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Artificial Intelligence, Machine 
Learning and Deep Learning 
in Neuroradiology: Current 
Applications

Artificial intelligence is rapidly expanding in all medical fields and especially in neuroimaging/neuroradiology (more than 5000 articles 
indexed on PubMed in 2021) however, few reviews summarize its clinical application in diagnosis and clinical management in patients 
with neurological diseases. Globally, neurological and mental disorders impact 1 in 3 people over their lifetime, so this technology 
could have a strong clinical impact on daily medical work. This review summarizes and describes the technical background of artificial 
intelligence and the main tools dedicated to neuroimaging and neuroradiology explaining its utility to improve neurological disease 
diagnosis and clinical management.
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Introduction
The ever-increasing number of diagnostic tests 
requires rapid reporting without reducing 
diagnostic accuracy and this could lead to 
misdiagnosis. In this context, the recent 
exponential increase in publications related to 
artificial intelligence (AI) and the central focus 
on artificial intelligence at recent professional 
and scientific radiology meetings underscores the 
importance of artificial intelligence to improve 
neurological disease diagnosis and clinical 
management.

Currently, there are many well-known 
applications of AI in diagnostic imaging, 
however, few reviews summarized its applications 
in Neuroimaging/neuroradiology [1]. Thus, we 
aim at providing a technical background of AI 
and an overview of the current literature on the 
clinical applications of AI in Neuroradiology/ 
Neuroimaging highlighting current tools and 
rendering a few predictions regarding the near 
future.

Technical Background of AI
Any computer technique that simulates human 
intelligence is considered AI. AI is composed of 
Machine Learning (ML) and Deep Learning (DL).

ML designs systems to learn and improve from 
experience without being preprogrammed based 
on statistical data using computer technology. 
ML uses observations and data which are taken as 
examples to create some models and algorithms 
which are then used to make future decisions. In 
ML, some “ground truth” exists, which is used to 

train the algorithms. One example is a collection 
of brain CT scans that a neuroradiologist 
has classified into different groups (ie, 
haemorrhage versus no haemorrhage). The goal 
is to design software to learn automatically and 
independently of any human intervention or 
assistance for further intended decisions. DL, 
representing ML processing, instead applies 
artificial convolutional neural networks (CNNs) 
to accelerate the learning process [2, 3]. CNN’s 
are non-linear structures of statistical data 
organized as modelling tools. They can be used 
to simulate complex relationships between 
inputs and outputs using several steps (layers) of 
nonlinear transformations, which other analytic 
functions cannot represent [2].

CNNs can be trained to classify an image based 
on its characteristics through the observation 
of different images. More specifically, DL can 
identify common features in different images to 
use them as a classification model. For example, 
DL can be trained to find common features 
in variable images with and without a given 
pathology to discriminate between both entities. 
Consequently, it is possible to determine a 
specific diagnosis without human intervention 
and therefore there is some potential to improve 
both the time efficiency and the productivity of 
radiologists. A strength of DL is that its learning 
is based on growing experience. As a result, DL 
has enormous potential because it could update 
its response models by collecting data from large 
databases such as the Internet or the Image 
Storage and Communication System (PACS). 
However, a limit is that as a consequence, 
algorithm performance depends largely on 
both the quantity and quality of data on which 
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it is trained [4]. For example, an algorithm for 
tumour detection trained on data set in which 
there is no occipital tumour is likely to have a 
higher error rate for tumours in that location. For 
a more complete description of DL, the reader is 
directed to the paper by Montagnon et al. [5]. 

	� Image acquisition and image quality 
improvement

Deep learning methods can be used to perform 
image reconstruction and improve image 
quality. AI can "learn" standard MR imaging 
reconstruction techniques, such as Cartesian 
and non-Cartesian acquisition schemes [6]. 
Additionally, deep learning methods could be 
applied to improve image quality. If low and 
high-resolution images are available, a deep 
mesh can be used to improve the resolution [7]. 
This has already been applied to CT imaging to 
improve resolution in low-dose CT images [8]. 
Another approach to improve image quality is 
to use MR images acquired at different magnetic 
field strengths and coupled from the same 
anatomy [9].

AI is also able to reduce image acquisition 
times, Fthis is especially useful in the case 
of DTI sequences, where the need for more 
angular directions extends the examination 
beyond what many patients can tolerate. A deep 
learning approach can reduce imaging duration 
by 12 times by predicting final parameter maps 
(fractional anisotropy, mean diffusivity, and so 
on) from relatively few angular directions [10]. 
There are also studies in which DL has increased 
the signal-to-noise ratio in arterial spin-labelling 
(ASL) sequences to improve image quality [11]. 
Finally, some applications of AI could improve 
resolution and image enhancement by providing 
a better resolution and signal-to-noise ratio 
reducing the dose of contrast needed to provide 
diagnostic images [2].

	� Clinical AI applications in 
neuroradiology/neuroimaging

Recently, 37 AI applications were reviewed in 
the domain of Neuroradiology/Neuroimaging 
from 27 vendors offering 111 functionalities 
[12]. These AI functionalities mostly support 
radiologists and extend their tasks. Interestingly, 
these AI applications are designed for just one 
pathology, such as ischemic stroke (35%), 
intracranial haemorrhage (27%), dementia 
(19%), multiple sclerosis (11%), or brain 
tumour (11%) to mention the most common 
[12]. In our review, we found miscellaneous 
clinical applications of AI in neuroradiology/
neuroimaging ranging from the detection 

and classification of anomalies on imaging 
to the prediction of outcomes with disease 
quantification by estimating the volume of 
anatomical structures, the burden of lesions, and 
the volume of the tumour

[13]. In particular, regarding detecting tools, 
primary emphasis has been placed on identifying 
urgent findings that enable worklist prioritization 
for abnormalities such as intracranial 
haemorrhage [14].

 acute infarction [20–23], large-vessel occlusion 
[24, 25], aneurysm detection [26–28], and 
traumatic brain injury [29–30] on non-contrast 
head CT.

Other AI detecting tools are in brain degenerative 
disease, epilepsy, oncology, degenerative spine 
disease (to detect the size of the spinal canal, 
facet joints alterations, disc herniations, size of 
conjugation foramina, and in scoliosis the Cobb 
angle), fracture detection (vertebral fracture 
such as compression fracture), and in multiple 
sclerosis to identify disease burden over time 
and predicting disease activity. In glioma, some 
DL algorithms were tested to predict glioma 
genomics.

Regarding segmentation tools, we found 
tools able to segment vertebral disc, vertebral 
neuroforamina, and vertebral body for 
degenerative spine disease, brain tumour volume 
in the neuro-oncological field, and white and grey 
matter in degenerative brain diseases [16,17].

In the following paragraphs, we report the 
main diseases where AI is useful with the more 
significant relative studies [18,19].

	� Intracranial haemorrhage 

Intracranial haemorrhage detection has been 
widely studied as a potential clinical application 
of AI [15,30] able to work as an early warning 
system, raise diagnostic confidence, and classify 
haemorrhage types. In particular, in these studies, 
Kuo et al.[14] developed a robust haemorrhage 
detection model with an area under the receiver 
operating characteristic curve (ROC-AUC) of 
0.991. They trained a CNN on 4396 CT scans 
for classification and segmentation concurrently 
on training data which were labelled pixel-wise 
by attending radiologists. Their test set consisted 
of 200 CT scans obtained at the same institution 
at a later time. They report a sensitivity of 96% 
and a specificity of 98%.

Ker developed a 3-dimensional (3D) 
convolutional neural network (CNN) model 
to detect 4 types of intracranial haemorrhage 
(subarachnoid haemorrhage, acute subdural 
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haemorrhage, intraparenchymal hematoma, and 
brain polytrauma haemorrhage). They used a 
data set consisting of 399 locally acquired CT 
scans and experimented with data augmentation 
methods as well as various threshold levels (ie, 
window levels) to achieve good results. They 
measured performance as a binary comparison 
between normal and one of the 4 haemorrhage 
types and achieved ROC-AUC values of 0.919 to 
0.952. The RSNA 2019 Brain CT Hemorrhage 
Challenge was another milestone, in which a 
data set of 25 312 brain CT scans were expert-
annotated and made available to the public. 
The scans were sourced from 3 institutions 
with different scanner hardware and acquisition 
protocols. The submitted models were evaluated 
using logarithmic loss, and top models achieved 
excellent results on this metric (0.04383 for the 
first-place model). However, it is difficult to 
directly compare this result to other studies that 
utilize the ROC-AUC of haemorrhage versus 
no haemorrhage as their performance metric. 
Approved commercial software for haemorrhage 
detection now exist on the market and has been 
evaluated in clinical settings. Rao evaluated Aidoc 
(version 1.3, Tel Aviv) as a double reading tool 
for the prospective review of radiology reports. 
They assessed 5585 non-contrast CT scans of the 
head at their institutions which were reported as 
being negative for haemorrhage and found 16 
missed haemorrhages (0.2%), all of which were 
small haemorrhages. The software also flagged 
12 false positives. The Aidoc software was also 
tested as a triage tool by Ginat in which the 
software, evaluating 2011 non-contrast CT head 
scans, contained both false positive and false 
negative findings of haemorrhage. The study 
reports sensitivity and specificity of 88.7% and 
94.2% for haemorrhage detection, respectively. 
The author however described a benefit of false-
positive flags for haemorrhage as these studies 
sometimes contained other hyperattenuating 
pathologies. On the flip side, the author reports a 
drawback in flagging in patient scans in which a 
haemorrhage is stable or even improving, which 
may unnecessarily prioritize nonurgent findings.

	� Aneurysm detection

Detecting unruptured intracranial aneurysms 
has significant clinical importance considering 
that they account approximately for 85% of 
non-traumatic subarachnoid haemorrhages and 
their prevalence is estimated at approximately 
3%. MRI with Time-of-flight angiography 
sequences (TOF-MRA) is the modality of 
choice for aneurysm screening, as it does not 
involve ionizing radiation nor intravenous 
contrast agents. Deep learning has been used 

to detect aneurysms on TOF-MRA. Published 
methods demonstrate high sensitivity but poor 
specificity, resulting in multiple false positives 
per case. Although this fact necessitates a close 
review of all aneurysms flagged by the software, 
the resulting models may nevertheless be useful 
as screening tools. Ueda  tested a DL model on 
521 scans from the same institution as well as 
67 scans from an external data set. DL model 
achieved 91% to 93% sensitivity with a rate 
of 7 false positives per scan. Despite the high 
false positive rate, the authors found that this 
model helped them detect an additional 4.8% to 
13% of aneurysms in the internal and external 
test data sets. In another study, Faron et al., 
trained and evaluated a CNN model on a data 
set of TOF-MRA scans on 85 patients. CNN 
achieved 90% sensitivity with a rate of 6.1 false 
positives per case. Similarly, Nakao trained a 
CNN on a data set of 450 patients with TOF-
MRA scans on 3-Tesla magnets only. They were 
able to achieve a better result at 94% sensitivity 
with 2.9 false positives per case. Yang used a 
different approach, in which they produced 
3D reconstructions of the intracranial vascular 
tree using TOF-MRA images. They annotated 
aneurysms on the 3D projections and used them 
to train several models. In this manner, they 
achieved a good discriminatory result between 
healthy vessels and aneurysms.

	� Stroke

In stroke imaging 3 components of stroke 
imaging are explored: large vessel occlusion 
(LVO) detection, automated measurement of 
core infarct volume and the Alberta Stroke 
Program Early CT Score (ASPECTS) , and 
infarct prognostication.

The timely detection of STROKE is critical in 
brain ischemic treatment, in this context AI 
has shown the potential in reducing the time 
to diagnosis. In particular, there are some AI 
applications able to detect LVO. You et al. 
developed an LVO detection model using clinical 
and imaging data (non-contrast CT scans of 
the head). AI detects the hyperdense Middle 
Cerebral Artery (MCA) sign which is a finding 
suggestive of the presence of an MCA thrombus. 
The AI, based on the U-Net architecture, was 
trained and tested on a local data set of 300 
patients. It achieved a sensitivity and specificity 
of 68.4% and 61.4%, respectively.  On NCCT, 
an SVM algorithm detected the MCA dot sign 
in patients with acute stroke with high sensitivity 
(97.5%). A neural network that incorporated 
various demographic, imaging, and clinical 
variables in predicting LVO outperformed or 
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equalled most other prehospital prediction 
scales with an accuracy of 0.820. A CNN-based 
commercial software, Viz-AI-Algorithm v3.04, 
detected proximal LVO with an accuracy of 
86%, a sensitivity of 90.1%, a specificity of 82.5, 
AUC of 86.3% (95% CI, 0.83–0.90; P # .001), 
and intraclass correlation coefficient (ICC) of 
84.1% (95% CI, 0.81–0.86; P # .001), and Viz-
AI-Algorithm v4.1.2 was able to detect LVO 
with high sensitivity and specificity (82% and 
94%, respectively). Unfortunately, no study has 
yet shown whether AI methods can accurately 
identify other potentially treatable lesions such as 
M2, intracranial ICA, and posterior circulation 
occlusions. 

Establishing infarct volumes is important to 
triage patients for appropriate therapy. AI has 
been able to establish core infarct volumes 
on MRI sequences through automatic lesion 
segmentation. One reported limitation was 
the reliance on FLAIR and T1 images that 
do not fully account for the timing of stroke 
occurrence.  Another limitation was a tendency 
to overestimate the volume of small infarcts 
and underestimate large infarcts compared with 
manual segmentation by expert radiologists 
and difficulty in distinguishing old versus new 
strokes. Discrepancies in volumes were attributed 
to nondetectable early ischemic findings, partial 
volume averaging, and stroke mimics on CT. 

ASPECTS is an important early predictor of 
infarct core for middle cerebral artery (MCA) 
territory ischemic strokes. It assesses 10 regions 
within the MCA territory for early signs of 
ischemia and the resulting score ranges from 0 to 
10, where 10 indicates no early signs of ischemia, 
while 0 indicates ischemic involvement in all 10 
regions. The score is currently a key component 
in the evaluation of the appropriateness of 
offering endovascular thrombectomy. Several 
commercial AI applications perform automated 
ASPECTS evaluation and they have been 
assessed in clinical settings. In particular, 
Goebel. compared Frontier ASPECTS Prototype 
(Siemens Healthcare GmbH) and e-ASPECTS 
(Brainomix) to 2 experienced radiologists 
and found that e-ASPECTS showed a better 
correlation with expert consensus. Guberina 
compared 3 neuroradiologists with e-ASPECTS 
and found that the neuroradiologists had a 
better correlation with infarct core as judged 
on subsequent imaging than the software. 
Maegerlein compared RAPID ASPECTS 
(iSchemaView) to 2 neuroradiologists and 
found that the software showed a higher 
correlation with expert consensus than each 
neuroradiologist individually. Accuracy varies 

widely and depends on the software and chosen 
ground truth. An interesting result suggested by 
one study, however, was that the RAPID software 
produced more consistent results when the image 
reconstruction algorithm was varied compared 
to human readers. The interclass correlation 
coefficient between multiple reconstruction 
algorithms was 0.92 for RAPID, 0.81 to 0.84 
for consultant radiologists, and 0.73 to 0.79 for 
radiology residents.

Prognostication in Stroke treatment is critical 
to detect patients who are most likely to benefit 
from treatment considering the risks related. 
For this reason, AI has been studied as a tool 
for predicting post-treatment outcomes. In this 
context [23] developed a CNN model to predict 
post-treatment infarct core based on initial pre-
treatment magnetic resonance imaging (MRI). 
The authors used a locally acquired data set of 
222 patients, 187 of whom were treated with 
tPA. The model was evaluated using a modified 
version of the ROC-AUC, where the true positive 
rate was set to the number of voxels correctly 
identified as positive, the true negative rate was 
set to the number of voxels correctly identified 
as negative, and so on. The reported modified 
ROC-AUC is 0.88. In another study, Nishi 
developed a U-Net model to predict clinical 
post-treatment outcomes using pretreatment 
diffusion-weighted imaging on patients who 
underwent mechanical thrombectomy. The 
clinical outcome was defined using the modified 
Rankin Scale (mRS) at 90 days after the stroke. 
The outcomes were categorized as ‘‘good’’ (mRS 
< 2) and ‘‘poor’’ (mRS > 2). After training on a 
data set of 250 patients, the model was validated 
on a data set of 74 patients and found to have a 
ROC-AUC of 0.81.

	� Multiple sclerosis

In multiple sclerosis deep learning has been 
investigated as a tool to estimate disease burden 
and predict disease activity through MRI imaging. 
MRI is used to assess disease burden over time 
but this requires comparison with prior scans, 
which can be burdensome and error-prone when 
the number of lesions is large. Nair evaluated a 
DL algorithm for MS lesion identification on 
a private multicenter data set of 1064 patients 
diagnosed with the relapsing-remitting variant, 
containing a total of 2684 MRI scans. In this 
study, the DL performance was worst with small 
lesions. The algorithm was tested on 10% of 
the data set where it achieved a ROC-AUC of 
0.80 on lesion detection. In another study, Wang 
trained a CNN on 64 magnetic resonance (MR) 
scans to detect MS lesions which were able to 
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achieve a sensitivity of 98.77% and specificity of 
98.76% for lesion detection, respectively.

Regarding predicting disease activity Yoo et al. 
they developed a CNN that combined a data 
set of 140 patients, who had onset of the first 
demyelinating symptoms within 180 days of their 
MR scan, with defined clinical measurements. 
CNN achieved a promising result with a ROC-
AUC of 0.746 for predicting progression to 
clinically definite MS.

Another application of AI in MS regards efforts 
made to reduce gadolinium use where possible 
considering emerging evidence that repeated 
administrations of gadolinium-based contrast 
agents lead to their deposition in the brain. In 
particular, Narayana et al. used DL to predict 
lesion enhancement based on their appearance 
on non-contrast sequences (precontrast T1-
weighted imaging, T2-weighted imaging, and 
fluid-attenuated inversion recovery). They used 
a data set of 1008 patients with 1970 MR 
scans acquired on magnets from 3 vendors. 
DL achieved a ROC-AUC of 0.82 on lesion 
enhancement prediction, suggesting that this 
approach may help reduce contrast use.

	� Fracture detection

Regarding fracture detection tools we found that 
Tomita tested a DL model to detect osteoporotic 
vertebral fractures in a data set of 1432 CT 
scans. The outcome was a binary classification 
of whether or not a fracture was present. Using 
80% of the data set for training, a ROC-AUC of 
0.909 to 0.918 was achieved with an accuracy 
of 89.2%. This was found to be equivalent to 
radiologists on the same data set. In a similar 
study by Bar. CNN was trained with a data set 
of 3701 CT scans of the chest and/or abdomen 
to detect vertebral compression fractures. The 
model was able to detect vertebral compression 
fractures with 89.1% accuracy, 83.9% sensitivity, 
and 93.8% specificity.

Furthermore, Derkatch used a data set of 12 742 
dual-energy X-ray absorptiometry scans to train 
a binary classifier for the detection of vertebral 
compression fractures, 70% of the data set was 
used for training, which yielded a ROC-AUC of 
0.94. The optimal threshold achieved a sensitivity 
of 87.4% and a specificity of 88.4%.

Brain Tumor
For brain tumours there AI application for 
segmentation, that can be used as a stand-alone 
clinical tool, such as in contouring targets for 
radiotherapy, or it can also be used to extract 

tumours as a preliminary step for further 
downstream ML tasks, such as diagnosis, pre-
surgical planning, follow-up and tumour 
grading. Unfortunately, there is a limit to the AI 
segmentation, usually, only a minority of voxels 
represents tumours and the majority represents 
healthy tissue, however, in a recently published 
study, Zhou. Trained an AI model with a publicly 
available MRI data set of 542 glioma patients 
and they were able to tackle this limit. Their 
results demonstrate excellent performance with a 
Dice score of 0.90 for the whole tumour (entire 
tumour and white matter involvement) and 0.79 
for tumour enhancement. Another AI clinical 
application for brain tumours is predicting 
glioma genomics Isocitrate dehydrogenase (IDH) 
mutations that are important prognosticators. 
Multiple studies investigated the prediction of 
IDH mutation status from MRI. Zhao et al. 
published a meta-analysis of 9 studies totalling 
996 patients (published in 2019). The largest 
data set used for training had 225 patients. These 
studies developed binary classification models 
and had a ROC-AUC of 0.89 (95% CI: 0.86-
0.92). Pooled sensitivities and specificities were 
87% (95% CI:76-93) and 90% (95% CI: 72-
97), respectively. Since then, another study was 
published by Choi et al. using a larger MRI data 
set of 463 patients. It showed excellent results 
with ROC-AUC, sensitivity, and specificity 
of 0.95, 92.1%, and 91.5%, respectively. 
This model used a CNN to segment and as 
a feature extractor to predict IDH mutation 
risk Haubold. used 18F-fluoro-ethyl-tyrosine 
positron emission tomography (PET) combined 
with MRI to predict multiple tumour genetic 
markers using a data set of 42 patients before 
biopsy or treatment. They trained 2 different 
classical ML models and used biopsy results as 
the ground truth. They achieved a ROC-AUC of 
0.851 for predicting the ATRX mutation, 0.757 
for the MGMT mutation, 0.887 for the IDH1 
mutation, and 0.978 for the 1p19q mutation.

Degenerative Brain Disease
Regarding dementias numerous AI networks 
have been trained from large longitudinal datasets 
such as the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), resulting in many diagnostic 
DL tools for Alzheimer's Disease (AD), such as 
models using 18F fluorodeoxyglucose (FDG) 
PET76 and structural MRI of the hippocampus  
to predict AD onset from 1 to 6 years in 
advance.  Furthermore, AI may assist in the 
diagnosis of dementia types. AI can differentiate 
AD from Lewy body and Parkinson’s dementia. 
Similarly, other AI tools can differentiate 
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between mild cognitive impairment (MCI) 
and AD. In addition to diagnosis, AI can also 
probe neurobiology. New ML techniques such 
as Subtype and Stage Inference (SuStaIn) have 
provided novel neuroimaging and genotype data-
driven classifications of diagnostic subtypes and 
progressive stages for AD and frontotemporal 
dementia (FTD). SuStaIn has localized distinct 
regional hotspots for atrophy in different forms 
of familial FTD caused by mutations in genes. 

In other studies, DL has integrated MRI, 
neurocognitive, and APOE genotype 
information to predict conversion from MCI to 
AD. Combining several AI systems (including 
structural MRI and amyloid PET) may 
augment the diagnosis and management of the 
complex natural history of AD. In the future, 
the integration of AI tools for imaging with AI 
systems designed to examine serum amyloid 
markers, mortality prediction from clinicians’ 
progress notes and assessments of cognition, and 
postmortem immunohistochemistry images, may 
improve many facets of care in neurodegenerative 
disease. In Huntington's Disease, an autosomal 
dominant movement disorder, diagnosis, and 
management may be enhanced by incorporating 
CAG repeat length data with CNN developed 
for caudate volumetry, and objective gait 
assessment. Such multi-approaches may improve 
risk stratification, progression monitoring, and 
clinical management in patients and families.

	� Epilepsy

The use of AI in the diagnosis of epilepsy 
could improve the diagnostic capabilities of 
this condition as the symptoms are not specific 
and often overlap with other conditions. In 
particular, the integration of anamnestic, 
clinical, electroencephalographic and imaging 
information is fundamental for an accurate 
diagnosis and subtype differentiation. 
Neuroimaging plays an important role in 
both diagnosis and follow-up and prognosis. 
In particular, structural magnetic resonance 
imaging (sMRI) can help identify cortical 
abnormalities (eg temporal mesial sclerosis, focal 
cortical dysplasia [FCD], neoplasms, etc.), while 
functional magnetic resonance imaging (fMRI), 
emission tomography positron imaging (PET) 
and magnetoencephalography (MEG) can help 
localize brain dysfunction.

Park. (2020) used an SVM classifier on bilateral 
hippocampi. The model obtained an area under 
the receiver operating characteristic curve 
(AUC) of 0.85 and an accuracy of 85% in 
differentiating epileptic patients from healthy 
controls, better than human evaluators, in 

many cases mesial sclerosis. it is subtle and often 
invisible. Such cases can lead to a misdiagnosis 
and consequently delay the surgical treatment. 
Therefore, recent machine learning models have 
been proposed to identify MRI-negative patients 
and lateralize foci. For example, Mo et al. (2019) 
used an SVM classifier based on clinically 
empirical features, achieving 88% accuracy in 
detecting MRI-negative patients and an AUC 
of 0.96 in differentiating MRI-negative patients 
from controls. The most important feature was 
the degree of blurring of the grey-white matter 
at the temporal pole. Similarly, Beheshti et 
al. (2020) used an SVM to diagnose epileptic 
patients for mesial sclerosis and lateralize foci 
in a cohort of 42 MRI-negative PET-positive 
patients. Focusing on FLAIR, a simple and 
widely available sequence, the authors extracted 
signal strength from regions of interest (ROIs) 
a priori. The model achieved 75% accuracy in 
differentiating right and left epileptics from 
controls. The best performance was obtained in 
identifying the right epilepsy, with an accuracy of 
88% and an AUC of 0.84. The most important 
ROIs were the amygdala, the inferior, middle 
and superior temporal gyrus and the temporal 
pole.

However, analyzing only the temporal lobes 
may not reveal a more global pathology, for 
this reason, Sahebzamani. (2019), using unified 
segmentation and an SVM classifier, found 
that whole brain features are more diagnostic 
than hippocampal features alone (94% vs 82% 
accuracy). In particular, global contrast and white 
matter homogeneity were found to be the most 
important, along with the clustering tendency 
and grey matter dissimilarity. In particular, the 
best performances were obtained based on the 
mean sum of the whole brain’s white matter. 
Another possibility of AI on sMRI is to lateralize 
the temporal epileptic focus. In a study with 
an SVM, the combination of hippocampus, 
amygdala, and thalamic volumes was more 
predictive of the laterality of the epileptic focus. 
The combined model achieved 100% accuracy in 
patients with mesial sclerosis (Mahmoudi et al., 
2018). Furthermore, Gleichgerrcht et al. (2021) 
used SVM deep learning models to diagnose 
and lateralize temporal epileptic focus based 
on structural and diffusion-weighted MRI ROI 
data. The models achieved an accuracy of 68–
75% in diagnosis and 56–73% in lateralization 
with diffusion data. Based on the sMRI data, 
ipsilateral hippocampal volumes were the most 
important for prediction performance. Based on 
the dwMRI data, ipsilateral tracked beams had 
the highest predictive weight. Machine learning 
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techniques have also been used to diagnose 
cortical dysplasia, the most common cause of 
medically refractory epilepsy in children and 
adults second most common cause (Kabat and 
Król, 2012). In one study, Wang et al. (2020) 
trained a CNN to exploit the differences in 
texture and symmetry on the boundary between 
white matter and grey matter. The model achieved 
a diagnostic accuracy of 88%. Similarly, Jin et al. 
(2018) trained surface-based morphometry and 
a non-linear neural network model. Based on six 
characteristics of a 3D cortical reconstruction, the 
model achieved an AUC of 0.75. The contrast of 
intensity between grey matter and white matter, 
local cortical deformation and local cortical 
deformation of cortical thickness were the most 
important factors for classification. Notably, 
the model worked well in three independent 
epilepsy centres. However, data extraction limits 
have been reported regarding variations in image 
quality between different clinical sites of the tests.

Another possibility is to combine features derived 
from sMRI with those derived from fMRI for a 
variety of clinical applications, such as diagnosing 
epilepsy and predicting the development of 
epilepsy following traumatic events. In one study, 
Zhou et al. (2020) found that the combination of 
fMRI and sMRI functions was more useful than 
either modality alone in identifying epileptic 
patients. In another study, Rocca et al. (2019) 
used Random Forest and SVM models to help 
predict the development of seizures following 
temporal brain injuries. The highest AUC of 0.73 
was achieved with a random forest model using 
functional characteristics. Therefore, additional 
studies that directly compare the additive utility 
of fMRI and sMRI, perhaps using framework 
models, may be useful. In summary, a variety of 
machine learning approaches have been used for 
the automated analysis of sMRI data in epilepsy. 
Given the limited number of publicly available 
sMRI datasets, models tend to be trained on 
small single-centre cohorts, this and the lack 
of external validation limits the interpretation 
of widespread clinical utility. Future work with 
larger, multicenter data sets is needed. Functional 
MRI, a method that measures changes in blood 
flow to assess and map the magnitude and 
temporospatial characteristics of neural activity, 
is gaining popularity in the field of epilepsy 
(Sidhu et al., 2018). A growing body of evidence 
suggests that epilepsy is likely characterized 
by complex and dynamic changes in the way 
neurons communicate (i.e., changes in neural 
networks and functional connectivity), both 
locally and globally. AI applied to fMRI is useful 
in recent epilepsy studies. Mazrooyisebdani et 

al. (2020) used an SVM to diagnose temporal 
epilepsies based on functional connectivity 
characteristics derived from graph theory 
analysis. The model achieved an accuracy of 
81%. Similarly, Fallahi et al. (2020) constructed 
static and dynamic matrices from fMRI data to 
derive measurements of global graphs. Then, 
the most important characteristics were selected 
using random forest and the classification was 
performed with SVM. The use of dynamic 
features led to better accuracy than the use 
of static features (92% versus 88%) in the 
lateralization of temporal epilepsy. In another 
study, Hekmati et al. (2020) used fMRI data to 
quantify mutual information between different 
cortical regions and insert these quantities into 
a four-layered perceptual classifier. The model 
achieved 89% accuracy in locating seizure foci. 
Finally, Hwang et al. (2019) used LASSO feature 
selection to extract functional connectivity 
features, which were then used to train an SVM, 
linear discriminant analysis, and naive Bayes 
classifier to diagnose temporal epilepsy. The best 
accuracy of 85% was achieved with the SVM 
model. Recent work by Bharat et al. (2019) with 
machine learning provided further evidence that 
epilepsy arises from impaired functional neural 
networks. Using resting-state fMRI (rs-fMRI), 
the researchers were able to identify connectivity 
networks specific to temporal epilepsy. The model 
differentiated temporal epilepsy patients from 
healthy controls with 98% accuracy and 100% 
sensitivity. The networks were also found to be 
highly correlated with disease-specific clinical 
features and hippocampal atrophy. Although 
this evidence provides new proof of concept for 
the existence of specific epilepsy networks, future 
work is needed, as impaired functional activity 
can occur secondary to the effects of antiepileptic 
drugs or a variety of other confounding factors. 
In summary, fMRI-based machine learning 
can be used to identify complex alterations 
in functional neural networks in the epileptic 
brain and further exploit these differences 
for classification purposes. In many cases of 
epilepsy, structural and functional anomalies of 
the network probably coexist. Current machine 
learning models with fMRI are limited by small 
sample sizes, probably because there are few 
publicly available data sets. However, fMRI 
is increasingly being integrated into routine 
clinical practice, particularly for lateralization 
before surgery (Szaflarski et al., 2017). Recent 
studies have shown that fMRI may be specifically 
useful in pre-surgical lateralization (Bauer et 
al., 2014). With technological advances and 
further methodological refinements, fMRI 
could become the standard of care in epilepsy 
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and AI will be increasingly used to assist in 
diagnostic and prognostic tasks. Another field 
of AI application is diffusion tensor imaging 
(DTI), which has advantages in detecting 
subtle structural abnormalities of epileptogenic 
foci. Machine learning in DTI can use for 
classification improving the diagnosis and 
treatment of epilepsy, particularly when used for 
pre-surgical planning and post-surgical outcome 
prediction.

Degenerative Spine Disease 
The rate of MRI examinations is stressfully 
increased due to the significant number of 
patients suffering from degenerative spine disease. 
Consequently, radiologists face a work overload 
who need to evaluate numerous parameters (size 
of the spinal canal, facet joints, disc herniations, 
size of conjugation foramina, etc) in all spinal 
levels in a short time. Accordingly, different 
DL and ML algorithms that can automatically 
classify spinal pathology may help to reduce 
patient waiting lists and examination costs. 
In this context, Jamaludin et al. evaluated an 
automatic disc disease classification system 
that yielded an accuracy of 96% compared to 
radiologist assessment. Notably, the main sources 
of limitation were either poor scan quality or the 
presence of transitional lumbosacral anatomy. 
Furthermore, Chen evaluated a DL tool to 
measure Cobb angles in spine radiographs 
for patients with scoliosis. They used a data 
set of 581 patients and were able to achieve 
a correlation coefficient of r ¼ .903 to 0.945 
between the DL-predicted angle and the ground 
truth. Regarding spine segmentation, some 
models have been developed with good results. 
Huang et al. Achieved intersection over-union 
scores of 94.7% for vertebrae and 92.6% for 
disc segmentations on sagittal MR images using 
a training set of 50 subjects and a test set of 50 
subjects. Whitehead trained a cascade of CNNs 
to segment spine MR scans using a data set of 42 
patients for training and 20 patients for testing. 
They were able to achieve Dice scores of 0.832 
for discs and 0.865 for vertebrae. In this context 
DL has been used to answer research questions, 
for example, Gaonkar used DL to look for 
potential correlations between the cross-sectional 
area of neural foramina and patient height and 
age, showing that the area of neural foramina 
is directly correlated with patient height and 
inversely correlated with age 

	� AI Tools for Ultrasound in 
Neuroimaging 

AI applications in neuroimaging and ultrasound 

(US) are mostly focused on the identification 
of anatomical structures such as nerves. A large 
number of algorithms have shown to be able to 
segment US images for these aims. For example, 
Kim et al. developed a neural network that 
accurately and effectively segments the median 
nerve. To train the algorithm and evaluate the 
model, 1,305 images of the median nerve of 
123 normal subjects were used. However, the 
proposed neural network yielded more accurate 
results in the wrist datasets, rather than forearm 
images, with a precision respectively of 90.3% 
and 87.8%.  Different studies showed that AI may 
help to automatically segment nerve and blood 
vessels to facilitate ultrasound-guided regional 
anaesthesia. Automated medical image analysis 
can be trained to recognize the wide variety of 
appearances of the anatomical structures and 
could be used to enhance the interpretation of 
anatomy by facilitating target identification 
(e.g., peripheral nerves and fascial planes). For 
example, a model has been well developed for 
peripheral nerve block in the adductor canal. In 
this model, the sartorius and adductor longus 
muscles, as well as the femur, were first identified 
as landmarks. The optimal block site is chosen 
as the region where the medial borders of these 
two muscles align. The femoral artery is labelled 
as both a landmark and a safety structure. The 
saphenous nerve is labelled as a target. AI-
applications is assist the operator in identifying 
the nerve and the correct target site for the block.

Conclusions
This review explores important recent advances 
in ML and DL within neuroradiology. There 
have been many published studies exploring 
AI applications in neuroradiology, and the 
trend is accelerating. AI applications may cover 
multiple fields of neuroimaging/neuroradiology 
diagnostics, such as image quality improvement, 
image interpretation, classification of disease, 
and communication of salient findings to 
patients and clinicians. The DL tools show an 
outstanding ability to execute specific tasks at a 
level that is often compared to those of expert 
radiologists. In this context, AI may indeed have 
a role in enhancing radiologists’ performance 
through a symbiotic interaction which is going to 
be more likely mutualistic. However, the existing 
AI tools in neuroradiology/neuroimaging have 
been trained for single tasks so far. This means 
that an algorithm trained to detect stroke would 
not be able to show similar accuracy to detect 
and classify brain tumours and vice-versa. This 
is a great limit since patients often suffer from 
multiple pathologies, a complete AI assessment 
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that integrates all different algorithms would 
be favourable. As far as we know, ML or DL 
models which are capable of simultaneously 
performing multiple interpretations have not yet 
been reported. We believe that this technology 
development may represent the key requirement 
to shift AI from an experimental tool to an 
indispensable application in clinical practice. 
AI algorithms for combined analysis of different 
pathologies should also warrant an optimized 
and efficient integration into the daily clinical 
routine. Furthermore, rigorous validation 
studies are still needed before these technological 
developments can take part in clinical practice, 
especially for imaging modalities such as MRI 
and CT, for which the accuracy of DL models 
highly depends on the type of scanner used and 
protocol performed. In addition, the reliability of 
AI techniques requires the highest validation also 
considering the legal liabilities that radiologists 
would hold for their usage and results.  
Nowadays, only specific DL applications have 
demonstrated accurate performance and may be 
integrated into the clinical workflow under the 
supervision of an expert radiologist. In particular, 
AI algorithms for intracranial haemorrhage, 
stroke, and vertebral compression fracture 
identification may be considered suitable for 
application in daily clinical routines. Other tasks, 

such as glioma genomics identification, stroke 
prognostication, epilepsy foci identification and 
predicting clinically definite MS, have shown 
significant progress in the research domain and 
may represent upcoming clinical applications in 
the not-so-distant future. However, the majority 
of AI algorithms show that there is still a range of 
inaccuracies for example in labelling anatomical 
structures, especially in the context of atypical or 
complex anatomy. Moreover, another challenge 
will be to ensure the presence of highly skilled 
practitioners, since machine learning systems 
are not guaranteed to outperform human 
performance and these systems should not be 
relied upon to replace the knowledge of doctors. 
Probably, the ongoing development of DL in 
neuroradiology/neuroimaging will significantly 
influence the work of future radiologists and 
other specialists, which will need a specific AI 
education to begin during residential training, to 
deeply understand the mechanisms and potential 
pitfalls.  Furthermore, knowledge of AI could be 
an opportunity to improve training in radiology 
and other specialities. AI can assign specific cases 
to trainees based on their training profile, to 
promote consistency in the trainees' individual 
experiences, and, in the context of anaesthetic 
procedures, to facilitate an easier understanding 
of anatomy.
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