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Purpose: To develop promising approach for longitudinal flatfoot determination on a base of neural network, which effectively affects 
the time spending by a radiologist without detection accuracy loss. 

Methods: We used 3458 foot radiographs of patients with longitudinal flatfoot and 1726 humans without the foot deformity aged 
17-75. Each radiograph used for neural network training was labeled by one radiologist while at testing stage of the study each X-ray 
image was labeled independently by two radiologists chosen blindly. Diagnostic algorithm was designed on a base of detecting 
three anatomical points forming the foot arch angle. The artificial intelligence workflow consisted of three-step sequence: a) data 
preprocessing and preparation for neural network segmentation; b) segments three areas as bounding boxes around required three 
points; c) location of each of the required points was found inside the relevant area, and appropriate angle measure and flatfoot degree 
were calculated. The segmentation network was encoder-decoder type convolutional neural network based on U-Net architecture 
with skip-connections, where ResNet50 is used as encoder, and transposed convolutions were used in decoder for upsampling the 
result after bottle-neck. 

Results: We created effective, robust and fast artificial intelligence-based method, that shows the results in general not worse than 
radiologists and requires about 6000 times less time.

Conclusions: the artificial intelligence developed is an effective tool for longitudinal flatfoot determination by X-ray image segmentation 
and the foot arch angle calculation. It may be considered as a rapid assistant as accurate as experienced radiologist.

KEYWORDS:  longitudinal flatfoot ■ convolutional neural network ■ foot arch angle ■ radiographs ■ artificial intelligence ■ machine learning 
■ semantic segmentation

Introduction
Longitudinal flatfoot (LF) is particular 

consequence of the foot osteal architecture with 
flattened or even collapsed longitudinal arch 
composed by calcaneus, tarsal and metatarsal 
bones [1-3]. Congenital condition accompanied 
by valgus leg deformity is relatively rare and 
considered as a malformation [2,4,5]. Muscular 
and fascial foot disturbances may as well be 
associated with rickets, paralysis and trauma 
[4]. In any case the pathology causes severe 
leg damage during intensive walking and 
running due to lack of the foot springiness. 
Such condition is of crucial importance for 
professional sport and military service [6]. 

Great stride of science and technology 
has resulted in broad variety of diagnostic 
approaches appeared during past decades for 
the pathology detection. Each of them has 
definite advantages and limitations. Traditional 
and most common manual options for the 
pathology detection are calipering and ink-
stained footprints measurement [7,8]. Both of 

the methods are indirect and, hence spare place 
for the measurements fluctuation. Several novel 
methods have been proposed to gain precise 
foot measurements, reduce error rate and 
assist orthopedists in routine and rudimentary 
manual estimations. High-sensitive ultrasonic 
sensor for the height of the longitudinal arch 
determination was invented and proposed by 
Hamza et al., as an effective tool for flatfoot 
diagnostics [9]. The approach, nonetheless 
based only on the arch height does not take into 
consideration angles and dimensions, which 
have particular meaning for quantification of 
the measurement results. Scientific team, led by 
Navarro described sensor plate for detection of 
footprint pressure distribution and subsequent 
results computation [10]. Although, high cost 
of the method in comparison with conventional 
ones sufficiently limits its broad spread. 

Machine processing of the obtained data 
is another promising way to decrease the 
measurement cost, reduce noise during 
estimations and increase preciseness. Podoscopy, 
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footprinting and three-dimensional the 
arch reconstruction were used by Lee et al., 
Maestre-Rendon et al., for development low 
computational-cost footprint deformities 
diagnosis sensors and image processing system 
to make rapid and precise classification 
[11,12]. At the same time, all aforementioned 
methods consider shape of a foot as an object 
for measurements, whereas an experienced 
practitioner must build the true estimation on 
bone skeleton of the anatomical area, because 
a volume of soft tissues consisting of skin, 
muscles and subcutaneous fat frequently causes 
discrepancies of measurement. 

Analysis of foot radiographs allows to 
calculate true estimations, angles and indexes, 
which reflect anatomical architecture of the foot 
[13]. X-ray is one of the most common and 
relatively cheap way to capture skeletal image 
of the area. Jian et al., in 2014 described Cloud 
image processing and analysis based flatfoot 
classification method [14]. The authors compared 
four different computational algorithms for foot 
X-ray pictures analysis and classification used 
cloud solution for the images collection and 
processing. Using technology of deep machine 
learning (ML) and neural networks (NN) as 
another kind of artificial intelligence (AI) should 
have made significant progress in foot deformity 
determination and taken advantage in scaling 
of LF. So, the development of novel AI-based 
solution for LF determination and scaling was 
the main objective of our study.

Materials and Methods
 � Ethics

The study protocol was reviewed and 
approved by Saint-Petersburg State University 
and Sechenov University Ethic Committees at 
joint meeting with Care Mentor Laboratory 
representatives on April 2, 2016 (Report No. 
127/04/16). 

 � Source and labeling of X-ray images

Source of the radiographs: Foot X-ray 
images have been taken from 3458 patients of 
both sexes with LF and 1726 humans without 
the foot deformity aged 17-75 at Saint-
Petersburg State University Clinical Hospital 
and Sechenov University Traumatology Clinic 
from 2016 until 2019. 

Gender characteristics of the study 
participants: Gender characteristics of the 
participants are shown at TABLE 1. Informed 
consent has been obtained from each subject. 
All the radiographs were depersonalized at the 
site of the University Clinic before processing 
through training or testing.

Radiographs labelling: All collected images 
were randomly assigned at 3:1 ratio to training 
and testing sets respectively. Radiographs used 
for the CNN training were labeled by 5 equally-
educated and well-experienced radiologists with 
more than 10 years at a position (each image 
by single practitioner). The images were blindly 
designated to the radiologist’s personal account 
in Care Mentor labeling software particularly 
developed for the study and secured by login 
and password. Labeling process comprised 
consequently logging in, browsing through the 
images pending list, searching and highlighting 
of three anatomical points described below. The 
software allowed the radiologists correct their 
marks’ position until the data having sent to the 
image preprocessing.

At testing stage of the study each X-ray image 
was labeled independently by two radiologists 
chosen blindly. It made possible further 
consideration of the CNN and the radiologist’s 
results divergence as well as variability of the 
practitioner’s opinion. 

 � X-ray method of longitudinal flatfoot 
detection

Currently there are several approaches 
to X-ray-based detection of LF. The most 
conventional way is by the foot arch angle [3,15-
17]. The blunt angle is formed by intersection of 
two lines: the first of them is drawn through the 
lowest two points at the lower edge of the fifth 
metatarsal bone, while the other one connects 
two most prominent point on the lower edge 
of calcaneus (FIGURE 1) [17]. The angle value 
165o and more is considered as LF [3].

Table 1. Gender characteristics of the study 
participants.
Presence of the 
foot deformity Sex Number Average age, 

M ± MSE

Longitudinal 
flatfoot

Male 2051 37.2 ± 3.4
Female 1407 34.4 ± 4.1

Without the 
deformity

Male 1114 43.7 ± 2.8
Female 612 46.1 ± 3.6

Total 5184 40.5 ± 3.2
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We find it more correct to use another 
method of LF determination measuring Costa-
Bertani’s angle [17], according to which a 
radiologist first searches three points on the 
radiograph FIGURE 2 as follows: point A is the 
lowest margin of cuneonavicular joint; point 
B is lower margin of calcaneus; and point C 
corresponds with the lowest margin of the first 
metatarsal. BAC angle the authors consider as 
the foot arch angle, whereas the perpendicular 
drawn from point A to the segment BC 
(ground) corresponds with the arch height (h). 
Described way allows building the angle based 

on three definite anatomical points unlike the 
[3] method, that hypothetically presumes the 
angle summit locate offside the foot lower osteal 
margin. 

We should emphasize that each 
aforementioned X-ray-based way of 
measurements puts an exhaustive burden on a 
radiologist making the physician spend up to 
10-12 minutes just on measurements. Accuracy 
of estimations directly depends on radiologist’s 
experience and X-ray image quality. Experienced 
physician can overcome even bad quality of the 
radiograph, but it costs the specialist extra-time 
and attention. 

 � Workflow

Overview of proposed workflow: Our 
proposed workflow is depicted on FIGURE 3. 
The workflow consists of three major steps. 
The first step (e.g. section A) deals with data 
preprocessing and preparation for the NN 
segmentation. On the second step (e.g. section 
B) fully convolutional neural network (CNN) 
segments three areas as bounding boxes around 
required three points. On the third step (e.g. 
section C), location of each of the required 
points is found inside the relevant area, and 
appropriate angle measure and flatfoot degree 
are calculated.

Data pre-processing: All our longitudinal 
footprint case was randomly divided into 
training, validating and testing parts in 
proportion 0.6:0.15:0.25. Training part was 

Figure 1. Detection of LF by the foot arch angle 
estimation [3].

 

Figure 2. Detection of LF by both the arch angle 
(a) and height (h) estimation.

 

Figure 3. Proposed workflow: section A – data preprocessing and preparation; section B – CNN 
segments three areas as segment boxes; section C – foot arch angle calculation.
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used to train CNN, validating part was used 
for validate CNN quality during training, and 
testing part was used to test quality of trained 
CNN, our method overall quality and difference 
between radiologists’ markings. For training and 
validating, we used one marking from only one 
radiologist for each case. For testing, to calculate 
difference between radiologists’ markings, we 
used two marking from two different radiologists 
for each case. Each our training longitudinal 
footprint case contained gray-scale X-ray image 
and marking - a position (in pixels) of three 
points for the calculation of the angle required.

 Input images had significantly various 
resolution (approximately from 800 pixels to 
4000 pixels on one side), various scope (some 
images covered only foot, some captured part of 
the tibia bone) and different contrast level. Also, 
due to the different X-ray apparatus from which 
the items were obtained, images had different 

both detailing quality and noises. Examples 
of the input footprint images are shown in 
FIGURE 4. These images were used for the 
CNN input.

We used position of three points to generate 
Boolean mask the same size as relevant input 
image was. For each point, if point position is 
(x,y), then mask has value of 1 in the bounding 
box with corners (x-k, y-k), (x-k, y+k), (x+k, y-k), 
(x+k, y+k), where k – parameter of bounding 
box size, that can be changed for different image 
scale within limit, that bounding boxes do not 
overlap. So we created the mask with three 
1-value bounding boxes as the CNN output.

To form dataset for the CNN training, each 
image and corresponding mask were rescaled 
to the size of 512 × 512 pixels. Since input 
images had very different resolutions and aspect 
ratios (in pixels), cropping or padding preceded 

Figure 4. Examples of input X-ray images (some of them are cropped for better representation).
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rescaling: the informative part (non-black part 
with footprint) is rectangle, but it is often 
surrounded by black frame. So we removed part 
of black frame to get square image, if it possible, 
or added parts of black frame otherwise, and 
then the modified image was rescaled. The same 
operations are performed over corresponding 
masks.

Several data augmentation steps, such as 
translation, rotation, sharpening, weak affine 
transformations, contrast normalization and 
addition of Gaussian noise were employed 
during training to increase the diversity of 
the training data. It’s worth to note, that 
augmentation was applied during training at 
each training epoch, and all of augmentation 
steps are random (for example, rotate image at 
random angle from -5 to +5 degree, sharp image 
with random parameters from given interval, 
etc). So, all training images during training 
procedure become different from each over, but 

remain similar and contain the same meaningful 
information.

CNN architecture: Our segmentation 
network is encoder-decoder [1] type CNN, 
which is suitable solution for our semantic 
segmentation task. Our initial network 
architecture is schematically presented on 
FIGURE 5A.

In the first initial layers of the neural network, 
spatial information is present in the activations 
of the current layer: these layers of CNN 
activate simple features like different parts of 
lines, angles, simple textures, etc. In later 
layers, because of using convolutions, which 
aggregate information from previous layers, 
spatial information gets transferred to semantic 
information at the cost of specific knowledge 
on the localization of these structures. Here, for 
example, the original U-Net architecture reduces 
an input image of 6 size 388 × 388 to a size of 

Figure 5. Basic U-Net architecture (A) and ResNet50 residual block (B). Our network is based on U-Net 
architecture [1] with skip-connections, where ResNet50 [11] is used as encoder, and transposed 
convolutions [7] are used in decoder for upsampling the result after bottle-neck. The encoder output 
grid size is 16-16, the last fully convolutional layer output matches the input dimension.

 
  

 

 

 

A 

B 
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28 × 28 in the U-Net bottleneck. Ronneberger 
et al., [17] introduced skip-connections to allow 
utilization of spatial and semantic information 
at later layers, since the spatial information from 
earlier stage can be fused in the neural network 
at later layers. Thus the neural network at later 
layers can utilize both semantic and spatial 
information: connect features from earlier layers 
with features from later layers, as it is shown by 
arrows on FIGURE 5A.

Common approach in deep learning is 
transfer learning using pre-trained NN models. 
Neural networks pre-trained on another task, 
e.g. a natural image classification data set, can 
be used as initialization of the network weights 
when training on a new task. The first layers 
of neural networks learn simple features and 
basic structures like blobs and edges, so this 
knowledge can be transferred from one task to 
others. This concept is very useful for medical 
imaging, where there is no possibility to obtain 
large datasets like natural image datasets. In our 
work, we use pre-trained on ImageNet [18] 
ResNet50 [19] model as encoder, and decoder 
was trained from scratch. ResNet50 is a deep 
residual network, showed good quality on 
different tasks and which is easy to train because 
of using residual connections between inner 
blocks shown on FIGURE 5B.

CNN training: Input images and their 
corresponding segmentation maps were used to 
train the network with Adam [20] optimization. 
The binary cross-entropy function was calculated 
pixel-wise with different weights for each class 
pixels as in equation (1): 

∑ ijij
L = - w (y * log(p)+(1- y) * log(1- p)),(1)  (1)

where – predicted probability, – Indicator 
of ground-truth class (0 or 1) and – per-pixel 
weight matrix. As most of the pixels in each 
image belong to the zero-label, we balanced the 
learning process by using fixed weights that were 
inversely proportional to the population ratios. 
We trained CNN with Adam optimizer for 500 
epochs with standard parameters: betas 0.9 and 
0.99, the initial learning rate was chosen to be 
0.0001, with reducing learning rate on plateau.

CNN post-processing: For each area  of 
the three predicted areas from the CNN, we 
found its mass center as the location of relevant 
point (xk,yk):

, ,k = 1,2,3
∈ ∈∑ ∑xi yi

k k
k k

k k

(xj, yi) D (xj, yi) D
x = y

|D | |D |
  (2)

Found this way three required points, we can 
simply compute angle measure, as it is shown 
above on FIGURE 2.

 � Quality measures

CNN quality evaluation: We used the 
Dice score as a main metric for segmentation 
CNN quality evaluation. We referred to 
the foreground areas in the ground truth as 
object A, and object B for the predicted areas. 

The Dice score was evaluated as (3): 

∩
=

+
B

DICE
2|A |

(A, B)
|A| |B|                 (3)

where the Dice score was in the interval (0,1). 
A perfect segmentation yields a Dice score of 1.

Overall quality evaluation: We calculate 
mean absolute angle error as by (4):

= − trueErr |a a |                  (4)

where  – predicted angle,  – angle, 
calculated from ground truth points.

 � Statistics

We presented the results obtained as Mean 
(M) ± Mean square error (MSE) value. Variants 
distribution was assessed by ANOVA. T-test 
was used to compare differences between the 
groups, and they were considered as significant 
at p<0.05. SPSS software (IBM Inc., USA) was 
used for statistical data proceeding.

Results

 � Segmentation quality

Out test set contained 1296 cases. Mean Dice 
quality on our test set was 0.946. The largest 
set of errors was related to segmentation mask 
borders shape and did not affect overall method 
quality. Examples of the CNN output and 
how it localized required areas were shown in 
FIGURE 6A.

 � Quality comparison

For evaluation our method quality, for 
every test case we compared the markings 
from two different radiologists, who worked 
independently, with the inference of the CNN 
solution. Examples of comparison are shown 
on FIGURE 6B, where light and dark green 
lines and points refer to radiologists markings, 
and red color refers to the CNN marking. In 
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angle measurement, average difference between 
radiologists’ markings is 1.18 degree, and average 
difference between out method received angle 
and radiologist’s marking is 1.27 degree (p>0.05). 
Mean deviation for every flatfoot degree is 
shown on TABLE 2. There were not significant 
differences in the angle measurements between 
the radiologists and the artificial intelligence-
based solution in cases of the foot pathology. 
At the same time, intergroup analysis of the 

radiographs without foot pathology showed that 
the angle value Mean calculated by the CNN 
deviated from human-made measurements 
approximately twice bigger then between two 
independently working specialists. 

 � Working time assessment

The obtained results are shown at TABLE 2. 
The time spent by the radiologists on searching 
for the three anatomical points on radiograph 

                
Figure 6. (A). Top to bottom: CNN input, CNN output mask, mask applied to the image, highlighting 
predicted areas.

 

Figure 6. (B). Comparison of radiologists and proposed methods markings.
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and subsequent the foot arch angle estimation 
was averaged at 667.7 ± 72.8 sec. The time 
spent by our artificial intelligence solution 
was obtained using GPU model Titan V and 
averaged at 0.10 ± 0.02 sec (p=0.001 when 
compared with the radiologists).

Discussion
Longitudinal foot deformity has particular 

meaning in childhood and for adults because of 
severe outcomes deteriorating health condition 
and life quality. The pathology diagnostics 
based on the foot arch both shape and volume 
evaluation, footprints measurements associates 
with high level of incorrect decisions largely 
because all of the approaches are indirect. 
Direct, and importantly more correct way to 
handle the issue is to take into consideration 
bone-referred points that allow to calculate both 
the arch features, angle and height. From this 
point of view X-ray foot scanning seems more 
appropriate approach for doing the estimations. 
At the same time, conventional sequence 
of plain measurements and calculations is 
utterly exhaustive and time-consumable, so 
optimization of the algorithm may be very 
helpful and useful. Implementation of deep 
learning methods for detection of anatomical 
features crucial for the pathology detection and 
subsequent calculation of the arch angle may be 
useful tool for routine radiological practice.

We choose convolutional neural network as 
a base of our method because of its recognized 
efficiency and stability. Also, its rapidity allows 
to receive almost real-time estimation’s result. 
CNNs enable us to work with both complex 
and basic features of images, which makes 
successfully work with different input data 
possible.

We use semantic segmentation CNN as 
robust and successful method for task, there 
the case is to find some mask on the image. We 

choose U-net architecture, because it’s proved 
to be successful in training on small data, and 
using of ResNet50 encoder allow us to use pre-
trained weights, which also helps training on the 
small amount of data.

As a result, segmentation quality of our 
method was high and comparably equal with 
the quality of trained practitioners. Moreover, 
CNN-based model spent no more than 0.1 
sec on getting the result versus 667.72 sec of a 
practitioner’s average time for the analysis.

However, it is worth noting that using the 
method on different X-ray machine, the results 
may differ in quality because of disparate image 
characteristics (mostly, different image noises). 
Such output discrepancies can be improved by 
additional training CNN on the cases, obtained 
from new X-ray machine. Also, if there are 
specific cases, where radiologist may mark that 
the quality of method is weak, the method can 
be additionally trained on them for quality 
improvement.

One of the most important shortcomings 
we met was radiologist labeling of the images 
used for the CNN training, since we had found 
out that the specialist’s accuracy in anatomical 
points determination had been varied within 
1.18 degree. Therefore, next step in developing 
effective and autonomous system, which should 
span computational identification of anatomical 
objects and machine visualization.

Thus, the artificial intelligence developed 
during the study is an effective tool for 
longitudinal flatfoot determination by X-ray 
image segmentation and the foot arch angle 
calculation. It may be considered as a rapid 
assistant as accurate as experienced radiologist.

Conclusions
Established CNN-based method is an 

effective, robust and rapid solution for LF 

Table 2. Mean deviations according to flatfoot degree and time spending for image processing.

Flatfoot degree

Radiologists estimation
M ± MSE

CNN vs radiologists deviation, M ± MSE

Angle deviation
Time spent on 

estimation
Angle deviation

Time spent on 
estimation

0 (125-130) 0.60 ± 0.21

667.72 ± 72.81

1.04 ± 0.17f

0.10 ± 0.02j
1 (131-140) 1.10 ± 0.22 1.19 ± 0.18

2 (141-155) 1.27 ± 0.19 1.30 ± 0.21

3 (>155) 1.13 ± 0.17 1.36 ± 0.18

Note: fp<0.05 (t-test) when compared with radiologists-estimated value; j p<0.05 (t-test) when compared with 
the time spent on measurement by the radiologists.
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