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Summary	 Over the last decade, our knowledge of b-cell biology has expanded 
with the use of new scientific techniques and strategies. Growth factors, hormones and 
small molecules have been shown to enhance b-cell proliferation and function. Stem cell  
technology and research into the developmental biology of the pancreas have yielded new 
methods for in vivo and in vitro regeneration of b cells from stem cells and endogenous 
progenitors as well as transdifferentiation of non-b cells. Novel pharmacological approaches 
have been developed to preserve and enhance b-cell function. Strategies to increase 
expression of insulin gene transcription factors in dysfunctional and immature b cells have 
ameliorated these impairments. Hence, we suggest that strategies to minimize b-cell loss 
and to increase their function and regeneration will ultimately lead to therapy for both 
Type 1 and 2 diabetes.
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�� Both Type 1 and 2 diabetes result from a loss of b-cell mass and function.

�� Antigen-specific and antigen-nonspecific approaches offer a way to preserve and restore b cells in Type 1 
diabetes.

�� β-cell replacement from stem cells, induced pluripotent cells and other sources can potentially yield 
insulin-producing cells.

�� Diet, exercise and pharmacological intervention have been the main treatments for preserving b cells in 
Type 2 diabetes patients.

�� Cell-cycle regulators, growth factors and hormones are avenues that can be used to stimulate b-cell 
proliferation.

�� GLP-1/GIP and their analogs can direct b-cell proliferation and increase b-cell function.

�� Neogenesis and transdifferentiation are two potential approaches for in vivo b-cell replenishment.

�� Glucokinase activators and microRNA offer alternative pathways for b-cell enhancement.

�� b-cell function can be augmented by enhancing the expression of insulin gene transcription factors.
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Diabetes is a major health issue with more 
than 200  million people affected worldwide 
[1]. According to the latest statistics, approxi-
mately 439  million people will be suffering 
from diabetes and its complications by 2030 
[1,2]. Insulin secretion from pancreatic b cells is 
integral to the regulation of blood glucose levels, 
and the loss of functional b cells is seminal in 
the development of both Type 1 diabetes (T1D) 
and Type 2 diabetes (T2D). T1D results from 
autoimmune destruction of b cells, while T2D 
results from a combined loss of b-cell mass and 
b-cell function, where the loss of b-cell mass 
could result from b-cell dysfunction [3–5]. Much 
progress has been made in recent years towards 
finding ways to prevent the reduction of b-cell 
mass, preserve function of remaining b cells and 
develop approaches to regenerate them [6–9]. 
This article will briefly summarize our current 
understanding of these therapeutic strategies 
and highlight some of the recent advances in 
the field.

Strategies for preserving & restoring b-cell 
mass in T1D
Long after the onset of T1D, a significant num-
ber of patients retain a limited number of b cells 
[4,10,11]. The examination of pancreases from the 
Joslin Medalist Cohort, which included individ-
uals who have suffered with T1D for 50 years or 
more, showed that all the pancreases had some 
scattered single or small clusters of insulin-
expressing cells and some contained a range 
from a few to many insulin cells [12]. More than 
two-thirds of medalists had detectable random 
C-peptide, a measure of endogenous insulin 
secretion in serum, suggesting that remaining 
b cells retain some function [12]. The quantity 
of remaining b cells in T1D patients is not suf-
ficient to control blood glucose, and hence we 
need to develop ways to prevent the destruction 
of b cells and replenish functional b cells. 

Several excellent reviews have summarized 
the etiological and immunological base for the 
development of T1D, and have discussed preven-
tion and intervention strategies to avert b-cell 
loss in T1D patients [4,11,13–15]. The prevention 
approaches target high-risk individuals prior to 
the development of diabetes, while intervention 
strategies are used for newly diagnosed T1D. As 
the destruction of b cells in T1D is an autoim-
mune event, antigen-specific and antigen-non-
specific immunotherapies have been used in both 
prevention and intervention trials [11,13,14,16,17]. 

Antigen-nonspecific approaches include the 
use of cyclosporine, BCG, anti-thymoglobulin, 
anti-CD3, anti-CD20, IL-1 antagonists and 
TNF-a blockade [11,15,18]. Similarly, trials assess-
ing the capacity of antigen-specific therapies to 
induce regulatory T (Treg) cells and/or delete 
pathogenic T cells used antigens including insu-
lin, GAD65, HSP60 and their peptides [14,16]. 
Despite promising results from clinical trials, 
there is yet to be an immune therapy that com-
pletely stops autoimmune destruction and works 
successfully in humans [17]. Ultimately, a poten-
tial therapeutic strategy for T1D may require a 
combination of inducing nonspecific immuno-
suppression and antigen-specific induction of 
Treg to achieve a long-term silencing of autoim-
munity without losing the protective immune 
response [11,16]. Advances in high-throughput 
screening strategies (e.g., to identify molecules 
that suppress cytokine-mediated b-cell apopto-
sis [19]) could provide new approaches for T1D 
treatment. However, even with an effective 
immunotherapy, a true b-cell-based cure for 
T1D will require the replacement of lost b cells 
with functional b cells.

Replenishing b cells generated from 
in vitro differentiation strategies
Successful suppression of autoimmunity and 
b-cell replacement are key components for 
developing a successful therapy for T1D. Over 
the last decade, significant advances have been 
made towards generating insulin-producing 
cells from stem cells, induced pluripotent stem 
(iPS) cells and from rare adult pancreatic pro-
genitors, duct cells and nonpancreatic cell types 
[9,20–22]. A biotechnology company, ViaCyte 
(San Diego, CA, USA) have developed a dif-
ferentiation protocol for human embryonic stem 
cells (hESCs) based on the current understand-
ing of pancreatic development. They generated 
a stepwise differentiation protocol to convert 
hESCs first into definitive endoderm, then 
into the primitive gut tube, posterior foregut 
and pancreatic endoderm [23,24]. However, the 
formation of mature glucose-responsive b cells 
required the transplantation of hESC-derived 
pancreatic endoderm in nude mice [24]. A simi-
lar stepwise differentiation strategy was used 
to derive insulin-producing islet-like clusters 
from hESCs [25,26]. Even iPS cells derived from 
human somatic cells in control and T1D sub-
jects were differentiated into insulin-producing 
cells using similar strategies [27]. 
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Despite the successful in vitro differentiation 
of stem cells and progenitor cells into insulin-
producing cells, the process is still inefficient 
and the differentiated cells are immature, 
have limited insulin content and lack glucose-
stimulated insulin secretion (GSIS). High-
throughput screening has been used to enhance 
the efficiency of this differentiation process by 
identifying a series of small molecules capable of 
sequentially differentiating stem and progenitor 
cells into b cells. Recently, two small molecules, 
IDE-1 and -2, were identified as being capable 
of efficiently converting mouse and human 
embryonic stem cells into definitive endoderm 
[28]. Similarly, indolactam V was identified as 
a compound that enhanced the differentiation 
of hESC-derived endodermal cells into Pdx1-
expressing pancreatic progenitors [29], and was 
used in the differentiation of human iPS cells 
into insulin-producing cells [30,31]. Recently, an 
approach has combined small molecules and 
stepwise differentiation strategies to convert 
hESCs into mature glucagon-secreting a-cells 
[26]. Hence, it is likely that the high-throughput 
screening approach may increase the efficiency 
of stepwise differentiation protocol of converting 
hESCs into a-, b- and other endocrine cells, as 
well as identify small molecules that can enhance 
the responsiveness of b cells to glucose.

Strategies to preserve b-cell function 
in T2D 
T2D is characterized by impaired insulin 
secretion accompanied by insulin resistance 
in peripheral tissues [32–34]. The major cause 
of T2D development is decreased pancreatic 
b-cell mass and impaired b‑cell function 
[3,35]. However, as the reduction in b-cell mass 
only correlated with the duration of diabetes, 
Henquin and colleagues argued that the reduc-
tion in b-cell mass could be a consequence of 
b-cell dysfunction, and not the cause of diabe-
tes [5]. Interestingly, reducing insulin demand 
can delay the progression of disease from the 
insulin-resistant stage, to impaired glucose 
tolerance (IGT) and diabetes [36]. Approaches 
that have been used to preserve b-cell func-
tion include weight loss and increased physi-
cal activity to improve insulin sensitivity [36]. 
Pharmaceuticals, such as thiazolidinediones 
(TZDs) and metformin, improved insulin 
resistance in individuals with IGT and pre-
vented their progression to T2D [37,38]. GLP-1 
and GLP-1 analogs represent another class of 

drugs that prevent such progression from IGT 
to T2D by improving b-cell function and trig-
gering weight loss [36,37,39–43]. Although one 
needs to be concerned about the side effects of 
therapeutics, such as TZDs, these observations 
suggest that a combination of diet and exercise 
along with therapeutics designed to reduce the 
insulin demand can be used to preserve b-cell 
function and prevent diabetes. 

Enhancing b-cell mass & function: 
strategies with therapeutic potential for 
both T1D & T2D
Since the finding that T1D and T2D result from 
a reduction in functional b-cell mass, strategies 
that can enhance b-cell mass and function will 
benefit both forms of diabetes. b-cell number 
can be increased by enhancing proliferation of 
existing b cells or by in vivo regeneration of new 
b cells from non-b cells (i.e., by neogenesis/
transdifferentiation). However, consequences 
of such therapies should be carefully evaluated 
for enhanced risk for uncontrolled cell growth. 
In addition to enhancing b-cell proliferation, 
another therapeutic strategy for diabetes will 
be to increase the effectiveness of the remain-
ing b-cell mass by enhancing their functional 
capacity. The next section will summarize 
recent advances in our understanding of dif-
ferent approaches used to enhance b-cell mass 
and function. 

Increasing b-cell mass by enhancing b-cell 
proliferation
Mice expressing constitutively active cell-cycle 
activators, such as CDK4R26C or lacking the 
expression of cell-cycle inhibitors, such as p16, 
p18 or p27 had greater b-cell mass, suggest-
ing that cell-cycle regulators tightly control 
the proliferation of pancreatic b cells [44,45]. 
Furthermore, the increased levels of cell-cycle 
inhibitors with age accompanied the reduc-
tion in b-cell proliferation [44–48]. Although 
evidence suggests that the regulation of b-cell 
proliferation in humans and rodents is not iden-
tical, increased understanding of this process 
in humans and rodents will benefit our efforts 
to enhance the proliferation of human b cells 
[48–50]. A polycomb group of repressor protein 
EZH2 was identified in mice as an inhibitor of 
p16 expression in b cells during early stages of 
life [51]. A recent study demonstrated that PDGF 
regulates the expression of EZH2 and in turn 
the proliferation of both mouse and human 
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pancreatic islets [52]. Several other growth fac-
tors are also implicated in regulating b-cell pro-
liferation. Increased expression of CTGF dur-
ing embryonic development has been found to 
increase the proliferation of immature b cells [53]. 
In vivo overexpression of HGF in the b cells of 
transgenic mice increased b-cell mass, insulin 
production and glucose metabolism [54,55]. 

Similar to growth factors, several hormones 
have been implicated in regulating b-cell prolif-
eration. The transgenic expression of PTHrP in 
b cells increased their mass and insulin secretion, 
and the mice became resistant to streptozotocin-
induced diabetes [56]. Such an effect of PTHrP 
could be mediated by its N-terminal peptide, 
which was sufficient to increase the expression 
of cell-cycle regulators cyclin E and CDK2, 
and enhance proliferation of human b cells [57]. 
An examination of the mechanisms enhancing 
b-cell proliferation during pregnancy has led to 
the identification of several potential regulators 
of the in vivo b-cell mass. Placental lactogen 
and prolactin have been linked to the increased 
b-cell mass during pregnancy [58,59]. Further 
examination of how b-cell mass is enhanced 
during pregnancy and how this increase is rap-
idly normalized to nonpregnant levels after birth 
suggested a role of serotonin signaling in regulat-
ing this process. Serotonin was shown to signal 
through two distinct serotonin receptors: first 
through the HTR2b receptor to enhance b-cell 
proliferation during midgestation and then 
shortly before parturition through the HTR1d 
receptor to inhibit b-cell proliferation [60]. 

Gastric hormones represent another class of 
regulators implicated in b-cell proliferation and 
survival. Several studies in various mouse models 
of diabetes and obesity have found that GLP-1 
and its analogs can cause b-cell regeneration 
and improve glucose tolerance [61,62]. GLP-1 has 
a short half-life in the body, and GLP-1 ana-
logs with a longer half-life, such as exendin-4, 
improved both b-cell proliferation and neogen-
esis [61]. Similar long-acting DPP-IV-resistant 
GLP-1 analog, Liraglutide, increased b-cell mass 
and protected them against oxidative and ER 
stress in db/db mice [63]. Inhibitors of DPP-IV, 
an enzyme that inactivates GLP-1 and GIP-1, 
when given to patients with T2D markedly 
improved their b‑cell function and HOMA-B 
[64]. Despite these promising findings, it is still 
unknown whether GLP-1 analogs and DPP-IV 
inhibitors can preserve and enhance the b-cell 
mass in human T2D patients [65]. 

Another gastric hormone, gastrin, has been 
implicated in regulating b-cell proliferation [66]. 
Gastrin is widely expressed during embryonic 
development in the pancreas but its expression 
decreases during postnatal development when 
b-cell proliferation is reduced [67]. However, gas-
trin alone was not sufficient to enhance b-cell 
proliferation, but when used in conjunction with 
other factors, such as EGF and GLP-1, increased 
b-cell mass [68–71]. While these data sound prom-
ising, the question remains as to whether gastrin 
by itself, or in combination with other factors, can 
preserve or regenerate b-cell mass in the human 
pancreas. 

Although we discussed several growth factors 
and hormones that have the ability to regulate 
b-cell proliferation, glucose is still considered 
to be the major regulator of this process [72–75]. 
Recently, using novel animal models, such as 
mice with altered glucokinase levels in b cells 
and compounds, such as GKA, Porat and col-
leagues convincingly demonstrated that glucose-
mediated b-cell replication in vivo reflects b-cell 
glucose metabolism [76]. They also demonstrated 
the importance of b-cell membrane depolarization 
in regulating b-cell proliferation [76]. Studies are 
being conducted to identify other small molecules 
that are capable of enhancing b-cell replication. 
TMEM27, a 46  kDa transmembrane protein 
and a major target of transcription factor TCF1 
(MODY3 gene), increased b-cell mass in vivo and 
augmented GSIS [77,78]. Recent work on char-
acterizing how TMEM27 regulates this process 
resulted in the identification of BACE2, a protease 
that cleaves TMEM27 and inactivates its ability 
to enhance b-cell proliferation. By screening for a 
library of protease inhibitors, a BACE2-specific 
inhibitor was identified that successfully increased 
b-cell mass and improved insulin secretion [79]. 
In another high throughput screen approximately 
850,000 compounds were examined for their 
ability to induce proliferation of an immortalized 
mouse b-cell line (R7T1); a few regulators of the 
Wnt signaling pathway along with L-type calcium 
channel agonists were identified as potential stim-
ulators of b-cell proliferation [80]. Taken together, 
these results indicate that several growth factors, 
hormones and small molecules have the capacity 
to enhance in vivo proliferation of b cells.

Regeneration of b cells via 
transdifferentiation & neogenesis
b-cell proliferation is not identical in rodents 
and humans [48–50]. Furthermore, human b cells 
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show relatively modest proliferative responses to 
maneuvers that more dramatically increase the 
b-cell mass in rodents [81–85]. Therefore, strate-
gies to increase the in vivo b-cell mass, other 
than by enhancing b-cell proliferation, should 
also receive serious consideration. We define 
neogenesis of b cells as a process by which 
adult progenitors or facultative progenitors (e.g., 
pancreatic ductal cells) differentiate into b cells. 
Transdifferentiation is the conversion of a dif-
ferentiated cell from one developmental lineage 
into a differentiated cell of another lineage with-
out first reverting into a more primitive stem or 
progenitor cell type [86–88]. 

Lately, much attention has focused on devel-
oping new b cells after birth from a-cells, ductal 
cells, acinar cells and other nonpancreatic cell 
types. The expression of endocrine transcrip-
tion factors in vivo was shown to convert acinar 
cells and hepatic progenitors into b cells [89,90]. 
Interestingly, the suppression of transcription 
factor PFT1a in acinar cells of zebrafish was 
shown to trigger the conversion of acinar cells 
into insulin-positive endocrine cells [91]. These 
studies suggest that the balance between the 
acinar and endocrine fate can be perturbed 
in vivo. Other studies have successfully gener-
ated insulin-producing cells from other pancre-
atic and nonpancreatic cell types, including a 
recent study that demonstrated that the expres-
sion of transcription factors NGN3 and PDX1 in 
human mesenchymal stem cells could partially 
reprogram these cells into insulin-expressing 
cells [92]. Several recent reviews address the pres-
ence of stem cells/progenitor cells in the adult 
pancreas, the increased plasticity of adult pan-
creatic cell types to differentiate into b cells, the 
therapeutic potentials and limitations of neogen-
esis and transdifferentiation approaches in the 
treatment of diabetes [9,21,22,93–96]. In this sec-
tion, we will highlight a few recent studies that 
provide hope for deciphering the mechanisms 
underlying transdifferentiation and neogenesis 
of b cells. 

�� Transdifferentiation
Diphtheria toxin-mediated ablation of the major-
ity of b cells in transgenic mice has been shown 
to result in the formation of new b cells from 
the transdifferentiation of a-cells [97]. Similarly, 
ablation of b cells using alloxan lead to the for-
mation of new b cells, most likely from the con-
version of a-cells [98]. Transgenic expression of 
Pax4 in a-cells, and the expression of Pdx1 in 

Ngn3+ cells and their progeny also triggered 
transdifferentiation of a-cells into b cells [99,100]. 
Such conversion of a-cells into b cells was also 
observed in a-cell-specific Men1 knock-out mice 
[101]. Further analyses of these different experi-
mental systems should lead to the identification 
of mechanisms regulating transdifferentiation 
of endocrine cells. Interestingly, the deletion of 
DNMT1 in b cells caused derepression of a key 
b-cell regulator Arx, and converted b cells into 
a-like cells, suggesting that chromatin repro-
gramming may regulate the transdifferentia-
tion of endocrine cells [102]. Thus, these recent 
studies could identify key regulators and small 
molecules regulating in vivo transdifferentiation 
of a-cells into b cells.

�� Neogenesis
Recently, several studies have used a lineage-
tracing approach to examine the role of pan-
creatic ductal cells in the neogenesis of b cells 
after birth. These include a study that identi-
fied NGN3+ multipotent islet progenitors near 
ducts in the pancreas following pancreatic duc-
tal ligation in adult mice [103], and a study dem-
onstrating that CAII-dependent lineage-marked 
duct cells gave rise to new islet and acinar cells 
after birth, supporting a role of ductal cells 
in postnatal neogenesis [104]. However, results 
from several other studies have suggested the 
lack of (or limited) b-cell neogenesis after birth 
[105–107]. No neogenesis of b cells or any other 
endocrine/acinar cells from late gestation and 
after birth was seen from HNF1+ duct cells [105]. 
Consistent with these results, mucin1-expressing 
duct cells did not differentiate into endocrine 
cells after birth [106]. During the early postnatal 
period, some progeny of Sox9+ cells expressed 
Ngn3 and differentiated into a small number 
of non-b cells, but in adults Sox9+ cells did not 
form endocrine or acinar cells [107]. However, 
Furuyama and colleagues demonstrated some 
neogenesis of b cells from ducts labeled at P1, 
but not at P7 using a Sox9-based lineage-tracing 
approach [108]. Additionally, they showed that 
Sox9+ duct cells did differentiate into acinar 
cells after birth. These results demonstrate some 
disagreement between these excellent studies 
over the role of ductal cells in the neogenesis 
of b cells and acinar cells after birth. Hence, 
it is likely that in mice, neogenesis of b cells 
after birth is a very rare event with only a sub-
population of ductal cells having the potential to 
give rise to b cells. Further examination of these 
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possibilities would provide yet another way to 
enhance b-cell mass in vivo.

Enhancing b-cell function: a strategy to 
develop long-term insulin independence
The reduction in b-cell mass can be restored by 
enhancing the functional capacity of individual 
b cells. Several of the approaches described ear-
lier in respect to enhancing b-cell proliferation 
and prevention of diabetes also enhance b-cell 
function. The use of incretin hormones represent 
one such therapy that has multiple physiologi-
cal benefits that help ameliorate diabetes. GLP-1 
analogs and DPP4 inhibitors enhance b-cell pro-
liferation, survival and differentiation. They also 
increase insulin secretion, insulin gene expres-
sion and the expression of key b-cell transcrip-
tion factors, such as Pdx1 [62,63,109–112]. Similar 
to incretins, GKAs regulate b-cell proliferation, 
inhibit apoptosis and enhance b-cell function 
[76,113]. Long-term administration of GKA in 
Gck+/- mice on a high-fat diet improved their glu-
cose metabolism [114]. Similar chronic treatment 
with GKA71 enhanced GSIS, prevented b-cell 
exhaustion and upregulated important b-cell 
genes such as insulin, Pdx1, Glut2, IAPP and 
PC1 [115]. Furthermore, treating T2D patients 
with piragliatin, another GKA, lowered their 
plasma glucose in both fed and fasting states 
[116]. Efforts are also underway to identify novel 
regulators of b-cell function. One new class of 
regulators are miRNAs. A miRNA, miR‑375, 
was shown to regulate insulin secretion, PDK1 
and glucose response in b cells [117,118]. In addi-
tion, miR-375 is required for the formation of 
normal endocrine b-cell masses during pan-
creatic development [119]. Taken together, these 
studies demonstrate the presence of novel mol-
ecules that regulate both b-cell mass and func-
tion, and consequently such regulators represent 
an important class of molecules for the treatment 
of diabetes.

Enhancing b-cell function via insulin gene 
transcription factors
Major insulin gene transcription factors, such as 
MafA, Pdx1 and NeuroD1, play a critical role in 
regulating glucose-responsive expression of the 
insulin gene. Reduced expression of these genes 
is associated with b-cell dysfunction and dia-
betes. Hence, strategies involved in enhancing 
expression of these factors will improve b-cell 
function, prevent b-cell exhaustion and delay 
future deterioration of b-cell function. 

MafA regulates glucose-stimulated insulin 
gene expression [120–123] and loss of its expression 
is linked with impaired b-cell function [124,125]. 
Consistent with this observation, enhancing the 
expression of MafA in the INS-1 cells enhanced 
both GSIS and the expression of genes implicated 
in controlling insulin synthesis and secretion 
[126]. Furthermore, overexpression of MafA in 
immature neonatal islets improved their GSIS by 
increasing both the proportion of cells secreting 
insulin and the amount of insulin secreted by the 
individual b cells [127]. These observations sug-
gest that strategies to enhance MafA expression 
would lead to improved b-cell function. 

Like MafA, transcription factor Pdx1 is criti-
cal for the formation and function of b cells 
[128–130]. Enhancing expression of Pdx1 in b cells 
in IRS2-/- mice successfully overcame their b-cell 
dysfunction [131]. Similarly, the loss of one Pcif1 
allele, a PDX1 C-terminal-interacting protein 
that regulates degradation of PDX1, was suffi-
cient to improve glucose tolerance, and compen-
sate for the reduction in Pdx1 expression in Pdx1 
heterozygous mice [132]. In addition to prevent-
ing protein degradation, other approaches have 
been developed to enhance the expression of key 
regulators of b-cell function. A small molecule, 
Isx, identified in a chemical library screening, 
was capable of activating expression of transcrip-
tion factor NeuroD1. Treating insulin-producing 
cells with this activator led to increased GSIS 
as well as a modest increase in insulin content 
[133]. Hence, we suggest that identifying novel 
approaches to enhance expression and function 
of key b-cell transcription factors offers a tremen-
dous opportunity for developing new therapies 
for diabetes. 

Conclusion & future perspective
Over the last decade, significant advances have 
been made in our understanding of b-cell biol-
ogy, which provides many avenues to improve 
b-cell mass and function. Studies examining 
the effects of various growth factors, hormones 
and novel small molecules on b-cell growth offer  
hope for successfully enhancing the proliferation 
of remaining b-cells in vivo. Similarly, improved 
understanding of pancreatic development and 
differentiation of b cells will lead to new strate-
gies for in vivo regeneration of b cells from endog-
enous progenitors and transdifferentiation from 
non-b cells. Finally, new approaches to enhance 
the expression and function of key regulators 
of b cells will be critical to improve GSIS and 
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replenish the b-cell store, a key to preventing the 
progressive decline in b-cell function evident in 
diabetes. Hence, we suggest that a combination of 
prevention, regeneration and functional enhance-
ment, together with the strategies to protect new 
b cells, will be critical for the development of an 
ultimate cure for both forms of diabetes.
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