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Autoregressive integrated moving 
average in clinical trials
Ton Cleophas*

Clinical trials are, usually, performed to assess the effects of predictors such as treatment 
modalities, environmental factors, or health risk factors on health outcomes. Health 
outcomes can be measured as a single end point at the completion of the trial; however, 
when multiple repeated observations are available, it would make a lot of sense to mea-
sure the outcome in the form of a time series; accounting trends, seasonal effects and 
change points during the trial. Autoregressive integrated moving average (ARIMA) 
analysis is, particularly, suitable for that purpose, since it can assess all of these effects 
simultaneously. It is based on autoregression (AR), a technique invented in the early 
1960s by Udney Yule [1], a University of Cambridge (Cmbridge, UK) professor of 
statistics. Time curves are cut into pieces and then compared with one another using 
linear regression. In this way it can demonstrate significantly repetitive patterns, mean-
ing patterns that are more strongly repetitive than could happen by chance. However, 
in order to demonstrate change points from a repetitive pattern and to demonstrate 
upward or downward trends, the comparison of the averages of a number of observa-
tions is more sensitive. An extended method for the purpose was proposed by Box and 
Jenkins in 1994 [2]; it is called autoregressive moving average (ARMA), and assesses 
autocorrelations, change points and up/downward trends simultaneously. 

It would be nice if – as in multiple regression – independent predictors of the 
outcome, such as treatments, could be included. This is accomplished by the ARIMA 
method, a multivariate and computationally intensive method available in major 
software programs (e.g., in SPSS module forecasting [101]). ARIMA is currently 
widely applied in social sciences for making predictions [3], but is little used in clini-
cal research, despite the recognized need for better predictive models in this field 
[4,102]. When searching Medline, ARIMA studies were found sporadically: in two 
organizational healthcare studies [5,103], two single-subject studies [6,104] and only 
one therapeutic study [105]. 

Autoregressive modeling 
Autocorrelation is a technique that cuts time curves into pieces. These pieces are 
subsequently compared with the original data curve using linear regression analysis. 
For example, in an outpatient clinic, CRP values may be higher in winter than in 
summer. The original data curve is cut into pieces four times, and the cut pieces are 
called lag curves and are moved to the left end of the original curve. The first lag 
curve is very close to the original data curve. When performing a linear regression 
analysis with the original data on the y-axis and the lag data on the x-axis, a strong 
positive correlation will be found. The second lag curve is not close anymore and 
linear regression of the two curves produces a correlation coefficient of approximately 
zero. The third lag curve then gives a mirror image of the original data curve and, 
thus, has a strong negative correlation. 
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accounting trends, seasonal effects and 

change points during the trial.”
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Finally, the fourth lag curve is in phase with the original 
data curve and, thus, has a strong positive correlation. 

If, instead of a few lag curves, monthly lag curves are 
produced, then we will observe that the magnitude of 
the autocorrelation coefficients changes sinusoidally in 
the event of seasonality. 

Autocorrelation coefficients significantly larger or 
smaller than zero must be observed in order to conclude 
the presence of a statistically significant autocorrelation. 
The equation below shows the mathematical equation 
of autocorrelation of two subsequent observations in a 
time series. The equation is derived from the correlation 
coefficient of linear regression. 
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 is observation ‘t’ in a time series and x is the mean 

of all observations. With one observation per time unit 
(day, week or month) an autocorrelation coefficient ver-
sus the first observation is calculated and all of them are 
drawn along the time axis. In this way an overview of 
the autocorrelation function is given. We wish to find an 
appropriate equation for the curve of the autocorrelation 
coefficients. For that purpose, we simply use changing 
linear functions (a = intercept; b = direction coefficient). 
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The above equation can also be described as:

( ) ( )ACC ACC b b t b t2 0 1 2 1 2 2= + - +

With multiple ACCs and replacement of the ‘b – b’ 
terms by ‘j’ terms, the equation will look like: 

....ACC ACC t t t t t tt t t0 1 1 2 2 3 3 4 4 5 5{ { { { { {= + + + + + +

The above equation is called an autoregressive model 
of the t-th order. We wish to test whether the equation is 
significantly different from zero. For that purpose, stan-
dard errors are required. Instead of t-tests, Ljung-Box tests 
are used, which assess overall randomness on numbers of 
lags instead of randomness at each lag and are calculated 
according to:
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n = sample size; k = lag number; S = sum of terms 
from k = 1 to  h, with h = total number of lags tested. It 
produces better p-values than does the t-statistic; how-
ever, the p-values are given lack of meaning without 

adjustment for multiple testing. SPSS uses Hochberg’s 
false discovery rate method. Using this approach, we can 
assess whether the data are stationary or change periodi-
cally. As long as the 95% CIs are not crossed, we conclude 
that the AR model is stationary. The best fit j values 
(otherwise called parameters) are calculated as with mul-
tiple linear regression using ordinary least squares. 

ARMA modeling 
In case of a more lasting crossing of the 95% CI, the 
moving average model is more sensitive. It does not apply 
autocorrelation coefficients, but rather the actual obser-
vations and their means. Otherwise, it also makes use of 
the same method of changing linear functions. It uses the 
following mathematical equation:
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The above equation can also be described as:

( ) ( )observation observation b b t b t2 0 1 2 1 2 2= + - +

With multiple observations and replacement of the 
‘b – b terms’ by ‘l terms’ the equation looks like: 

 observation observation t t t tt t t0 1 1 2 2 3 3 fm m m m= + + + +

The best fit l values are calculated as with multiple 
linear regression using ordinary least squares. 

ARIMA modeling 
A more sophisticated approach is the ARIMA meth-
odology. It is a multivariate method that finds the best 
fit parameters for the AR part of the data and the best 
fit parameters for the moving average part of the data 
and, at the same time, adjusts the two parts for one 
another. The mathematics are more computationally 
intensive, requiring sum of squares and cross products 
(SSCP) matrices and iteration methods; however, excel-
lent software is available, such as the module forecasting 
in SPSS. Data analysis using SPSS statistical software 
requires the following commands:

Command: Analyze → Forecast → Sequence Charts → 
Variables: enter the main outcome variable → Time Axis 
Labels: enter date → OK. 

Covariates can be addressed using the Expert 
Modeler:

Command: Analyze  → Forecast →  Time Series 
Modeler  → Dependent Variables: main outcome 
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variable  → Independent Variables: enter the potential 
covariates  → Click Methods: expert modeler → Click 
Criteria → Click Outlier Table → Select automatically  → 
Click Statistics Table → Select Parameter Estimated → 
Click Plots Table → Click Series, Observed values, Fit 
values  → Click OK.

The accuracy of fit of the observed data is given in 
addition to trends, seasonality, outliers, change points 
and significant predictors as identified. 

Discussion
Of course, there are other ways for assessing each of 
the above effects. For example, trends can be assessed 
by trend tests such as chi-square and linear regression 
tests, seasonality can be assessed by curvilinear regres-
sion including Fourier analysis and polynomial regres-
sion. However, ARIMA can assess all of these effects 
simultaneously.

In addition, the traditional methods are unable 
to assess the effects of independent predictors of the 
outcome patterns. ARIMA can be used to adjust for 
multiple predictors, and is thus helpful to explain why 
certain patterns and outliers were observed. It should be 
added that such a comprehensive method would nor-
mally lead to large Type 1 errors due to multiple testing. 
However, due to ARIMA’s multivariate methodology, 
this is prevented and the very sensitivity of testing is 
even improved [3]. 

ARIMA modeling can include the effects of multiple 
predictors on the outcome patterns. However, it is dif-
ferent from multiple linear regression, because instead of 
a single continuous outcome variable, multiple outcome 
variables along a timeline are used, including trends, sea-
sonal effects and change points. It is also different from 
Cox regression, because Cox regression assesses time to 
a single event, rather than specific patterns in a timeline.

ARIMA can also be applied to analyze time series 
in individual patients. We should emphasize that n = 1 
studies are not scientific trials, since they are not meant 
to improve the level of scientific knowledge of the com-
munity, but rather to find the best possible treatment 
for individual patients. 

ARIMA is a sensitive method of assessing upward/
downward trends and change points along the time line, 
and this is the case not only for groups, but also for 
individual patients. It has been successfully applied as 
a methodology for the latter purpose. 

Conclusion 
ARIMA modeling is very sensitive for a simultaneous 
assessment of trends, seasonality, change points and the 
effects of multiple predictors.

■■ ARIMA modeling is appropriate for assessing trends, 
seasonality and change points in a time series;

■■ It can assess all of these effects simultaneously;

■■ It can also be used to adjust for multiple predictors, 
and is thus helpful to explain why certain patterns 
and outliers were observed;

■■ It is multivariate methodology, thereby preventing the 
Type I error risk of multiple testing;

■■ It is different from multiple linear regression because 
instead of a single continuous outcome variable, 
multiple outcome variables along a time-line are used; 

■■ It is also different from Cox regression, because Cox 
regression assesses time to a single event, rather than 
pattern characteristics along a time line.

In clinical trials with multiple repeated observations 
it makes a lot of sense to measure the outcome in the 
form of a time series accounting trends, seasonal effects 
and change points during the trial. ARIMA analysis is 
particularly suitable for that purpose, because it can 
assess all of these effects simultaneously and it can also 
adjust concomitant variables.
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