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“…a combination of different approaches will be required to establish a more specific 
immune suppression of autoimmunity, only enhancing Treg function at sites of 

ongoing inflammation.”
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Arthritis therapy: a role for regulatory T cells?

In the last decades, regulatory T cells (Tregs), 
particularly the CD4+CD25+ Treg expressing 
the transcription factor FOXP3, have been 
extensively investigated in autoimmunity. Tregs 
have been shown to suppress autoimmunity in 
several murine models; for instance, for Type 1 
diabetes, inflammatory bowel disease, arthritis 
and multiple sclerosis (MS) [1–5]. The most obvi-
ous example showing the importance of Tregs 
for immune suppression in humans is immuno-
dysregulation polyendocrinopathy enteropathy 
X-linked syndrome, a lethal inflammatory syn-
drome caused by a mutated FOXP3 gene, lead-
ing to dysfunctional FOXP3 [6,7]. Furthermore, 
in several human autoimmune disorders, such as 
in juvenile idiopathic arthritis (JIA) and rheu-
matoid arthritis (RA), diminished Treg func-
tion or decreased numbers have been related 
to a more severe disease course [8]. Therefore, 
Tregs appear to be potent suppressors of autoim-
munity. However, so far, this has not led to a 
direct application of Treg-mediated therapy in 
arthritis patients. 

Currently used effective therapies in arthritis 
do not primarily target Tregs. However, it is pos-
sible that they could also work partly through 
a promotion of Treg numbers or function. For 
instance, anti-TNF‑a (infliximab) increases 
Treg numbers threefold in RA patients, prob-
ably by induction of new FOXP3+ Tregs from 
CD4+CD25- T cells, which was demonstrated 
in  vitro [9,10]. In addition, membrane-bound 
TNF‑a  diminishes Treg function and anti-
TNF‑a treatment decreases membrane-bound 
TNF‑a on Tregs both in  vitro and in RA 
patients, thereby restoring Treg function [11]. 

Furthermore, steroid-mediated immune sup-
pression may be enhanced by increasing Treg 
frequency or function. For instance, methyl-
prednisolone pulses can increase the frequency 
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of Tregs in patients with MS [12,13] and myasthe-
nia gravis [14,15]. In patients with myasthenia 
gravis, the reduced suppressive function of Tregs 
was restored by prednisolone treatment [15]. 
This suggests that glucocorticoids can induce 
tolerogenic responses through Tregs and thereby 
diminish disease. A proposed mechanism of glu-
cocorticoid induction of tolerance is through 
inhibition of dendritic cell maturation  [15–18]. 
Immature dendritic cells produce TGF‑b and 
IL-10 [15] and are able to induce Tregs  [19]. 
Another mechanism is induction of cell death 
by glucocorticoids, specif ically in effector 
T  cells but not in Tregs. Dexamethasone-
treated mice demonstrated increased apoptosis 
of CD4+CD25- T cells, but not of CD4+CD25+

 

T cells, thereby increasing the percentage of 
CD4+CD25+ T cells, which were suppressive 
in vitro [20]. Obviously, the effects of treatment 
of patients with anti-TNF‑a or corticosteroids 
cannot be solely attributed to Treg-mediated 
mechanisms. However, the increase of Tregs due 
to treatment has to be taken into consideration 
when drawing conclusions on the relevance of 
Tregs in disease regulation in patient groups 
receiving these therapeutics. 

“Currently used effective therapies in 
arthritis do not primarily target Tregs. 

However, it is possible that they could also 
work partly through a promotion of Treg 

numbers or function.”

The question is what could be a realistic and 
feasible way to directly promote Treg function 
and numbers in arthritis? Several methods of 
promoting Treg function have been described, 
mostly in experimental models. Of particular 
interest is (antigen-specific) peripheral induction 
of new Tregs from naive T cells or peripheral 
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expansion of natural Tregs. For instance, we 
showed recently that HSP60, a self-antigen that 
is highly expressed in the synovial lining tis-
sue of inflamed joints of JIA patients, is able to 
induce functional FOXP3+ Tregs [21]. Since the 
antigen (HSP60) recognized by the Treg is only 
expressed extracellularly at the inflammatory 
site, HSP60-specific Tregs will most likely specif-
ically suppress inflammation locally at the time 
of inflammation, without unwanted side effects.

When considering the use of FOXP3+ Tregs 
for therapy it is has to be noted that only sus-
tained FOXP3 expression establishes functional 
Tregs and, while ectopic expression of FOXP3 in 
murine CD4+CD25- T cells can induce a sup-
pressive phenotype [22,23], Tregs can lose FOXP3 
and suppressive capacity in an inflammatory 
environment [24–27]. Over the last few years, 
several protocols have been established for dif-
ferentiating T cells into specific T‑cell subtypes 
in vitro. IFN‑g and IL-12 are required to develop 
Th1 cells, IL-4 induces Th2 cells, TGF‑b, IL-1 
and IL-23 induce Th17 cells [24] and TGF‑b 
and IL-2 induce Tregs [28]. Each T‑cell subtype 
has its own master transcription factor, which 
drives T‑cell differentiation and maintains T‑cell 
subtypes. For example, Tregs express FOXP3, 
Th17 expresses RORC2 (RORgT in mice), Th1 
expresses T-bet [29] and Th2 expresses GATA3 [30] 
and IFN regulatory factor 4 (IRF-4) [31]. It 
has recently been demonstrated that human 
FOXP3+ Tregs can coexpress RORC2 and pro-
duce IL-17 ex vivo [32]. In mice, FOXP3+ Treg 
can also coexpress T-bet [33] or IRF-4 [34], which 
enables them to specifically suppress Th1 or Th2 
responses. However, Tregs can also differenti-
ate into effector T cells. Human FOXP3+

 
Tregs 

can, under inflammatory conditions, convert 
to IL-17-producing, RORC2-expressing Th17 
cells [25–27]. This is of particular importance, 
since IL-17 is a pathogenic cytokine and highly 
expressed at inflammatory sites in several human 
autoimmune diseases, such as MS [35,36], RA [37], 
Crohn’s disease [38] and psoriasis [39]. Moreover, 
numbers of IL-17-producing T cells in synovial 
fluid of RA patients correlates with rapid joint 
damage progression [40]. Furthermore, in murine 
models it has been shown that Tregs can lose 
FOXP3 and convert to Th2 [41] or to effector T 
cells producing IL-17 and IFN‑g [42]. This phe-
nomenon is called T‑cell ‘plasticity’ [43–45] and is 
also observed in Th cells; for example, Th2 can 
convert to Treg [46] and Th17 to Th1 [47]. T‑cell 
plasticity provides flexibility in T‑cell responses, 
which may be required to generate an appropri-
ate immune response upon a different type of 

infection [45]. This plasticity evidently forms a 
great challenge when considering cell therapy 
with Tregs.

Taken together, induced FOXP3+ Tregs with 
transient FOXP3 expression may not only lose 
Treg phenotype, but may even differentiate 
into pathogenic effector T cells once they are 
in an inflammatory environment. Therefore, it 
is important to carefully evaluate Treg stability 
to ensure that Tregs are safe for treatment or to 
promote FOXP3 expression in order to prevent 
conversion of Tregs to effector T cells, for exam-
ple by utilizing histone deacetylase (HDAC) 
inhibitors. HDAC inhibitors promote acetyla-
tion of FOXP3, thereby prevent degradation 
of FOXP3  [48] and, subsequently, may prevent 
conversion of Tregs to Th17 under inflammatory 
conditions in vitro [25].

“…the chronic inflammatory environment 
in vivo either causes local dysfunction of 

Tregs or removes activated cells’ 
susceptibility to Treg-mediated suppression.”

In humans, peripheral induction of Tregs is 
probably important for regulation of inflamma-
tion [49,50]. This would suggest that Tregs are 
either absent or not functional in patients with 
autoimmune disease. However, in synovial fluid 
from inflamed joints of JIA and RA patients, 
large numbers of FOXP3+ Tregs are found [8] 
and Tregs from JIA synovial fluid are functional 
in ex vivo assays [51]. It is likely that the chronic 
inflammatory environment in vivo either causes 
local dysfunction of Tregs or removes activated 
cells’ susceptibility to Treg-mediated suppres-
sion [52–54]. Thus, to create a therapeutic window 
for Treg-targeted therapies, it may be impor-
tant to first dampen chronic inflammation, for 
instance by using anti-TNF‑a therapy for a 
short period of time [8,55]. Thereafter, Treg func-
tion could be induced by, for instance, HSP60 
epitopes inducing HSP60-specific Tregs, which 
will suppress actively and exclusively at sites 
where HSP60 is present, such as the inflamed 
synovial tissues in joints of arthritis patients [56]. 
Furthermore, in order to maintain Treg func-
tion and prevent conversion into effector T cells, 
HDAC inhibitors, such as nicotinamide, can 
enhance FOXP3 stability [25,48]. However, this 
still has to be tested more extensively in in vivo 
model systems. Thus, a combination of differ-
ent approaches will be required to establish a 
more specific immune suppression of autoim-
munity, only enhancing Treg function at sites 
of ongoing inflammation. 
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