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Fundamental to the efficient production of quality biopharmaceuticals is the selection, 
optimization and tailored manipulation of the mammalian cellular production host. 
Engineering of these cell factories, predominantly the Chinese hamster ovary cell and 
advancements in bioprocess regimens have led to greatly increased product titres. 
The ability of miRNAs to regulate gene expression on a global level has generated 
considerable interest in these molecules as potential cell engineering targets. In 
this review, we briefly describe their organization and biogenesis and discuss their 
attributes as engineering tools in Chinese hamster ovary cells. The development of 
particular engineering strategies based upon further dissection of miRNA behavior 
will be considered, with particular emphasis on encouraging examples in Chinese 
hamster ovary cells and their potential for further development.

Chinese hamster ovary (CHO) cells con-
tinue to be the pre-eminent cell line for the 
production of recombinant therapeutic pro-
teins. Their safety record, ability to reach 
reasonable densities in suspension culture, 
genetic tractability, human-like post-trans-
lational modification patterns and regula-
tory acceptance all contrive to ensure CHO 
cells will likely retain this favored position 
for some time to come. Optimization of 
their performance has been an area of intense 
research over the past two decades in order 
to continue to meet global market demands 
as well as internal demands to shorten cell 
line development timelines. Since the 1990s, 
product titres have improved at least 20-fold 
resulting primarily from expression vec-
tor improvement and an ability to isolate 
high-producing clones coupled with tailor-
designed media formulations and the imple-
mentation of modified bioprocess regimes, to 
achieve industry standards ranging from 1 to 
5 g/l for monoclonal antibodies (mAbs) [1,2]. 
However, the increasing demand for biolog-
ics and decreasing appetite for building large 
production facilities has maintained the pres-
sure to further boost process efficiencies. 
Furthermore, these improvements cannot be 

achieved at the expense of product quality. 
The recent proliferation of more ‘exotic’ ther-
apeutic molecules, such as fusion proteins 
and various antibody fragments and chime-
ras, has also presented new manufacturing 
challenges for the CHO cell platform.

Enhancing CHO cell performance via 
genetic engineering strategies has been an 
area of considerable focus over the last decade 
as a means to compliment the previous break-
throughs in media and bioprocess design. 
Single and multigene genetic engineering 
strategies have been exploited to target CHO 
cell phenotypes critical to the bioprocess 
including cell cycle [3], apoptosis [4], metabo-
lism [5] and secretion [6]. Manipulating these 
processes has been demonstrated to improve 
volumetric or specific productivity (Q

p
) by 

sustaining a prolonged production phase, 
manipulating bioenergetic pathways to 
reduce the accumulation of toxic byproducts 
and improving post-transcriptional process-
ing. The most important advance in recent 
years has undoubtedly been the publica-
tion of the Chinese hamster [7] and CHO [8] 
genomes as well as the numerous ‘omics data-
sets that have been made available by various 
groups [9–12]. These datasets combined with 
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advanced bioinformatics analyses will help progress 
the deconvolution of genetic and metabolic networks 
underlying CHO cell performance and, hopefully, 
facilitate more predictable and robust cell line develop-
ment processes. In parallel, there has been the effort to 
develop an increasing arsenal of tools and techniques 
for the manipulation of these expression networks in 
order to bend the CHO cell to the specific needs of 
individual projects and product molecules. Most of 
these tools are not specific to CHO cells of course, but 
do require modification and refinement having been 
developed for application in humans or other model 
organisms. Techniques such as site-specific genome 
targeting/editing using recombinase-mediated cas-
sette exchange [13], zinc finger nucleases [14], TALENs 
[15] and CRISPR-Cas [16] hold great promise in this 
regard as well as the more traditional cDNA-based and 
siRNA-based gene engineering approaches. The use of 
transposons has also shown its utility as a means of 
introducing transgenes in a stable manner [17]. When it 
comes to influencing the expression of more than one 
gene there are limits in terms of how many can be engi-
neered without running out of either selection markers 
or the cell’s capacity to transcribe and translate mul-
tiple transgenes. This increases metabolic burden and 
can negatively affect growth or product synthesis and 
secretion.
One set of regulatory molecules that has received con-
siderable attention in an effort to address this chal-
lenge has been miRNAs. RNAi, be it through siRNA 
or miRNAs, does not add any further translational 
burden on the cell, while in the case of miRNAs it can 
potentially target numerous molecular pathways [18,19]. 
In this review, we aim to present an overview of the 
current state of miRNA in CHO cell engineering, the 
pit falls, the success stories and their overall potential 
as a tool in biopharmaceutical manufacturing.

miRNAs: rules & regulations
miRNA are small, nonprotein coding RNAs of 
approximately 22 nucleotides (nt) in length that exert 
their function at the post-transcriptional level and 
have emerged as an attractive alternative to gene-
based CHO engineering (reviewed extensively in 
[20]). Typically transcribed as long primary transcripts 

(pri-miRNAs), they are cleaved and processed by the 
Microprocessor complex (Drosha/DGCR8) to gener-
ate a short (∼70 nt) hairpin loop structure [21]. This 
hairpin structure (pre-miRNA) is transported to the 
cytoplasm in a RAN-GTPase-dependent manner by 
Exportin-5 (XPO5) where it is further processed by 
another RNAse-type protein, Dicer, thus removing 
the loop to yield an approximately 22 nt duplex. The 
active mature strand guides the effector function of the 
RNA-induced silencing complex, with strand selection 
being determined by thermodynamic stability of the 
duplex end and a number of bound cofactors [22,23].
Target gene expression is regulated through imper-
fect miRNA binding to miRNA recognition elements 
located mainly within the 3′ untranslated region 
(UTR) resulting in mRNA cleavage or translation 
inhibition depending on various criteria [24]. The pri-
mary binding criteria for a miRNA to elicit its effec-
tor function is the perfect complementarity between 
its 5′-‘seed’ region (nt 2–8) with its target mRNA, 
although alternative binding patterns have been 
observed to compensate for imperfect seed pairings 
[25,26]. The inconsistency in binding ‘rules’ makes the 
prediction of potential targets difficult thus present-
ing the researcher with a roadblock during the selec-
tion process of promising engineering candidates. 
Furthermore, the small nature of the seed site imparts 
the potential of a single miRNA to target multiple tar-
get transcripts with the addition of a single transcript 
being targeted by multiple miRNA, again contributing 
to the difficulty in identifying and predicting bona fide 
mRNA targets [27]. Although miRNA target predic-
tion algorithms are a useful tool for generating lists of 
potential mRNA targets, these lists tend to contain a 
high degree of false positives and false negatives, thus 
highlighting the necessity of experimental identifica-
tion and validation of true targets [28]. In relation to 
CHO specifically, the recent release of the genome 
sequence should help refine existing target prediction 
algorithms to encompass CHO sequence informa-
tion, hopefully providing greater accuracy of target 
prediction. This will be explored further in a later 
section. 

A particular feature of miRNAs is the apparent cell-
type specific nature of their activity and this is the sub-
ject of considerable study and speculation. Until very 
recently, studying miRNA activity in CHO cells was 
confined to using cross-species tools owing to a lack of 
sequence information [29]. Since then next-generation 
sequencing (NGS) has provided data on 390 endog-
enous CHO miRNA that demonstrate a high level 
of conservation across human and mouse, as well as 
some CHO-specific sequences [11]. Furthermore, not 
only have miRNAs been shown to be highly conserved 

Key Terms

RNAi: A biological process in which RNA molecules inhibit 
gene expression, typically by causing the destruction of 
specific mRNA molecules or blocking their translation into 
proteins. Two types of small RNA molecules – miRNA and 
siRNA – are central to RNAi.

Seed region: Six to eight nucleotide sequences at the 5´-
end of a mature miRNA responsible for binding interaction 
with target mRNAs.
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across species but the elements in which they bind 
appear also to be under selective pressure suggesting 
functional conservation in target recognition across 
various species [30]. Notwithstanding this observed 
miRNA sequence or target site conservation, it has 
been postulated that miRNAs may act in a cell-type 
specific manner possibly due to the reciprocal relation-
ship between expression of a particular miRNA and 
its target mRNAs [26]. In other words, the activity of 
a particular miRNA in a cell is intrinsically linked to 
the availability of cognate target mRNAs within that 
cell. Furthermore, dosage effects are evidenced by the 
observation that modest, exogenous overexpression of 
the miRNA-processing enzyme Dicer in CHO cells 
can boost cellular proliferation, but excessive expres-
sion or indeed downregulation, leads to suppression of 
cell growth [31]. These observations demonstrate some 
of the challenges to be overcome when considering 
miRNA-based strategies for CHO cell engineering.

miRNA organization within the genome (Figure 1) 
is diverse, ranging from intronic to intergenic, under 
the control of their own promoter or coexpressed with 
a protein encoding gene in addition to being present 
as single miRNA units (monocistronic) or in clusters 
(polycistronic) [32]. The existence of clusters enhances 
miRNAs’ potential as pleiotropic engineering tools 
whereby several signaling networks might be manip-
ulated simultaneously. Particular miRNA clusters 
have been the subject of extensive study, such as the 
miR-17∼92 cluster. This cluster has been attributed 
to multiple cancerous phenotypes via several cellular 
pathways, including [33] apoptosis [33] and the cell cycle 
[34]. Profiling studies have identified this cluster to be 
highly expressed throughout the duration of fed-batch 
CHO culture [35] as well as being positively correlated 
with CHO cell growth rate [36]. The identification of 
previously validated targets of the miR-17∼92 cluster 
(E2F1, CCND1, PTEN and BCL211) in CHO cells 
demonstrates target site conservation across species [11]. 
Furthermore, conservation of function, for this cluster 
at least, could be considered encouraging when assess-
ing it as a potential engineering candidate, in light of 
the aforementioned cell-type specific activity of these 
molecules.

miRNAs: a place in the bioprocess
As mentioned above, the impact of individual miRNA 
expression on its targets tends to be modest. Indeed 
recent studies have suggested that in many cases the 
presence of a miRNA within a cell has no discern-
able effect at all [37]. This would suggest that miRNAs 
may be more subtle partners in global gene regula-
tion, functioning in the background as a means of 
curbing excessive transcriptional responses in order to 

maintain cellular homeostasis. However, that is not to 
say that their inappropriate expression cannot cause 
problems. The identification of miR-15 and miR-16 
as frequently deleted in chronic lymphocytic leuke-
mia was the first report that implicated these regu-
latory molecules in disease [38], which further led to 
the realization that a plethora of human miRNAs are 
frequently located in genomic fragile sites [39]. Since 
this discovery, miRNAs have been demonstrated to 
impact on almost every aspect of cellular activity 
including apoptosis, cell cycle, metabolism, differen-
tiation and secretion to name a few (Table 1). It is for 
this reason that miRNAs have caught the interest of 
those engaged in efforts to refine CHO cell behavior 
via genetic engineering.
Efforts to enhance viable cell concentration, maintain a 
prolonged production phase, improve protein secretion 
and quality or secure resistance to late-stage culture 
conditions, such as hypoxia or toxin build-up, could 
potentially be achieved through miRNA intervention. 
Some of the cellular processes underlying these pheno-
types have been shown to be impacted by miRNA reg-
ulation in other cell types and turn out to be conserved 
in CHO, such as the impact of miR-7 deregulation [70], 
whereas others have not been described elsewhere, as in 
the case of miR-466h and its role in inhibiting apop-
tosis in late-stage CHO culture [46]. Stable depletion of 
miR-7 using a miRNA sponge vector improved peak 
cell density, prolonged culture longevity and boosted 
secreted protein yield by almost twofold in a fed-batch 
process [71]. Similarly, Jadhav and colleagues enhanced 
the overall yield of an Epo-Fc protein through the sta-
ble overexpression of miR-17 [72]. Both studies demon-
strate the utility of miRNA-mediated engineering to 
improve CHO cell growth without negatively impact-
ing on specific productivity [73], a common trade-off 
for superior growth rates and vice versa [73]. From a 
product quality perspective, Strotbek et al. reported 
that the glycosylation profile of recombinant IgG1 was 
not compromised in CHO cells engineered to stably 
coexpress miR-557 and miR-1287, while inducing 
increased specific cellular productivity [74]. Besides the 
manipulation of individual miRNAs it has also been 
shown that tuning global, cellular miRNA levels via 
the RNAi processing machinery influences bioprocess-
relevant phenotypes. Hackl et al. found that overall 
miRNA expression in CHO cells cultured in serum-
containing medium was elevated [11] and upon further 
investigation found that Dicer mRNA and protein lev-

Key Term

miRNA sponge: An exogenously expressed decoy mRNA 
containing binding sites to functionally deplete a mature 
miRNA or miRNA family.
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Gene 1 Gene 2
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Polycistronic miRNA

2) Intronic miRNA

Exon 1 Exon 2 Monocistronic miRNA
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Figure 1. Genomic organization of miRNA. There are three ways in which miRNA can organize within the genome. 
(1) Intergenic miRNAs are located within the noncoding ‘junk’ DNA between coding genes, are under the 
transcriptional control of their own transcription unit (TU) and can be (1A) monocistronic or (1B) polycistronic. 
(2) Intronic miRNA are processed from the intron of protein coding genes subsequent to intron splicing and 
can be (2A) monocistronic, (2B) polycistronic and uncommonly (2C) miRtronic whereby the mature pre-miRNA 
constitutes the entire intron and bypasses cleavage by Drosha/DSCR8 through intronic splicing. All intronic miRNA 
can be expressed under the control of their own TUs or be coexpressed with their host gene. (3) Exonic miRNA are 
located within the coding exon of a host gene and can be under either its own TU or the host genes TU.
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els decreased in response to nutrient or serum removal. 
However, attempts to engineer Dicer expression dem-
onstrated a very sensitive phenotypic response to the 
levels of Dicer present in the cells. Knockdown below 
endogenous levels or excessive overexpression both 
negatively affected growth but mild overexpression was 
found to be beneficial [31]. For this reason fine tuning 
the expression of single or small numbers of individual 
miRNAs, such as those mentioned previously, is prob-
ably a better approach for those interested in targeting 
a specific cellular function or behavior. A number of 
groups have reported on miRNA expression profil-
ing in CHO cells representing different phenotypes, 
producing different products or grown under different 
conditions in order to identify potential engineering 
targets. These are discussed in more detail in Section 4 
and, in particular, demonstrate the importance of gen-

erating CHO-specific miRNA expression data.
Although observations from other cellular systems 

can provide useful hints as to which miRNA might 
be worth considering as a tool in CHO cells, the cell-
specific nature of their action can lead to disappoint-
ing results. A good example of this is miR-34a. This 
miRNA is known to downregulate the glycotransfer-
ase α-1,6-fucoslytransferase (FUT8), which adds an 
N-linked fucosyl group via an α-1,6 linkage in the 
Fc region of IgG molecules [75,76]. This is known to 
reduce antibody-dependent cell cytotoxicity and there-
fore the efficacy of therapeutic mAbs. For example, 
two blockbuster mAbs produced in CHO cells – 
trastuzumab (Herceptin™), used for the treatment 
of breast cancer; and rituximab (Rituxan™) used 
for the treatment of non-Hodgkin’s lymphoma – 
exhibit low antibody-dependent cell cytotoxicity due 
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to high fucosylation and thus necessitate high patient 
doses. On the other hand, a 100-fold increase in anti-
body-dependent cell cytotoxicity was achieved via 
siRNA-mediated suppression of FUT8 [77], which has 
the benefit of reducing the quantities of a therapeutic 
required to supply the same sized market. This sug-
gests miR-34a overexpression to repress FUT8 activ-
ity might represent a potential engineering strategy in 
CHO cells. However, miR-34a is also a potent tumor 
suppressor found to be deregulated in a multitude of 
cancerous phenotypes [78]. It causes cell cycle inhibi-
tion through its interaction with pro-cell cycle genes, 
such as CCND1, CCNE2, CDK4 and CDK6 [41,79], as 
well as direct repression of anti-apoptotic genes, such 
as BCL2 and survivin [47,80]. Indeed this phenotypic 
effect was found to be conserved upon its overexpres-
sion in CHO cells, with a 90% reduction in cellular 
growth and induction of apoptosis, yet with no detect-
able change in fucosylation of secreted IgG [Unpublished 

Data from the Authors’ Group].
Yet a broad appreciation of the function of these 

molecules in other systems should still be considered 
worthwhile when considering the bioprocess. For 
example, the ‘Warburg effect’ is a process by which can-
cer cells avidly take up glucose and almost exclusively 
convert it to lactate in an energetically unfavorable pro-
cess called aerobic glycolysis [81]. This phenomenon is 
typical of cultured mammalian cell lines and can be 
problematic during recombinant protein production 
where lactate accumulation impacts cell viability. Glu-
cose metabolism has been linked to c-Myc expression, 
which is known to regulate the expression of numerous 
miRNAs [82]. Cellular reprograming of the Warburg 
effect has been observed through the stimulation of 
glutamine metabolism mediated through the suppres-
sion of miR-23a/b, thus releasing their inhibitory func-
tion on glutaminase [57,83]. Glucose metabolism has 
also been demonstrated to be regulated by the miRNA 
let-7 family through interference with Irs2 and INSR 
[59]. Other miRNAs known to be involved in various 
stages of metabolism are miR-122 (liver metabolism), 
miR-124/-137/-340 (glycolysis) and miR-33a/33b 
(fatty acid and insulin metabolism) [58,61,65]. These 
examples highlight the possibility of fine-tuning cellu-
lar metabolism via miRNA manipulation in a manner 
that could benefit cells in the bioreactor.

The genomic revolution: implications for 
CHO cell engineering using miRNAs
The publication of multiple CHO cell line and paren-
tal hamster genome sequences has signaled the begin-
ning of the systems biology era in these mammalian 
cell factories [7,84–85]. Genome-scale analysis promises 
to increase the efficiency of biopharmaceutical manu-B
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facture in areas such as optimizisation of culture con-
ditions (e.g., media formulation), identification of bio-
markers for advanced process monitoring and indeed 
through manipulation of the cellular machinery. In 
this section, we will review how the availability of 
genomic sequence data is facilitating a deeper under-
standing of CHO miRNA biology and the influence 
these noncoding RNAs exert on industrially desirable 
phenotypes.

A typical CHO miRNA research program begins 
with a ‘discovery phase’, where a well-controlled 
experiment is designed to study expression patterns 
and prioritize miRNAs correlated with a particular 
characteristic, for example, rapid growth rate. The 
utilization of optimized miRNA profiling platforms 
is essential to ensure that false-positive rates are mini-
mized and the most promising candidates progress to 
future functional studies. Pre-genome CHO miRNA 
expression profiling experiments exploited the high 
levels of mature miRNA sequence conservation and 
allowed the field to progress steadily without access 
to species-specific ‘omics’ analysis platforms. To date, 
multispecies (human, mouse and rat) microarrays 
[29,35,86] and human qPCR-based Taq-man low density 
arrays [36] have been utilized to successfully highlight 
deregulated CHO miRNAs in a range of cell culture 
conditions. Perhaps it is surprising that, despite the 
availability of genomic sequence and the potential 
of miRNA-based engineering, there is currently no 
miRNA hybridization array or qPCR assays available 
commercially for expression profiling in CHO cells. 
In recent years, researchers have begun to increas-
ingly utilize NGS technology for miRNA expression 
profiling analysis. Several deep sequencing studies 
of miRNA expression, similar to the platforms men-
tioned above, have also relied on the conservation to 
identify miRNA. For instance, Johnson and cowork-
ers identified 350 highly conserved miRNAs from 
NGS-based analysis following comparison to human, 
mouse and rat [87].
While mature miRNA sequences tend to be highly 
conserved the obvious drawback is that species-spe-
cific miRNAs are not detected by homology-based 
approaches. The potential of miRNAs that are unique 
to CHO cells is of particular interest to the commu-
nity given the possibility that these molecules may 
underlie the advantages of this cell line for industrial 
applications. Hackl and coworkers demonstrated 
an approach to identify novel miRNAs without the 
genome sequence [11]. In that study, several CHO 
cell lines were cultured under a variety of conditions 
and miRNA analysis was carried out using NGS. To 
investigate miRNA expression patterns the authors ini-
tially employed a homology-based approach by align-

ing reads to a synthetic reference genome comprised 
of all known hairpin sequences within the miRBase 
repository [88]. A multistage bioinformatics pipeline 
was used to identify novel miRNAs from reads that 
did not map to known miRNAs (or indeed other small 
RNAs) by analyzing miRNA-like RNA secondary 
structure using RNA-fold, determining genomic loca-
tion (i.e., intergenic) through comparison to mouse 
and utilizing a supervised algorithm to recognize 
miRNA sequence features (e.g., Dicer cleavage site). 
In total 235 conserved miRNAs were identified along 
with 11 putative novel miRNAs in CHO cells utilizing 
this approach.

Following the release of the genome sequence, 
NGS-based approaches, while still relying to some 
extent on conservation, researchers are increasingly uti-
lizing the CHO genome sequence. For instance, Ham-
mond et al. aligned reads to the CHO-K1 genome to 
examine miRNA organization and precursor miRNA 
sequences [88,89]. Analysis of the six miR-17–92 clus-
ter members revealed a 95% sequence similarity 
between CHO cells and the mouse genome. Fur-
ther analysis of miRNA sequences and organization 
across the CHO-K1 genome was described by Hackl 
et al. in 2012 [90]. In this study, 212 previously iden-
tified mature miRNAs were mapped to genomic loci 
for two independent CHO-K1 genomes and the pre-
miRNA sequences were then submitted to miRBase. 
At the time of writing miRBase (Release 20) con-
tains sequence data for 200 mature and 307 precursor 
Cricetulus griseus miRNAs and provides an essential 
resource that will enable miRNA expression profiling 
for future studies.

Access to genomic sequence is not only enhanc-
ing our ability to measure miRNAs directly but also 
enabling us to elucidate their impact on other levels 
of the biological system and complementing outputs 
from target prediction algorithms [91]. Recent studies 
in the CHO area have demonstrated the effectiveness 
of parallel global protein and gene expression profil-
ing to understand the regulation of the biological 
pathways impacted by miRNAs at different phases of 
the culture [35] and the role miRNAs play in growth 
rate variation [36,92]. As with miRNA expression pro-
filing, genome sequence availability is enhancing our 
ability to conduct high quality mRNA transcriptome 
and proteomic studies in CHO cells. The release of the 

Key Term

miRBase: Database of published miRNA sequences 
including hairpin and mature forms as well as genomic 
location and any references. The current version (Release 
20) contains 24,521 entries representing hairpin precursor 
miRNAs, expressing 30,424 mature miRNAs in 206 species 
– www.mirbase.org.
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CHO-K1 genome sequence has led to the development 
of the first commercially available Affymetrix micro-
array comprised of probe sets targeting 19,670 genes 
[93]. In addition, the CHO-K1 and hamster genomes 
also permit improved analysis of CHO mRNA expres-
sion using NGS-based platforms. In particular, mass 
spectrometry-based proteomic analysis has improved 
greatly following the release of genome sequences. 
For instance, Meleady et al. reported a 40–50% 
improvement of protein identifications based on CHO 
sequence in comparison to using cross-species protein 
identification [94].

The availability of species specific expression profil-
ing platforms in combination with genomic sequence 
will undoubtedly reduce false-positive rates when 
selecting candidates not just for miRNA engineer-
ing also confirming direct miRNA targets. A recent 
publication by Clarke et al. demonstrated the util-
ity of multiple expression profiling technologies and 
the ability to place those data in the context of the 
genome to study the role of miRNAs in CHO cells 
[36]. In that study, miRNA, mRNA and proteomic 
expression data along with genomic sequence were 
integrated to investigate the variability in growth rate 
arising during cell line development. The first stage in 
the analysis identified 51 high-priority miRNAs that 
either increased or decreased in expression as cellular 
growth rate increased. Following individual analysis of 
protein and gene expression these data were combined 
to identify proteins that were translationally repressed 
(i.e., protein expression was altered while mRNA 
levels remained constant). Potential targets for those 
miRNAs associated with growth rate were then pre-
dicted using the TargetScan algorithm [95]. CHO cell 
genomic sequence not only increased the coverage of 
proteomic analysis but also allowed the identification 
of miRNA binding sites within the 3′ UTR of trans-
lationally repressed proteins that were observed to be 
conserved in human, mouse, rat and, for the first time, 
in CHO cells

miRNA sponge technology: a lesson from 
nature
A recent review by Park and colleagues on genetic 
knockout studies in mice indicated that “genetic abla-
tion of miRNAs may not result in obvious phenotypes” 
[96]. This may be attributed in part to the functional 
redundancy inherent in the presence of related miRNA 
seed families as well as paralogs that share endogenous 
mRNA targets [25]. As such, multiple rounds of genetic 
knockout may be necessary to observe any pheno-
typic impact. A means to navigate around this inher-
ent genetic fortitude has come from observations in 
nature of the apparent reciprocal relationship between 

miRNAs and their target genes (reviewed in [26]). This 
lead to the hypothesis that miRNA targets could act as 
competitive inhibitors of miRNA function [97].

The first observation of an endogenous mRNA 
impacting on miRNA function was discovered in 
Arabidopsis thaliana and their response to phosphate 
starvation [98]. Upon deprivation of inorganic phos-
phate, upregulation of miR-399 resulted in the accu-
mulation, rather than depletion, of its predicted target 
PHO2 encoding a ubiquitin-conjugating E2 enzyme. 
It was discovered that the expected suppression of 
PHO2 was circumvented due to increased expression 
of the noncoding (nc) gene, IPS1. Thus IPS1 acted as a 
miRNA decoy, sequestering or titrating miR-399 func-
tion away from its endogenous targets. Furthermore, 
additional mismatches in the duplex formed between 
miR-399 and IPS1 prevented Ago2-mediated slicing 
of the IPS1 transcript, allowing persistence of this 
‘target mimic’ in the cell. The presence of common 
miRNA recognition elements allows these competitive 
endogenous RNAs to mutually regulate each other in 
a titration-dependent manner, as observed recently for 
the ZEB2 transcription factor and the tumor suppres-
sor PTEN [99,100]. Not only did the observation dem-
onstrate that target mRNA abundance dilutes miRNA 
activity, but it identified its presence in a mammalian 
system and in contributing to a disease state [101]. 
Indeed this phenomenon was found to go beyond pairs 
of protein-encoding genes to include long noncoding 
RNAs [102]. To support the role of PTEN as a tumor 
suppressor, the pseudogene PTENP1 contains miRNA 
recognition elements within its 3′ UTR similar to that 
of its coding counterpart PTEN. Expression of this 
pseudogene transcript retains biological activity as a 
decoy to sequester and fine tune the translation of the 
coding PTEN through competitive binding. Indeed, it 
has been shown that the PTEN1 locus is frequently lost 
in human cancers [103].

More recently the phenomenon of head-to-tail splic-
ing of exons has been shown to generate an exciting 
new class of noncoding RNAs with regulatory poten-
tial, known as circular RNAs [104–106]. For example, an 
antisense transcript from the cerebellar degeneration-
related protein 1 (CDR1as) [107] was found to gener-
ate a circular decoy that harbored 63 conserved bind-
ing sites for the well-characterized tumor suppressor 
miRNA, miR-7 [108].

The discovery of these endogenous miRNA decoys 
led to the development of ‘miRNA sponge technology’ 
as an experimental tool to evaluate miRNA function 
[109]. Named for their ability to soak up endogenous 
miRNAs, miRNA sponges contain multiple sites of 
complementarity to the miRNA of interest, usually in 
an artificial 3′ UTR placed downstream of a reporter 



www.future-science.com 331future science group

Bioprocess engineering: micromanaging Chinese hamster ovary cell phenotypes    Review

gene such as GFP (Figure 2). Drawing from lessons in 
nature, mismatches were introduced as a means to inhibit 
miRNA-mediated mRNA cleavage, thus prolonging the 
life-time of the sponge decoy [110]. As seed pairing has 
been observed to be sufficient to drive miRNA-target 
interactions, miR-sponges have the potential to sequester 
entire miRNA seed families. Although this can compli-
cate efforts to understand the network of downstream 
molecular events that accompany multi-miRNA inhibi-
tion, research has proven the miR-sponge approach to 
be a viable tool for industrial rCHO cell line engineering 
[71]. In this study prolonged sequesterization of miR-7 
by a stably expressed sponge resulted in increased peak 
cell density, prolonged viability and ultimately enhanced 
yield in a CHO fed-batch culture.

Another potential application of this approach is 
the use of sponge sequences as a means of controlling 
the expression of transgenes in a miRNA-dependent 
manner. Consider a situation whereby overexpression 
of a particular gene was desirable only at a particular 
point in the culture but otherwise it should be silent. By 
identifying an endogenous miRNA whose expression 
is anticorrelated with the desired transgene expression 
profile, a sponge for that miRNA placed downstream 
of the transgene sequence would suppress its expression 
during the chosen culture phase. Conversely it would 
become derepressed later when the miRNA was natu-
rally downregulated (Figure 2). This application is in 
some ways analogous to the use of inducible promoters.

Overexpression: performance enhancing 
miRNAs
There are a limited number of reports on the impact 
of miRNA overexpression on CHO cell behavior. As 
mentioned earlier, CHO Dicer mRNA and protein 
levels are reduced in response to serum starvation and 
nutrient depletion [31]. Conversely, Dicer expression 
was increased threefold in fast growing CHO cells 
cultured in protein-free media when compared with 
slow-growing CHO cells. Furthermore, modest Dicer 
overexpression in these slow-growing cells enhanced 
cellular growth rate by 20%. This observation com-
plimented a previous observation by this group that 
overall miRNA abundance correlated with cellular 
growth comparing CHO cells cultured in SFM and 
serum-containing medium [11].

In terms of perturbing individual miRNAs, transient 
transfection of a miR-7 mimic was shown to increase 
specific productivity in CHO cells while arresting cell 
growth [70] potentially via pathways associated with 
protein translation and RNA/DNA processing includ-
ing inhibition of genes involved in cell growth such as 
stathmin and catalase [111].

Stable overexpression is typically achieved using 

either a RNA PolIII promoter to express a short pre-mir 
that is processed by Drosha and Dicer into the mature 
form or by co-expression with a protein-encoding 
reporter gene in a PolII-dependent manner (Figure 2). 
Both transient and stable overexpression studies have 
been explored in CHO cells for miR-17 and miR-
557/1287 [72,74,112]. Overexpression of miR-17 resulted 
in enhanced cell growth and specific productivity of an 
EpoFc protein resulting in a threefold improvement in 
titre. An extensive functional screen by Strotbek et al. 
identified several miRNAs associated with improved 
Qp and subsequent stable co-expression of miR-
557/1287 enhanced both cell density and productivity 
without compromising IgG product quality [20].

It is also worth noting that prior to the availabil-
ity of CHO sequence information, miRNA overex-
pression vectors incorporated murine flanking and 
loop sequences from miR-155 to generate a chimeric 
miRNA expression vector. Although conservation in 
miRNA hairpin flanking elements has been docu-
mented [113], a recent study has shown that the use of 
endogenous, CHO-specific miRNA sequences over 
chimeric constructs produced significantly higher 
expression levels of mature miRNA in the case of miR-
221/222 and miR-15b/16 [114]. This improved vector 
design provides another example of how CHO genome 
sequence information has enhanced and refined the 
tools available to engineer this host.

Finally, one must consider the practicalities of 
manipulating miRNA levels in a commercial process. 
The most obvious route for any genetic engineering 
approach would be to generate a stable CHO cell line 
– either subsequent to insertion of the product encod-
ing sequence or more likely into a parental CHO line 
– that would be used in subsequent cell line devel-
opment projects. These cell lines would obviously 
require a full regulatory filing. However, there is the 
potential to use miRNA mimics or inhibitors in an 
existing approved process via transient transfection – 
almost like a media supplement – which would have 
considerably less regulatory implications (Figure 2). 
This approach has been demonstrated in scale-down 
models recently [115].

Summary & future perspective
As the number of biological drugs in development and 
entering the market continues to grow the necessity of 
improving and refining the CHO cells used to manu-
facture them also increases. Marked advances have 
been achieved in the area over the last 25 years and it 
has even been suggested that the limit of specific pro-
ductivity (∼100 pg/cell/day) has been reached [1]. How-
ever, reaching these productivities is still far from rou-
tine and we still lack understanding of the mechanisms 
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Figure 2. A series of vector- and nonvector-based engineering strategies are available for the engineering of 
rCHO using miRNA in both a stable and transient manner (see facing page). (A) Stable miRNA overexpression 
can be achieve through the introduction of a reporter construct (GFP) with the desired miRNA sequence (miR) 
inserted into its 3′ untranslated region (UTR). Upon transcription, the reporter gene is translated while the 
miRNA-duplex hairpin is processed by the cells miRNA biogenesis machinery. The mature processed, RNA-induced 
silencing complex loaded, miR subsequently inhibits the translation of its Endo mRNA by association with MREs 
with the mRNAs 3′ UTR. (B) Stable miRNA depletion/inhibition is achieved through the introduction of a decoy 
mRNA (YFP) containing multiple MREs specific for the miRNA of interest. In the presence of the sponge decoy, 
endogenous miRNA is sequestered from its ‘normal’ targets (Target mRNA) through competitive inhibition 
resulting in the translation of endogenous mRNA targets. (C) In the event of knowing the miRNA expression 
profile of a CHO cell over the course of the various culture phases, an miRNA-dependent transgene can be utilized 
as a rudimentary inducible system. The cell cycle inhibitor p27, engineered with MREs, can be expressed at low 
levels during exponential growth phase as a result of high target miRNA levels. Once miRNA levels decline p27 is 
derepressed, thus mediating cell cycle arrest in the stationary phase, potentially negating the implementation of 
hypothermic growth conditions for example. (D) Large-scale bulk transfection can be performed transiently by 
introducing small working concentrations of either mimics (overexpression) or inhibitors (knockdown) at various 
culture time points in a bioreactor to achieve a multitude of phenotypes such as enhanced product quality or 
yields. 
Endo mRNA: Endogenous mRNA; GFP: Green fluorescent protein; MRE: miRNA-recognition element; YFP: Yellow 
fluorescent protein.
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by which some clones and not others, can achieve these 
specific productivities. Increasing maximal cell densi-
ties within the bioreactor could also push volumetric 
yields further. Yet many would suggest that product 
yields from most current processes, particularly in 
the case of mAbs, are adequate and perhaps the next 
most desirable outcomes would be better predictabil-
ity and control over properties such as product quality, 
cell line stability, process robustness during scaling or 
tech transfer and perhaps yield in the case of some of 
the more difficult to express products. The expanding 
range of fragments and fusions in development may 
also require some case-by-case attention in order to 
manufacture them efficiently. Future efforts will uti-
lize the expanding number and range of ‘omics datas-
ets to start building and testing genomic and metabo-
lomic network models of CHO cell behavior with a 
view to gaining greater understanding of the platform 
and ultimately, to develop strategies to control some of 

these traits. In parallel, the development and testing 
of various genetic tools to implement these strategies 
continues apace. Among this expanding toolkit miR-
NAs and their manipulation represent a valuable and 
useful option and will no doubt play a role in shaping 
the CHO cell hosts of the future.
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Executive summary

•	 miRNAs are small regulatory molecules capable of influencing the expression of multiple target genes 
simultaneously.

•	 Their activity is often tissue- or cell-type dependent, therefore it is important to study their expression and 
the effect of deregulation in the cell of interest.

•	 Several practical examples of miRNA manipulation in Chinese hamster ovary cells have demonstrated 
improvements in phenotypes such as growth, culture longevity and cell productivity.

•	 In the post-genome era of Chinese hamster ovary cell engineering miRNAs represent a promising additional 
tool for researchers and biopharmaceutical companies to improve recombinant protein production.
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