catheter developments [58] 
to aid steering and visualization in the MRI environ-
ment include catheter tip ferromagnetic beads [59,60], 
catheter tip microcoils [61] and microfluidic hydrau-
lic catheters. The imaging of the latter is dependent 
on the nature of the hydraulic fluid. Smart material 
actuators [62] in catheter development provide better 
steering without the benefit of improved visualization.

Further developments in this field are ongoing 
and new devices are being developed with improved 
mechanical properties. Once these devices have 
obtained regulatory approval then solely MRI-
guided cardiac catheterization both for diagnostic 
and interventional purposes will become much more 
feasible.

Image registration & overlay
The increasingly complex nature of procedures will 
ultimately benefit from integrating a wide range of 
imaging modalities to impart a comprehensive view 
of the cardiac structures for the interventionists. It is 
crucial to consistently maintain correct alignment of 
the images from the different modalities being used. 
Image registration techniques are constantly improv-
ing to allow overlay of echocardiographic, MRI or 
CT images and fluoroscopy into the same image with 
improved alignment and minimal motion artefact 
from respiration [36,63–66].
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Other applications
Progress has been made since the first clinical applica-
tion of MRI electrophysiology [20], with advances in its 
use limited to animals [67,68]. Newer catheters with full 
diagnostic electrophysiology functionality with active 
tracking [51] have been developed. Sommer et  al. [23] 
recently published the first series of patients with real-
time MRI-guided placement of multiple catheters with 
subsequent performance of stimulation maneuvers in 
five adult patients. These developments are highly 
relevant to patients with congenital heart following 
complex surgery where there is a recognized burden 
of arrhythmia [69]. Additionally, intramyocardial stem 
cell [70,71] or gene treatments [72] with MRI-guided and 
XMR catheterization has been shown to be technically 
possible in previous animal models and offers promis-
ing potential for due to the advantages in soft tissue 
visualization.

Conclusion
MRI-guided and XMR catheterization is a safe and 
useful clinical tool, but requires specialist hardware and 
a skilled multidisciplinary team. There are clear devel-
opments to be made in the field, which rely heavily on 
hardware development before we see MRI-guided and 
XMR catheterization being widely employed in rou-
tine clinical practice. Continued developments require 
the support of industry both for scanner and catheter 
or device development.

Future perspective
MRI-guided and XMR catheterization has a signifi-
cant potential for wide clinical application but remains 
limited by cost, hardware and software development. 
There is renewed enthusiasm to develop these tech-
nologies. It has particular relevance in congenital and 
structural heart disease where continued developments 
in surgical and interventional techniques add to the 
complexity of patients needing assessment and treat-
ment. Our experience as a unit has demonstrated that 
these techniques, which were initially part of a research 
program, have now come into routine clinical practice 
for diagnostic studies.

The potential for MRI-guided cardiac interventions 
is significant and relevant. The lesions where these tech-
niques were initially applied were for relatively straight-
forward lesions, such as ballooning of the pulmonary 
valve, which are not technically complicated using 
existing x-ray methods. The reduction in radiation dose 
exposure in these cases is small. The real benefit for 
MRI-guided interventions in congenital heart disease 
will be for complex procedures where visualization of 
important soft tissue structures are required, such as 
device closure of ventricular septal defects and stenting 

of aortic coarctation. This will not only allow the oper-
ator better periprocedural imaging to guide device or 
stent positioning, but offer the ability to immediately 
measure any residual shunts and assess vessel walls for 
any damage, such as dissection. MRI catheterization 
also offers exciting potential in electrophysiology, with 
the ability to directly visualize the ablation substrate in 
patients with or without congenital heart disease.

The two main obstacles for much wider use of this 
technology have been MRI-compatible catheters and 
guide wires and an interventional software platform 
specifically for MRI cardiac catheterization. In addi-
tion, safe active tracking of catheters and guide wires 
that is displayed within the interventional platform 
would be the game-changing innovation that would 
make MRI-guided catheterization a mainstream clini-
cal tool. Over the last 3 years, a number of device com-
panies (including smaller start-ups) and two major 
MRI vendors have instigated major research and devel-
opment programs to overcome these obstacles. There 
are now, for example, CE-marked MRI-compatible 
guide wires (EPFlex, Dettingen/Erms, Germany devel-
oped with Melzer IMSAT, Dundee, UK) with pas-
sive markings and prototype interventional software 
platforms, such as the Philips iSuite, which is about to 
be used as part of a clinical trial in patients. As these 
innovations progress into products, then the field will 
expand and MRI-guided catheterization will become 
more widely used.
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