
465ISSN 1755-5302

Interventional
Cardiology

Short Communication

Artificial intelligence applied to implantable cardiac 
monitors data

Fabio Quartieri1*, Andrea Grammatico2

1Department of Cardiology, Azienda Ospedaliera Santa Maria 
Nuova, Reggio Emilia, Italy

2Department of Cardiology, EMEA CRM Medical Affairs, Rome, Italy

*Author for correspondence: 
Fabio Quartieri, Department of Cardiology, Azienda Ospedaliera 
Santa Maria Nuova, Reggio Emilia, Italy, E-mail: fabio.quartieri@
ausl.re.it

Received date: 18-Aug-2023, Manuscript No. FMIC-23-110629;
Editor assigned: 21-Aug-2023, PreQC No. FMIC-23-110629 (PQ); 
Reviewed date: 04-Sep-2023, QC No. FMIC-23-110629;
Revised date: 11-Sep-2023, Manuscript No. FMIC-23-110629 (R);
Published date: 21-Sep-2023, DOI: 10.37532/1755 
-5310.2023.15(S18).465

Description

Implantable Cardiac Monitors (ICMs) are an established diagnostic tool for continuous 
ambulatory monitoring of cardiac arrhythmias in patients with unexplained syncope 
and in patients with symptoms, such as dizziness, palpitations, chest pain, and shortness 
of breath, which could be related to unknown arrhythmias [1-4].

ICMs continuously monitor patient’s Subcutaneous Electrocardiograms (SECGs) and 
provide alerts when they detect arrhythmic events, such as asystoles, bradycardia, and 
both atrial and ventricular tachycardias. 

ICMs may transmit large amount of data to clinicians. This on the one hand is 
positive because it brings opportunities to associate patients’ symptoms with cardiac 
arrhythmias, to detect unknown cardiac conditions, and therefore to derive clinical 
insight and relevant knowledge to guide medical action. On the other hand, false 
arrhythmia detections may occur and may cause unnecessary healthcare staff review 
workload for healthcare staff [5-7].

Artificial Intelligence (AI) already applied to classify cardiac rate and rhythm from 
electrocardiography and Holter data [8-9], can theoretically be applied to ICM SECGs 
data. The first proof of this concept has been provided by Mittal, et al., [10], who 
evaluated AI application to improve ICM accuracy in detecting atrial tachyarrhythmias. 

Our group has recently provided new evidence about the capability of AI algorithms 
to accurately classify ICMs data and reduce false arrhythmia detections [11]. The 
main finding of our study was that the evaluated AI algorithm accurately classified 
episodes detected by ICM with 95.4% overall accuracy, in particular with 97.19% 
sensitivity, 94.52% specificity, 89.74% positive predictive value, and 98.55% negative 
predictive value. Our data added important insight into the field of applying AI to 
ICM data because the previous research [10], was limited to AI classification of atrial 
tachyarrhythmias while we applied AI to the classification of atrial tachyarrhythmias but 
also of bradycardias, asystoles, and ventricular tachycardias. Another important result 
of our study was to confirm that AI algorithms can reduce false positive arrhythmia 
reduction by 98.0% overall and in particular by 99.5% for bradycardia, 98.8% for 
asystole, 94.0% for atrial tachycardias and 87.5% for ventricular tachycardia. These 
results have relevant clinical implications since the clinical value of ICM depends on 
reliable arrhythmia detection. AI may contribute to improving the data triage process, 
reducing the Hospital staff workload, and providing quick insights from data to 
support clinicians in taking prompt medical action and improving patient care. 

Our more recent publication [12], shows that the evaluated AI algorithm is capable 
of expanding ICM’s detection capacity from the standard 4 cardiac arrhythmias 
(asystoles, bradycardias, and atrial or ventricular tachycardias) to 25 cardiac rhythm 
patterns through multi-label classification. For example, atrial tachyarrhythmias as 
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detected by the ICM were sub-classified as atrial tachycardia, 
and atrial fibrillation with slow ventricular response (40 bpm-
59 bpm), atrial fibrillation with controlled ventricular response 
(60 bpm-120 bpm), atrial fibrillation with rapid ventricular 
response (>120 bpm). Similarly, bradycardia was classified as mild 
sinus bradycardia (40 bpm-59 bpm) or severe sinus bradycardia 
(<40 bpm). Other AI-driven rhythm classifications comprised 
rS complexes, premature atrial contractions (sub-classified as 
unifocal, bigeminal, trigeminal, quadrigeminal, couplet, or 
triplet), premature ventricular contractions (sub-classified as 
positive, negative, unifocal bigeminy, unifocal trigeminy, unifocal 
quadrigeminy, couplet or triplet, interpolated), inverted T waves. 
These classifications and differentiations of the cardiac rhythms 
are clinically relevant because they allow physicians to better 
characterize each patient and to personalize patient therapy 
(anticoagulation, rhythm control strategy, ventricular response 
control strategy, pacemaker indication, etc.). Even with the 
significant increase in the number of detected cardiac arrhythmias, 
the identification precision remained high with a pondered global 
accuracy of 88%, which is comparable, if not better, than expert 
cardiologists’ performances. Importantly we also estimated the 
time an AI algorithm takes to access, read, and diagnose ICM 
episodes. This time on average was as low as 6 seconds suggesting 
that the introduction of AI algorithms in the clinical practice may 
reduce the time in heart electrical signal processing and cardiac 
pattern diagnosis, compared to traditional visual analysis. 

AI is progressing from bench to bedside. We know that AI 
algorithms will soon be integrated with the platforms which allow 
remote monitoring of patients with implantable cardiac devices. 
Moreover, we envision that AI in the near future will provide 
predictive analytics capabilities that will directly benefit patients in 
real-world clinical practice. AI and in particular Machine Learning 
(ML) have been applied in ECG and Holter data to identify 
patients at risk of left ventricular dysfunction [13], atrial fibrillation 
[14], and mortality [15]. Recently ML has been applied to predict 
ventricular fibrillation based on electrocardiographic features [16]. 
These ML algorithms have been tested in preliminary clinical 
applications with promising results [17-18].

Conclusion

In conclusion, cardiac monitors, both wearable and insertable 
ones, will be used more and more in the future for monitoring 
cardiovascular diseases. The development of Bluetooth technology 
and the application of AI algorithms will result in the capability 
of detecting cardiovascular events on time, earlier and everywhere. 
Both wearables and implantable cardiac monitors have pros and 
cons that need to be fully evaluated; as for implantable cardiac 
monitors pros comprise the fact that they are easy to implant, 
minimally invasive, safe and highly effective in providing long-

term continuous ambulatory monitoring. The detection accuracy 
is high and continuously improving with the implementation of 
new detection algorithms and the application of AI. Implantable 
cardiac monitors have also cons that have to be evaluated, such as 
the data volume which may cause Hospital staff work, and possible 
risks, even if low, of infection, bleeding or bruising after surgery, or 
discomfort in daily activities, such as taking a shower, a few days 
after implant.
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