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The ability to monitor and control bioreactor processes is an integral component 
to the implementation of Process Analytical Technology and Quality by Design 
principles. Desirable attributes of monitoring methods include the ability to monitor 
multiple analytes in real time with little to no sample processing. Spectroscopic 
methods fit these criteria and significant advancements in their application have 
been made. However, implementation of these systems has been hampered by their 
complexity. Here, we present an overview of near IR, mid-IR, Raman and fluorescence 
spectroscopy technologies, and the steps taken to enable their implementation as 
effective bioprocess monitoring tools. Specific applications for monitoring of microbial 
and mammalian cell bioreactors, and screening and classification of raw materials are 
discussed.

Background
It has been almost a decade since the the US 
FDA outlined Process Analytical Technol-
ogy (PAT) principles, and later Quality by 
Design (QbD), meant to encourage drug 
manufacturers to introduce and embrace 
cutting edge technologies in manufacturing 
processes. However, the inherent complex-
ity of industrial bioprocesses has slowed the 
widespread application of these principles 
in the manufacture of biologics. To reap the 
benefits of PAT and QbD, a detailed under-
standing of the interaction between the cells 
and the bioreactor environment and methods 
to monitor and control important process 
variables is required. A variety of advanced 
analytical methods, including HPLC, NMR, 
LC–MS, flow cytometry and the various 
‘omics approaches [1–6], have been success-
fully applied to advance the development 
of robust, high-yielding bioprocesses. It is 
preferable to monitor parameters inline, thus 
enabling their control in real time. These 
types of measurements are routine for physi-
cal parameters such as temperature, pH and 
dissolved oxygen; however, the monitoring 
of nutrients, metabolites and cellular compo-
nents are considerably more difficult. Growth 

media may consist of undefined additives, 
such as protein hydrolysates, and chemically 
defined media for mammalian cell culture 
can consist of upwards of 50 components. 
Thus, sensors that are employed for bioreac-
tor monitoring must be capable of precisely 
measuring low concentrations of various 
nutrients or metabolites without interfer-
ence from the complex, multiphasic matrix 
 inherent in bioreactor processes.

Despite the complexities of monitoring 
bioreactor systems outlined above, optical 
sensors appear to be well suited for the task 
[7,8]. They offer the advantages of being non-
invasive, nondestructive and capable of tak-
ing measurements both offline and inline 
enabling quantitative analysis of multiple 
components in real time. A further advantage 
of these methods is that the measured spec-
tra also capture global fingerprints of culture 
dynamics that can be used to assess current 
and future status of bioprocesses. The use of 
spectroscopy for monitoring bioreactors has 
been under development for over 20 years 
[9]. The vast majority of studies published 
in the literature involve applications of near 
IR (NIR) spectroscopy primarily due to the 
simplicity of the instrumentation involved. 
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Mid-IR (MIR) and Raman spectroscopy applications 
began to gain prominence with the advent of improved 
optics and smaller, more powerful lasers and detectors. 
Other applications are emerging that apply 2D fluores-
cence spectroscopy for bioprocess monitoring. Each of 
these spectroscopic methods has advantages and dis-
advantages and is best suited for analysis of different 
 components and bioreactor matrices.

Implementation of these technologies is not trivial, 
and several aspects inherent to the use of spectroscopic 
technologies must be considered. First, measurement 
conditions must be optimized, especially in the case 
of highly agitated and aerated cultures that attain 
high cell densities, to suit the type of technology and 
instrument being used, the types of components being 
analyzed and the nature of the sample matrix. Second, 
calibrations must be developed between the analytes of 
interest and the spectra collected from the experimen-
tal system. This involves the generation and selection 
of an appropriate dataset that will accurately capture 
the variations and complexity of the system being stud-
ied. Multivariate chemometric methods are then used 
to develop models transforming the measured spectra 
into useful information [10].

While bioprocessing applications utilizing spectro-
scopic methods have increased, these analytical tech-
niques have yet to live up to their potential for innova-
tion and control, and still lag behind applications in 
the manufacture of small-molecule therapeutics. The 
aim of this review is to summarize and evaluate the 
development of spectroscopic methods as they apply 
to bioprocesses, and highlight areas that still require 
particular focus to enable more widespread adoption 
of QbD and PAT. The principles behind the different 
spectroscopic technologies will be introduced and the 
general methods used to construct calibration models 
are described. Next, we will provide a summary on the 
development of quantitative applications for microbial 
and mammalian systems that are relevant to the bio-
tech industry, then address specific applications on the 
production of recombinant proteins, including analysis 

of product titer and quality attributes. Finally, qualita-
tive analyses for the evaluation of raw materials and 
process trajectories are presented.

Overview of spectroscopic methods
Spectroscopy is the study of the interaction between 
matter and electromagnetic radiation. The electro-
magnetic spectrum ranges from low frequency radio 
waves through high frequency γ-rays. Chemical bonds 
have characteristic vibrational frequencies that absorb 
energy from specific wavelengths of radiation. The 
study of this phenomenon is known as vibrational 
spectroscopy, which consists of NIR, MIR and Raman. 
Another technique that has been demonstrated to be of 
value for bioprocess monitoring, 2D fluorescence spec-
troscopy, is also considered in this review. The theory 
behind each method and the data analysis techniques 
that are required to interpret the spectra will be briefly 
introduced here. Instrumentation that is used for 
each of these techniques has been discussed in detail 
 elsewhere [9,11–12], and will not be considered here.

NIR and MIR spectroscopy measure absorption, 
in either transmission or reflectance modes, from dis-
persed polychromatic radiation. The NIR region of 
the spectrum corresponds with wavelengths of 780–
2500 nm and the MIR region is between wavelengths of 
2500 and 40,000 nm. Absorbances are also commonly 
expressed as a function of the wavenumber, which 
is directly proportional to the frequency, in units of 
inverse centimeters. NIR spectra consist of absorbances 
due to the combinations and overtones of fundamental 
vibrations. Most of the information contained in these 
spectra result from a change in the dipole moment of 
a molecule due to the stretching and bending of cova-
lent hydrogen bonds (i.e., C-H, N-H and O-H bonds). 
Therefore, aqueous solutions are dominated by water 
peaks, which can interfere with the spectra of the ana-
lytes of interest, in both the NIR and MIR regions [13]. 
Absorbances occurring in the NIR region are typically 
10–100-times less intense than those occurring in the 
MIR region. While NIR spectra consist of broad over-
lapping peaks, MIR spectra consist of well-defined 
peaks due to absorbances from characteristic bonds, 
which makes quantitative information on specific ana-
lytes more readily available [14]. There are two types 
of IR instruments used – dispersive and Fourier trans-
form (FT)IR. FTIR instruments have several distinct 
advantages over the dispersive type including higher 
throughput and  accuracy [9,11].

Raman spectroscopy is complementary to MIR, 
yielding different intensities and selectivity. Raman 
measures inelastic scattering from a monochromatic 
radiation source (i.e., lasers). It may take as many as 
108 excitation photons to give rise to one Raman pho-

Key Terms

Rayleigh scattering: Scattering of light by particles much 
smaller than the wavelength of the light. In this type of 
interaction, there is no change in the energy state of 
scattered photons but there is a change in their direction.

Raman scattering: Refers to the small fraction of photons 
that are scattered at different energy states than the 
incident light. When energy is transferred from the light 
to the material, it is scattered at longer wavelengths, and 
this process is referred to as Stokes Raman scattering. 
When energy is transferred from the material to the light, 
it is scattered at shorter wavelengths and this process is 
referred to as anti-Stokes Raman scattering.
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ton, therefore Rayleigh scattering, which dominates 
Raman scattering, must be filtered out. However, 
Raman spectra are not subject to large interference 
from polar molecules such as water, and the fiber optic 
cables used are not as expensive and fragile as MIR 
fibers [12]. Selection of appropriate excitation wave-
length involves consideration of the Raman signal 
intensities (and potential impacts to exposure times 
to compensate) and the potential for interference from 
background fluorescence. For example, fluorescence 
can be minimized by utilizing excitation wavelengths 
in the NIR region; however, exposure times may need 
to increase to compensate for reduced Raman signals. 
Thus, in the case of some high cell density microbial 
systems with high nutrient consumption rates, the use 
of long wavelength lasers and higher exposure times 
may not be compatible with the dynamics of the 
 system.

A fourth spectroscopic method applied to bioreac-
tor monitoring is fluorescence spectroscopy. When a 
fluorophore absorbs a photon, it is excited to a higher 
energy state. As the energy of the molecule drops to 
a lower energy state, it emits a photon at a different 
energy, and thus frequency. The range of frequencies of 
emitted photons from a particular excitation frequency 
is known as the emission spectrum. Constructing a 
matrix consisting of the emission spectrum for a range 
of excitation frequencies is known as 2D fluorescence. 
This method can be used to collect information on all 
the fluorescent compounds in a sample.

Analysis of spectroscopy data
The application of spectroscopic methods for the 
analysis of bioreactors results in complex spectra with 
contributions from an aqueous phase, biomass and gas 
bubbles. Although chemically defined media formula-
tions are becoming more common for the production 
of recombinant proteins, in the case of mammalian cell 
cultures, these formulations may consist of more than 
50 components. The methods under discussion here 
produce datasets with overlapping spectra from all of 
these components in addition to cellular metabolites, 
biomass (proteins, nucleic acids, lipids and so on) and 
other matrix components (e.g., antifoam, microcarri-
ers and bubbles). In general, multivariate data analysis 
methods, such as partial least squares (PLS) regres-
sion or principal component regression, are required 
to extract meaningful information from the acquired 
spectra. This requires the use of a calibration dataset to 
train the models to best fit the system.

In depth discussions of the chemometric approaches 
used for data analysis have be presented elsewhere [10–
11,15–16] and are beyond the scope of this review. The 
general calibration procedure that is followed can be 

broken up into six categories for the purpose of discus-
sion as shown in Figure 1. The work that has been pre-
sented in the literature will be discussed in the context 
of these individual procedures. The calibration scheme 
refers to the strategy used to generate samples for the 
calibration dataset. Three different strategies have 
been summarized [16]: the use of synthetic mixtures 
of the components of interest, the standard approach 
using real process samples, and the so-called adap-
tive calibration that relies on the addition of various 
components to process samples to break correlations. 
Appropriate samples are generated according to the 
calibration scheme being used and measurements are 
taken using both spectroscopy and reference methods 
for the analytes of interest. The data are then gener-
ally preprocessed, which refers to any mathematical 
manipulations performed on the data geared towards 
the reduction or removal of irrelevant sources of varia-
tion that may mask the variation of interest [10]. Some 
preprocessing methods commonly employed are nor-
malization, weighting, smoothing and baseline correc-
tions. Multiplicative scatter correction and derivitives 
can be used for baseline correction of spectroscopy 
data. Mean centering subtracts the mean value for a 
given variable from all the elements resulting in easier 
discernment in small differences between samples [10]. 
Next, in order to improve the prediction accuracy of 
particular analytes, certain wavelength regions corre-
sponding to a particular component, as determined by 
analysis of pure component spectra or various statisti-
cal approaches, may be specified for modeling. Refer-
ences that contain either MIR or Raman spectra for 
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components of interest for bioprocess monitoring are 
shown in Table 1. Various statistical approaches, such 
as 2D correlation windows, interval PLS (iPLS), vari-
able influence on projection and genetic algorithms, 
which look for model improvements by using optimal 

subsets of variables, can also be used for wavelength 
selection in models.

Multivariate analysis methods, such as PLS, princi-
pal component analysis (PCA), principal component 
regression or artificial neural networks (ANNs) are 

Table 1. References containing pure component mid-IR or Raman spectra for analytes of interest for 
bioprocessing applications.

Chemical group Components MIR ref. Raman ref.

Alcohol • Ethanol [17,18]  

Amino acids • Alanine [19,20] [21,22]

• Arginine; glutamic acid (glutamate); glycine; histidine; 
proline; serine; tryptophan; tyrosine; valine

[20] [21,22]

• Asparagine; glutamine [19,20] [21]

• Aspartic acid; cysteine; isoleucine; leucine; lysine; 
methionine; threonine

[20] [21]

• Phenylalanine [20] [21–23]

DNA and RNA bases • Adenine; cytosine; guanine; thymine; uracil  [22]

Fatty acids and fats • 12-methly-tetradecanoic acid; 13-methylmyrisitic acid; 
14-methylmyrisitic acid; 14-methylhexadecanoic acid; 
15-methylpalmitic acid; vaccenic acid; glycerol; lauric acid; 
myrisitic acid; oleic acid; palmitic acid; stearic acid; triolein; 
trilinolein; trilinolenin

 [22]

Hormones • Human growth hormone  [24]

• Insulin  [25]

Organic acids • Acetate [17] [23]

• Formate  [23]

• Gluconic acid; keto-gluconic acid [17]  

• Lactate [19,26] [23]

Primary metabolites • Acetoacetate; acetylcoenzyme a; coenzyme a; fumarate; 
malic acid; phosphenolpyruvate; pyruvate

 [22]

• Citric acid [27]  

• Succinic acid (succinate)  [22,23]

Salts • Magnesium sulfate; nitrate; potassium phosphate 
monobasic

 [28]

• Sulfate  [23]

Sugars • N-acetyl-d-glucosamine; amylopectin; amylose; arabinose; 
cellulose; chitin; dextrose; d-fructose-6-phosphate; fucose; 
galactosamine; lactose; mannose; trehalose; xylose

 [22]

• Fructose [17] [22,28]

• Glucose [17–19,26–27] [22–23,28]

• Sucrose [17,27] [28]

Other compounds • β-carotene; ascorbic acid; glutathione; riboflavin  [22]

• Ammonia [19]  

• Gluconatacean [17]  

• Imidazole [20]  

• Yeast [18]  

MIR: Mid-IR.
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then employed to correlate the measured concentra-
tions of components of interest with the acquired spec-
tra. The final step involves validation of the models by 
comparing model predictions with reference method 
measurements on independent and representative 
samples. Rigorous validation is a critical step in ensur-
ing that predictions are accurate under the range of 
expected process variations This point is emphasized 
by Shaw and coworkers who stated, “It is not difficult 
to carry out statistical analysis on multivariate data in 
such a way that the results appear much more impres-
sive than they really are” [15]. As such, spectroscopic 
monitoring of bioprocesses is discussed here in the 
context of the various approaches taken to ensure that 
high-quality spectroscopic measurements and model 
predictions can be attained for a particular system.

Monitoring of bioreactors using 
spectroscopic methods
Spectroscopic methods are of particular importance 
to the biotechnology industry since they are simple to 
operate and implement inline for real-time measure-
ments. Furthermore, a single system generates global 
fingerprints of bioreactor cultures that can be analyzed 
to produce quantitative predictions of specific com-
ponents. These applications have been reviewed by 
multiple authors [11,14,29–31]. The reviews by Scarff et 
al. in 2006 and Cervera et al. in 2009 [9,16] provide 
thorough discussions on the practical aspects of imple-
menting NIR spectroscopy for bioreactor monitoring. 
Although these reviews focused solely on NIR applica-
tions, the practical sampling and calibration consider-
ations and chemometric methods apply to other spec-
troscopic methods. The review by Scarff et al. was a 
comprehensive analysis of NIR applications organized 
by complexity of the bioreactor matrix from simple 
(anaerobic biotransformations) to complex (highly agi-
tated, aerated cultures of filamentous fungi). Cervera et 
al.’s review presented various strategies used to address 
practical issues encountered when using NIR for bio-
process monitoring. The intent of this review was not 
to repeat what was presented in previous reviews, but 
to complement these publications by focusing on MIR 
and Raman applications and including only the most 
recent NIR applications.

Microbial fermentation
Microbial spectroscopic applications focus on analy-
sis of carbon sources (glucose, glycerol, fructose and 
starches), nitrogen sources (ammonium), secondary 
metabolites (carotenoids) and metabolic byproducts 
(ethanol and acetate). A summary of the literature 
references describing implementation of spectroscopic 
methods for monitoring of microbial processes is listed 

in Table 2. This includes information on the organ-
ism cultured, spectroscopy type, sampling method 
and sample matrix for each application. Results, such 
as standard errors of prediction, from each of the 
models are not included in this table, but have been 
summarized elsewhere [16,32]. While microbial media 
tends to contain fewer components, a unique chal-
lenge associated with microbial systems is the diversity 
of sample matrices encountered from different organ-
isms, and the large changes in biomass that can occur 
over relatively short times. These issues are reflected in 
the large variety of approaches taken for constructing 
calibration matrices. A few of the unique approaches 
employed to improve model robustness and accuracy 
are described below.

Development of accurate and robust calibration 
models requires appropriate selection of the spectro-
scopic method, calibration strategy and chemometric 
tools to suit the system. Aspects to consider include 
instrument cost and availability, where measurements 
will be performed (offline, online or inline), the sam-
ple matrix, spectra of the analytes of interest relative 
to the sample matrix, and concentrations of the ana-
lytes of interest. Cannizzaro and coworkers reported 
on a system producing carotenoids [39] where the choice 
of Raman spectroscopy was straight forward due to a 
resonance effect that enhances the Raman signals of 
carotenoids. Unfortunately, the choice of spectroscopic 
methods is rarely that simple and is difficult in part 
because there is a lack of peer-reviewed studies that 
directly compare the relative merits of different mea-
surement methods on the same system. Sivakesava 
and coworkers published some relatively early studies 
evaluating FT-MIR and FT-Raman for monitoring of 
ethanol production using yeast [38] and also FT-MIR, 
NIR and FT-Raman for analysis of lactic acid fermen-
tation [37]. In both cases, the authors concluded that 
MIR was the more promising technique due to its 
specificity and stronger signals, although it is unclear if 
recent advances in Raman detectors would affect this 
conclusion. Another study also compared FT-MIR and 
Raman measurements for monitoring of a gibberellic 
acid process [36]. Both methods yielded models with 
similar performance, with the authors preferring the 
Raman measurement as it required no sample process-
ing. Work by Crowley and coworkers developing FT-
MIR calibrations for yeast cultures suggest that quan-
titative MIR models are less complex, and thus, more 
robust than NIR models [35].

Microbial cultures generally use media containing 
a small number of components and have well-charac-
terized metabolism, which can allow the use of simple 
calibration schemes for some applications. Examina-
tion of pure component spectra often yields informa-



6 Pharm. Bioprocess. (2014) 2(3) future science group

Review    Abu-Absi, Martel, Lanza, Clements, Borys & Li

Table 2. Literature employing vibrational spectroscopy for monitoring of microbial bioreactors.

Organism Method Measurement 
mode

Sample 
matrix

Analytes Ref.

Escherichia coli MIR and 
pyrolysis MS

Offline Cell paste 
and 
supernatant

IFN-α2 production [33]

Saccharomyces 
cerivisiae

Raman Online Supernatants Ethanol and glucose [34]

Pichia pastoris MIR Offline Frozen 
filtrates

Methanol, glycerol and 
product (heterologous 
protein)

[35]

Gibberella fujikuroi Raman, MIR and 
pyrolysis MS

Offline Fermentation 
broth

Gibberellic acid [36]

Lactobacillus casei Raman, NIR and 
MIR

Offline Fermentation 
broth

Glucose, lactic acid and 
biomass

[37]

S. cerevisiae Raman and MIR Offline Fermentation 
broth

Glucose, ethanol and biomass [38]

Phaffia rhodozyma Raman Online Fermentation 
broth

Intracellular carotenoid [39]

Gluconacetobacter 
xylinus

MIR Online in situ 
probe

Fermentation 
broth

Fructose, acetate, ethanol 
and gluconacetan

[40]

G. xylinus MIR Online Fermentation 
broth

Fructose, acetate and 
gluconacetan

[41]

G. xylinus MIR Online Fermentation 
broth

Fructose, acetic acid, ethanol, 
gluconacetan, phosphate and 
ammonium

[42]

E. coli Raman Online Fermentation 
broth

Glucose, lactate, formate, 
acetate and phenylalanine

[43]

Streptomyces 
clavuligerus

MIR At-line Fermentation 
broth and 
cell filtrate

Glycerol and clavulanic acid [44]

P. pastoris MIR Online Fermentation 
broth

Methanol [45]

S. cerevisiae MIR Inline ATR 
probe

Fermentation 
broth

Glucose, glycerol, ethanol, 
acetate and ammonium

[46]

E. coli MIR Online and 
offline

Fermentation 
broth and 
filtered 
supernatant

Glucose, glycerol, ammonium, 
and acetate

[13]

E. coli MIR Online and 
inline

Fermentation 
broth

pH [47]

S. cerevisiae MIR Online Fermentation 
broth

Glucose, ethanol, ammonium, 
phosphates, glycerol and 
acetic acid

[48]

Streptomyces 
coeliicolor

Multiwavelength 
fluorescence

Online Fermentation 
broth

Biomass and casamino acid [49]

ATR: Attenuated total reflection; MIR: Mid-IR; NIR: Near IR.
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tion to help determine best practices for generating 
calibration datasets and modeling. For example, the 
strong peak located at 883 cm-1 in the Raman spec-
trum of ethanol allowed Gray and coworkers to apply 
a univariate model for this analyte, while predictions 
of total starch, dextrins, maltotriose, maltose, and 
glucose required multivariate methods due to spectral 
overlap [52].

The schemes employing multivariate modeling gen-
erally require generation of large datasets for model 
calibrations. A method that updates calibrations in 
real time was implemented to reduce the number of 
samples required in the original dataset [41]. An ini-
tial model was constructed using just 14 samples in 
the calibration, and additional spectra collected during 
process operation were added. The consistency of the 
added data is then checked using elemental balances of 
carbon and oxygen from off-gas analyses. The authors 
demonstrated improvements in model accuracy using 
real-time model adaptation for both normal processing 
conditions and cases where new substrates were added. 
This method was further developed through the use 
of carbon, nitrogen, degree of reduction and charge 
balances. These balances were performed using online 
estimation of nutrients, metabolites, biomass, base 
consumption and off-gas concentrations [48].

The accuracy of multivariate models is vulner-
able when samples with characteristics outside those 
included in the calibration dataset are encountered. 
However, in process development settings conditions 
are constantly varied and different cell lines are used. 
In these cases, a reduction in the number of calibration 
samples and the design of calibration strategies capa-
ble of accurately predicting analytes under a range of 
process conditions could make the implementation of 

these technologies more widespread. Lee and cowork-
ers presented a method to address this issue using a 
library of pure component spectra to predict analyte 
concentrations [43]. In situ Raman spectroscopy was 
used to predict concentrations by assuming that mea-
sured spectra were the result of a linear combination 
of the pure component spectra. Schenk and coworkers 
also adopted this approach for FT-MIR measurements 
[46] and extended it by adding drift spectra obtained 
by factor analysis to the library to compensate for 
signal intensity drifts and noise problems [13]. The 
authors demonstrated that this method can success-
fully be applied to scenarios commonly encountered in 
a process development setting. The robustness of this 
approach was shown using nine different process con-
ditions consisting of different medium formulations, 
and three different Escherichia coli strains.

An example of using a unique calibration dataset 
consisting of both synthetic mixtures and bioreactor 
samples to improve model predictions was presented by 
Kornmann and coworkers [40]. This was demonstrated 
by comparing the performance of models calibrated 
using three different datasets. These datasets were 
made up of either 12 fermentation samples; 12 fermen-
tation samples and 42 synthetic mixtures consisting of 
modeled analytes; or 12 fermentation samples and 76 
synthetic mixtures consisting of model analytes and 
two additional byproducts. Models were improved by 
addition of synthetic standards and were most accurate 
when the synthetic standards included two byproducts 
that were not modeled. It is not clear how much of the 
model improvement is due to the different types versus 
the number of standards employed.

The choice of chemometric methods is also difficult 
to determine a priori and often requires significant trial 

Table 2. Literature employing vibrational spectroscopy for monitoring of microbial bioreactors 
(cont.).

Organism Method Measurement 
mode

Sample 
matrix

Analytes Ref.

S. cerevisiae Raman Online and 
offline

Fermentation 
broth

Glucose, ethanol and glycerol [50]

E. coli, P. pastoris, 
Streptomyces 
toxitricini and 
Aspergillus niger

NIR Inline Fermentation 
broth

Linoleic acid, oleic acid and 
ammonia

[32]

P. pastoris NIR Online Fermentation 
broth

Glycerol and biomass [51]

S. cerevisiae Raman Online probe Fermentation 
broth

Starch, dextrins, maltotriose, 
maltose, glucose and ethanol

[52]

Microalgae Raman Offline Fermentation 
broth

Glucose [53]

ATR: Attenuated total reflection; MIR: Mid-IR; NIR: Near IR.
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and error to find models that best fit the system under 
study. Selection of suitable preprocessing is best when it 
is based on knowledge of the chemistry of the system, 
but optimization will require iteration. A variety of data 
preprocessing methods have been described [10] and 
illustrations of the impact of various pretreatments on 
spectroscopy data have been shown [34]. Pretreatments 
are often applied to reduce the effects of the sample 
matrix on the analytes of interest. In some cases, cells 
are removed prior to analysis to eliminate these effects 
[44]; however, it is unclear whether or not appropriate 
preprocessing can achieve the same result to enable 
inline monitoring applications. Similarly, in the case 
of Raman instruments, the wavelength of the excita-
tion laser is often chosen in the NIR region to mini-
mize interference from fluorescence signals, although 
Oh and coworkers report the use of rolling circle filters 
to remove these background effects [53]. McGovern and 
coworkers generated models for gibberellic acid produc-
tion using both PLS and ANN, but pointed out that 
when all of the collected data are used during modeling, 
it is difficult to determine which regions of the spectra 
are relied upon for the model predictions [36]. Thus, it is 
difficult to confirm that the models are using regions of 
the spectra that correspond with the analytes of interest. 
The accuracy of multivariate models can be improved 
through examination of pure component spectra to 
specify wavelength regions to include for particular 
components [44,54] or to identify regions to exclude from 
analysis due to colinearity of multiple components [52]. 
Different variable selection methods applied to spec-
troscopy data have also been directly compared with 
genetic algorithms and PLS bootstrap methods, both 
improving model accuracy [36,55]. This also allowed for 
the determination of the input variables that contrib-
uted the most to the models enabling verification that 
models are based on the analytes in question.

While there are a large number of publications 
describing procedures for the development of spec-
troscopy as a process monitoring tool, there are few 
publications describing the practical use of these data, 
although these are beginning to emerge. Fazenda and 
coworkers describe the application of NIR measure-
ments to close mass balances for metabolic flux analy-
sis [51]. While this successfully demonstrated that the 
information provided by measured spectra is useful 
for better process understanding, the ultimate goal of 
developing these technologies is to use the information 
to manipulate bioreactor inputs for process improve-
ment. A simple application was presented using uni-
variate calibration of methanol concentrations with 
FT-MIR spectra to control a methanol feed for a Pichia 
pastoris process [45]. Methanol is used as both a carbon 
source and an inducer of protein expression, but con-

centrations must be maintained below inhibitory lev-
els. An attenuated total reflection FT-MIR probe was 
used to generate a two-point calibration, which was 
performed at the beginning of the run. This calibra-
tion scheme was possible since methanol was shown to 
be the component that significantly influenced MIR 
spectra in this system. Although no productivity gains 
were realized in this case, predicted methanol concen-
trations were used to control the feed rate such that 
methanol was maintained at a desired concentration.

Similarly, Kornmann and coworkers described a 
Gluconacetobacter xylinus culture using ethanol as 
a substrate for conversion to acetate, which is then 
metabolized to form biomass [42]. Fructose was also 
supplied as a substrate, which was converted into the 
product of interest, gluconacetan. The authors used a 
set of synthetic calibration standards containing fruc-
tose, ethanol, acetate, gluconacetan, ammonium and 
phosphate to construct PLS models from in situ MIR 
spectra. These predictions were used to adjust ethanol 
feeding to maintain constant acetate concentrations so 
as to prevent buildup of ethanol to toxic levels. At the 
end of the growth phase, feeding was switched from 
ethanol to fructose with the aim of maintaining con-
stant fructose levels. Precise control of a fed batch pro-
cess using MIR resulted in a 60% increase in produc-
tivity over a batch process. Successful demonstration of 
this feeding strategy shows the robustness and accuracy 
of the MIR predictions.

In one of the better illustrations of spectroscopy for 
bioreactor monitoring and control, Tiwari and cowork-
ers describe a Streptomyces toxitricini fermentation 
that requires a specific ratio of linoleic acid to ammo-
nium to maintain productivity of lipstatin [32]. Using 
the conventional control strategy, it was difficult to 
mantain optimal nutrient ratios resulting in periodic, 
20% decreases in productivity. Calibration models 
were constructed for prediction of linoleic acid, oleic 
acid and ammonium concentrations from NIR spectra 
measured inline using PLS. The authors used a calibra-
tion matrix consisting of fermentation supernatants, 
biomass and analytes of interest mixed in different pro-
portions and under different measurement conditions. 
This attention to detail resulted in extremely accurate 
predictions of linoleic acid and oleic acid at very low 
levels (below 0.1 g/l). The data collected inline were 
used to manipulate nutrient feeds to maintain the 
linoleic acid to ammonium ratio at the optimal level 
resulting in more consistent process performance.

Cell culture applications
The development of spectroscopic methods for mam-
malian cell culture applications is not as advanced 
compared with microbial systems. This is probably 
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due to cell culture processes being used exclusively 
for the production of recombinant proteins, whereas 
microbial systems are used in multiple industries. 
Nonetheless, the demand for lower cost biologics for 
the treatment of a variety of diseases drives the need for 
higher yielding cell culture processes that consistently 
produce proteins with desired quality profiles. It is 
expected that spectroscopic methods will play a critical 
role in enabling more efficient monitoring and control 
of these processes. A summary of the literature describ-
ing implementation of spectroscopic methods for mon-
itoring of cell culture bioreactors is listed in Table 3. 
Initial studies geared towards developing techniques 
for spectroscopic monitoring of cell culture bioreac-
tors have been reviewed [9,16]. A major advancement in 
the technology was made by Arnold and coworkers in 
2003 with the demonstration of in situ monitoring of 
CHO cell cultures using NIR [56]. Models were suc-
cessfully developed for glucose, lactate, glutamine and 
ammonium using calibration samples derived from 
inline monitoring of the actual process. The authors 
argue that adopting this methodology gives greater 
confidence that the models generated are valid, and 
this seems to have become the accepted approach. Syn-
thetic calibration schemes are less likely to capture the 
complexity of cell culture systems and adaptive calibra-
tion strategies are difficult to implement inline since 
this procedure would involve manipulating the cell 
culture environment and risk creating unfavorable and 
unrepresentative culture phenotypes. Furthermore, 
while adaptive calibration strategies have been used to 
decrease the numbers of factors used in models, this 
can skew the calibration dataset towards higher con-
centrations of components and is counter to the gen-
eral cell culture strategy of maintaining lower nutrient 
and waste product levels in the cultures [57].

Subsequent publications evaluating spectroscopy 
as a monitoring tool for cell culture processes follow 
the practice of using bioreactor samples for calibra-
tion and validation datasets. Specifically, several pub-
lications demonstrating the utility of NIR monitor-
ing have emerged [58–59,66]. The number and types of 
components being monitored expanded with Card and 
coworkers who developed calibration models for cell 
density and pH in addition to the more commonly 
modeled glucose, lactate, ammonia and glutamine [59]. 
The pH predictions were probably the result of depro-
tonation equilibria affecting the spectra [47]. While 
first and second derivative pretreatments are routinely 
employed to normalize baseline drifts and enhance 
spectral features, the cell density models were devel-
oped with no derivative applied to the spectra. This 
suggests that the information contained in the baseline 
could have been used to model cell density. Limited 

information on these models was presented making 
evaluation of the performance of this model difficult.

A subsequent publication addressed measurement of 
VCD using NIR, suggesting that spectroscopy may be 
able to detect cellular changes associated with changes 
in intracellular pH as a result of loss of cell membrane 
activity [60]. An alternate mechanism presented by the 
authors is that NIR may be able to detect the loss of 
complex lipid raft structures that follows cell death. 
Regardless of the mechanism, the authors generated 
NIR models capable of predicting VCD from micro-
carrier cultures, which is particularly laborious to 
measure using traditional techniques. Of note, second 
derivative preprocessing of the spectra was determined 
to be capable of minimizing light scattering effects of 
the microcarriers, while first derivative pretreatment 
ensured that light scattering from cells would still be 
detectable.

In the last few years, alternative means to gener-
ate calibration datasets for NIR spectra have been 
presented. While developing calibrations for glucose 
and lactate for Vero cultures grown on microcarriers, 
researchers showed that due to changes in the com-
position and matrix of samples measured inline ver-
sus offline, it was necessary to construct models using 
only inline samples that accurately reflect the bioreac-
tor matrix [62]. The dynamics of fed-batch systems and 
technology transfer to large-scale systems can result 
in variations that may not have been accounted for in 
calibration procedures applied at small scale. Thus, the 
authors implemented a novel approach for introducing 
variability into the calibration dataset by intentionally 
manipulating bioreactor conditions by altering feed 
protocols and using different microcarrier concen-
trations. These changes resulted in different glucose, 
lactate and VCD profiles presumably increasing the 
robustness of the resulting models.

A sophisticated calibration approach was taken by 
Hakemeyer and colleagues to develop a general model 
for offline analysis of CHO culture supernatants using 
FT-NIR [66]. Here, the authors describe different anal-
yses of over 1000 samples collected from 100 bioreac-
tor runs performed at different scales. With these data, 
the authors were able to extract both qualitative and 
quantitative information from supernatant samples. 
First, the authors used multiway PCA to demonstrate 
that the score plots obtained from sample analysis 
using eight different reference methods were similar to 
those obtained from the NIR measurements. This sug-
gests that process trajectories can be mapped from NIR 
samples and allow speedy evaluation of run status to 
determine if further action is needed to correct poten-
tial performance deviations. The authors then went on 
to describe development of quantitative models to pre-
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dict analyte concentrations from the NIR spectra. A 
subset partitioning of x and y spaces algorithm [70] was 
used to divide the data into calibration and validation 
sets such that the calibration set covers all sources of 
variation in the data. Quantitative models of samples 
from a single cell line and media were obtained using 
PLS for eight parameters and validated using samples 
from three separate runs. Wavelength selection for 
each parameter was performed using both iPLS and 
variable influence on projection with iPLS being the 
preferred method. General models using data from 
three cell lines using similar processes were developed 
for product, glucose, glutamate, glutamine, lactate and 
osmolality. It was also noted that accurate models for 
lactate dehydrogenase, ammonium and viability were 
not achieved from this dataset. Given the large amount 
of data included, this suggests that there could be a 
limit in terms of quantitative modeling of parameters 
using NIR, especially if one assumes that the number 
of accurate models generated will decrease in more 
complex matrix-containing cells.

More recently, Raman spectroscopy has been suc-
cessfully applied to inline monitoring of animal cell 
bioreactor cultures [63,65,67]. The first such demonstra-

tion was by Abu-Absi and coworkers [63]. In this case, 
the calibration dataset consisted of normal runs and 
a run where inoculum conditions were manipulated 
to yield different parameter profiles. Furthermore, 
component concentrations were calculated after feed 
additions to increase the number of samples and their 
variability in the dataset. Models were developed using 
PLS and yielded accurate predictions of glucose, lac-
tate, glutamine, glutamate, ammonium, VCD and 
viability. Moretto and coworkers used an almost iden-
tical approach with the introduction of an autosampler 
to quickly generate large datasets that capture varia-
tions through the entire run [65]. Whelan and cowork-
ers described the application of Raman spectroscopy 
to improve a process [67]. Models were first generated 
using bioreactor cultures receiving daily bolus feed 
additions and then used in a feedback control loop 
with continuous feeds to maintain glucose at 11 mM. 
Data collected from the continuous feed runs were 
then used to update the models to improve their pre-
dictive capacity.

A thorough and systematic evaluation of the poten-
tial for MIR for PAT was conducted by Foley and 
coworkers in 2012 [64]. This work included determina-

Table 3. Literature employing vibrational spectroscopy for monitoring of cell culture bioreactors.

Sampling Sampling matrix Spectroscopy 
type

Analytes Ref.

Inline Bioreactor samples NIR Glucose, lactate, glutamine and ammonium [56]

Inline Bioreactor samples NIR Glucose, ammonium, product titer, 
methionine, lactate, glutamate and glutamine

[58]

Online Bioreactor samples NIR Glucose, lactate, glutamine, ammonium, pH 
and VCD

[59]

Inline Bioreactor samples NIR VCD with microcarriers [60]

Offline (96 well) Dried supernatants MIR Glucose, antibody titer and lactate [61]

Inline Bioreactor 
(microcarriers)

NIR Glucose and lactate [62]

Inline Bioreactor samples Raman Glucose, lactate, glutamine, glutamate, 
ammonium, VCD, TCD and viability

[63]

Inline Synthetic mix with 
media

MIR Glucose, glutamine, glutamate, lactate, 
sodium carbonate, potassium phosphate and 
ammonium sulfate

[64]

Inline Bioreactor samples Raman Glucose, glutamine, glutamate, lactate, 
ammonium, VCD and osmolality

[65]

At-line Supernatants NIR Product titer, glucose, glutamate, glutamine, 
lactate and osmolality

[66]

Inline Bioreactor samples Raman Glucose, glutamine, glutamate, lactate, 
ammonium, TCD and VCD

[67]

Inline Bioreactor samples MIRS NIRS VCD, glucose, product titer and LDH [68]

Offline supernatant Raman Glucose, lactate, antibody titer [69]

LDH: Lactate dehydrogenase; MIR: Mid-IR; NIR: Near IR; TCD: Total cell density; VCD: Viable cell density.
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tion of the LOD for glucose, glutamine, ammonium, 
phosphate, glutamate, lactate, 4-(2-hydroxyethyl)
piperazine-1-ethanesulfonic acid and bicarbonate. In 
addition, a comparison between a flexible fiber optic 
and a fixed conduit for light collection was made, and 
a study was conducted of how various matrix factors 
influence the predictions. In this work, synthetic mix-
tures were used in the calibration dataset while the 
validation dataset consisted of synthetic mixtures and 
cell culture medium spiked with known concentra-
tions of various model analytes. The authors showed 
that determination of LOD of pure component spec-
tra using PLS is significantly lower than visual evalu-
ation of spectra by eye, and that LOD increased when 
using cell culture media rather than pure component 
spectra. Evaluation of the optics revealed that the fiber 
optic performed similarly or worse than the fixed con-
duit for every analyte. The external influence analy-
sis indicated that agitation speed and antifoam have 
no impact on predictions, while biomass, pH, tem-
perature and pluronic all can impact predictions. The 
authors conclude that MIR has limited potential as a 
process monitoring tool for animal cell cultures.

Given the complex development process of the 
tools described above and the lack of clear methods to 
validate the accuracy and robustness of models, it is 
important to be aware of the limitations inherent to 
these systems. Primarily, measured spectra are corre-
lated to measurements taken using reference methods 
and the models that are generated are predictions and 
not direct measurements of components of interest. As 
such, model accuracy will at best approach the accu-
racy of the reference methods employed. Furthermore, 
there are numerous other important medium com-
ponents, such as trace elements, that have profound 
effects on culture systems and are not measured by the 
technologies described here.

Monitoring protein titers & quality attributes 
using spectroscopy
The primary products of cell culture processes are 
recombinant proteins. The ability to monitor protein 
titers and quality attributes inline would significantly 
enhance the ability to produce high protein yields 
with desired properties. Current methods for quan-
tifying protein attributes include ELISA, circular 
dichroism, MS and chromatography; however, none 
of these techniques are capable of yielding real-time 
bioreactor data. The use of spectroscopic methods has 
recently been demonstrated for these types of mea-
surements to analyze protein formulations, thus rep-
resenting an important area of potential innovation 
for bioreactor monitoring and control [71,72]. Several 
cases have recently demonstrated the application of 

spectroscopy for accurate measurement of protein 
concentration in bioreactors. Sellick and cowork-
ers applied FT-IR spectroscopy to mammalian cell 
culture samples to measure the concentration of a 
secreted monoclonal antibodies while simultane-
ously measuring glucose and lactate in the media 
[61]. Supernatant was collected from four monoclonal 
antibody-producing cell lines and two untransfected 
control cell lines over a 7-day period. FT-IR spectra 
were collected for each sample and significant spectral 
changes were found in the amide I and polysaccharide 
regions using PCA and discriminant functional anal-
ysis. Using PLS regression, models were developed to 
calculate protein, glucose and lactate concentrations 
from FT-IR spectra, and those models accurately pre-
dicted concentrations for all three attributes with an 
error less than 10%.

Another approach for online monitoring of protein 
concentration involves 2D fluorescence. While this 
technique is well established for cofactor quantifica-
tion and has been used to monitor microbial growth, 
it has only recently been explored with mammalian 
bioprocesses [73,74]. Researchers evaluated the appli-
cability of 2D fluorescence to measure recombinant 
protein concentration and viable cell density using an 
IgG-producing baby hamster kidney cell line. Fluoro-
metric maps were collected from batch and fed-batch 
cultures, resulting in a VCD range of 1.8–4.5 million 
cells and titer from 5 to 20 mg/l. A PLS model was 
generated linking the fluorescence data with VCD and 
protein concentration, which were definitively deter-
mined by a trypan blue exclusion method and ELISA. 
This model resulted in 91 and 99% accuracy for VCD 
and protein concentration, respectively. Next, they 
evaluated the use of synchronous fluorescence spec-
troscopy, in conjunction with chemometrics, to accu-
rately measure VCD and protein titer [75]. Data col-
lection with synchronous fluorescence spectroscopy is 
faster because excitation and emission wavelengths are 
simultaneously scanned. Finally, the same research-
ers augmented this work by introducing a 96-well 
format for predicting VCD and protein concentra-
tion from 2D fluorometric mapping of cell culture 
samples [74]. Their method was evaluated using three 
Chinese hamster ovary (CHO) cell clones, and gave 
good predictions even for those concentrations out-
side the calibration range of the assay. An earlier study 
also showed the incorporation of a multiwell plate 
with Raman spectroscopy for qualitative analysis of 
aqueous, but cell-free, solutions [76]. This work dem-

Key Term

Chemometrics: Use of statistical and mathematical 
techniques to analyze chemical data.
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onstrates how a spectroscopic method can be adapted 
to a cell culture process, and used to both rapidly and 
accurately measure critical culture attributes. Further-
more, the incorporation of a 96-well format represents 
a step towards high-throughput, real-time monitor-
ing of cell culture conditions, which is  applicable to 
early-stage bioprocess development.

Protein structure and post-translational modifi-
cations (PTMs) [77] are other critical factors ideal to 
monitor in real time in a recombinant protein biopro-
cess. Although a protein may be formed correctly when 
it is expressed, misfolding and aggregate formation can 
occur during the bioreactor, purification or formula-
tion phases of a manufacturing process [78]. Traditional 
methods for measuring aggregates and PTMs are gen-
erally time consuming, require extensive sample prepa-
ration and can only be implemented offline. Spectros-
copy is emerging as a potential means for monitoring 
protein structures and PTMs [72]. Raman spectros-
copy, in particular, can be used to probe secondary 
and tertiary protein structures including amides, aro-
matic side chains and sulfur bridges [79]. A study was 
conducted using vibrational spectroscopy to examine 
the structures of monoclonal antibody aggregates and 
unfolded species generated through several stresses 
that occur during protein formulation processes [80]. 
Raman spectroscopy has also been used to predict 
concentrations of phosphorylated protein [81] and to 
determine glycosylation structure [77]. For the deter-
mination of glycosylation, the authors selected bovine 
pancreatic ribonuclease proteins RNase A and RNase 
B as model proteins since they have identical sequence 
and structure except for a single N-linked glycan at 
the asparagine 34 residue of RNase B. They prepared 
21 mixtures of RNase A and B at varying concentra-
tions and used PLS regression to build a model to pre-
dict glycosylation levels. Although this work is limited 
to one protein and a single glycan structure, it dem-
onstrates the application of Raman spectroscopy to 
monitor and predict glycosylation levels of a protein. 
While these approaches have not yet been applied to 
bioreactor systems, their potential to provide real-time 
predictions of aggregate formation and PTMs has been 
demonstrated. However, more work must be carried 
out to adapt these techniques to the complexity of cell 
culture broth.

Utilizing spectroscopy for raw material 
screening
Spectroscopic methods have significant utility for 
online monitoring of microbial and mammalian cell 
culture, as demonstrated above. However, the applica-
tions of these methods extend beyond live cultures into 
the equally critical areas of raw material and media anal-
ysis. Despite best efforts to control media components, 
it is well known that differences can arise between ven-
dors, and even different lots from the same supplier, 
that can impact process performance [82]. Although 
chemically defined media is relatively consistent, it is 
highly complex and composed of many components 
including vitamins, minerals, amino acids and sugars. 
Furthermore, some cell culture media components are 
not chemically defined, such as hydrolysates, and high 
levels of variation are normal [83–85]. Identifying and 
controlling this variability by characterizing raw mate-
rials and media would be advantageous. While current 
methods are available to do this, they typically utilize 
NMR, MS or HPLC technology, which is prohibi-
tively time consuming, expensive and labor intensive 
[84,86–87]. For this reason, there is significant interest in 
developing rapid methods for accurately assessing the 
quality of cell culture media components.

A generic approach to raw material screening was 
recently demonstrated with a handheld Raman spec-
troscopy device [88]. This instrument is small, easy to 
use and the researchers outline a generic approach that 
can be applied to any material of interest. The authors 
present approaches for identification of raw materials 
from a library and for analysis of quality or purity. 
One such raw material used in industrial bioprocess 
is yeastolate, a complex biological material prepared 
from lysed yeast strains. A recent study compared 
two methods, surface-enhanced Raman spectroscopy 
(SERS) and excitation–emission matrix (EEM) spec-
troscopy, for characterization of yeastolate samples [83]. 
SERS relies on the absorption of molecules onto rough 
metal surfaces or nanoparticles to enhance the signal 
and reduce background compared with Raman spec-
troscopy, which is of particular use when low signals 
are encountered. When applied to yeastolate samples, 
researchers found that SERS provided more informa-
tion compared with EEM, can be used to characterize 
and distinguish yeastolate sources and lots, and moni-
tor changes resulting from storage. SERS proved to be 
a highly reproducible approach that is both rapid and 
inexpensive compared with current techniques.

Recently, researchers developed and implemented a 
Raman spectroscopy method for identifying and moni-
toring quality of aqueous, chemically defined cell culture 
media [86]. This method utilized spectra collected from 
five proprietary, industrial, chemically defined media 

Key Term

Post-translational modifications: Modifications 
that are made to proteins including phosphorylation, 
acetylation, trimethylation, ubiquitination and, most 
commonly, glycosylation, which are critical considerations 
for therapeutic proteins as these modifications can 
affect protein stability, function, pharmacokinetics and 
immunogenicity.
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with unique formulations to build a PCA model. This 
model was then used to accurately identify and assess 
the quality of 336 sample measurements. While this 
work sought to assess the holistic attributes of a media 
sample, it is also possible to use spectroscopic methods 
to quantify specific components present in the mixture. 
The authors also developed a method utilizing EEM 
spectroscopy and chemometrics to quantify medium 
concentrations of tryptophan and tyrosine in approxi-
mately 5 min [87]. It was determined that the models 
were able to predict tryptophan concentration to within 
5.5% and tyrosine  concentration to within 4.5%.

Another important factor in cell culture media is 
the degradation of important medium components, 
which can result from long-term storage, changes in 
temperature and exposure to light. The use of trans-
parent storage containers, glass bioreactors and the fre-
quent presence of light-sensitive riboflavin in cell cul-
ture media indicate that monitoring photodegradation 
of cell culture media is especially valuable. This was 
recently addressed using EEM spectroscopy, which was 
selected over Raman spectroscopy owing to its sensitiv-
ity and ability to detect small changes in photosensi-
tive analytes [89]. Media samples containing riboflavin, 
folic acid and pyridoxine were stored in both warm and 
cold, and light and dark conditions with aliquots taken 
over a 32-day period. A model linking EEM spectra 
of media samples and concentrations measured using 
HPLC was developed using parallel factor analysis and 
PLS. This model was able to predict pyridoxine and 
riboflavin concentration with less than 5% error, and 
folic acid concentration with less than 10% error. This 
work represents the first application of a spectroscopic 
technique to determine light-induced damage to cell 
culture media, and is a rapid alternative to HPLC or 
MS [89]. Collectively, these studies are promising exam-
ples of how spectroscopic methods can be used to rap-
idly and accurately characterize raw materials.

Predicting cell culture performance using 
spectroscopy & chemometrics
In addition to measuring raw material quality and 
composition, spectral methods have applications in 
long-term monitoring of culture attributes, and uti-
lizing that information for predictive purposes [90–92]. 
Typically, industrial bioprocesses have many steps 
spanning several weeks starting with media prepara-
tion and vial thaw, a seed train, a production biore-
actor run and downstream processing. The ability to 
monitor these steps in real time and accurately assess 
process attributes such as chemical composition of 
media, inoculum quality and cell metabolism, and 
then to use this information to predict product yield 
and quality would be advantageous. Using chemo-

metrics, spectral features associated with both benefi-
cial (e.g., high titer) and detrimental (e.g., by-product 
formation) outcomes can be identified.

Recently, researchers sought to monitor a complete 
fed-batch CHO cell process from inoculum expansion 
through a production bioreactor [90]. They collected 
clarified supernatant at 12 different time points from 
37 production runs, from which Raman spectra and 
protein yield were measured. Using PLS regression, a 
model was developed to predict protein yield from the 
Raman spectrum of clarified culture broth. This model 
was further enhanced using a technique known as com-
petitive adaptive reweighted sampling to remove excess 
spectral information resulting in an improved predic-
tive ability and a final relative error below 4%.

Prior to this work, the same group demonstrated the 
use of EEM and chemometrics to monitor the qual-
ity of blended cell culture media, and predict protein 
yield from changes in media composition [91]. Spectra 
were collected for 33 different media lots prepared in 
two batches and sampled at four time intervals over a 
20-day period. Using multiway robust principal com-
ponent analysis, different blends and batches were dis-
tinguished with less than 3% error. Furthermore, using 
n-way PLS discriminant analysis, media sampled at 0, 
5, 10 and 20 days could be differentiated. This is an 
important finding and indicates that such technology 
could be used to quickly screen batches for potentially 
detrimental degradation products or other storage-
induced effects. Finally, using measured protein yields 
for the media batches and an n-way PLS calibration 
model, a predictive protein yield model was developed 
with more than 94% agreement.

The impact of storage-induced media degradation 
was also examined using NIR and EEM [92]. Research-
ers prepared both basal and feed media powder suit-
able for monoclonal antibody production in CHO 
cells. Spectra were collected over a period of 12 weeks 
(84 days), and in conjunction with PCA, PLS models 
were developed for each spectroscopic method. While 
this particular feed media proved to be less sensitive 
to aging over the period evaluated, both spectroscopic 
methods were able to accurately predict storage time 
from measured spectra with error no greater than 11%. 
Aqueous media was then prepared from powder at var-
ious ages and used in a shake flask fed-batch experi-
ment. A multivariate linear regression was used to 
quantify the impact of media age on both the integral 
of viable cells (IVC) and product titer. Media age did 
not seem to impact titer; however, a strong, detrimen-
tal correlation was evident for IVC, indicating that this 
could impact process performance.

NIR spectroscopy was also used to characterize and 
predict performance of soy hydrolysates used in CHO 



14 Pharm. Bioprocess. (2014) 2(3) future science group

Review    Abu-Absi, Martel, Lanza, Clements, Borys & Li

cell culture media [84]. A total of 15 soy hydrolysate sam-
ples were used in media prepared for an IgG-producing 
CHO cell line. Culture performance was assessed at 7 
days by measuring IVC and titer. NIR spectra for all 15 
hydrolysate lots at varying concentrations were collected. 
Using PCA, physicochemical characteristics distinguish-
ing different hydrolysate lots and vendors were identified. 
Finally, using PLS regression, a predictive model linking 
hydrolysate spectra, IVC and IgG was developed. Pre-
diction accuracy did vary with hydrolysate dosage, but 
at high dosages the error rate was consistently below 
10%. This group then extended their work utilizing 
NIR, Raman, EEM and x-ray fluorescence spectra [85]. 
Spectra for all hydrolysate lots were collected using all 
four techniques. Predictive models linking spectra, IVC 
and IgG were established for each technique individu-
ally, and then using an ensemble PLS algorithm, a data 
fusion model was developed. The fusion model’s predic-
tions outperformed all of the single technique models. 
This is not surprising, given the different advantages and 
disadvantages intrinsic to each technique.

Finally, another group sought to characterize and 
predict cell culture performance using spectra of cell 
culture media [82]. Specifically, they employed both 
NIR and EEM to analyze eight lots of a carbon-nitro-
gen peptone-based complex medium and five lots of a 
defined chemical medium. Protein titers of CHO cells 
grown in each media lot were measured using HPLC. 
Through PLS modeling, NIR spectroscopy was able to 
accurately predict performance of the complex media, 
but not defined media. Alternatively, the models devel-
oped using EEM accurately predicted performance of 
chemically defined media but not the complex media. 
These differences in performance are not unexpected, 
as NIR is a vibrational technique sensitive to physical 
changes and EEM is an optical technique sensitive to 
fluorophores [82]. Finally, the researchers used PCA and 
PLS to develop a combined model that utilized both 
NIR and EEM for performance prediction. The com-
bined model was more accurate and robust than models 
using a single technique. This work again demonstrates 
the potential synergistic effects that can be achieved by 
utilizing multiple spectroscopic techniques in tandem.

Future perspective
The ultimate goal of PAT and QbD principles is to 
build sufficient knowledge of a culture system such that 
process conditions can be manipulated based on real-
time measurements to consistently produce high yields 
of products with desired quality attributes. A key aspect 
to achieve this is the availability of tools able to yield 
detailed culture information in real time. Spectroscopic 
methods have the potential to provide this informa-
tion, but implementation in industrial settings for the 

production of recombinant proteins has been slow. A 
review of the literature suggests that a primary reason 
for this is the complexity and diversity of cell culture 
systems employed. Different cell lines, media, feeding 
strategies and bioreactor setups are each unique and 
introduce their own complexities to process monitoring. 
These all have the ability to impact how to best generate 
calibration models capable of accurately predicting ana-
lytes of interest, the designation of which may also vary 
from process to process. Furthermore, the chemomet-
ric methods employed to extract relevant information 
out of the measured spectra require specialized exper-
tise, as well as knowledge of the experimental system, 
to perform well. Most of the applications presented in 
the literature focus on proof-of-concept studies that lack 
rigorous model validation. Others have made incremen-
tal advancements in one or more of the aspects of the 
measurement methods, calibration strategy or chemo-
metrics. Robust application of spectroscopy requires 
attention to detail of each aspect of the experimental 
system, analytical method, sampling and modeling.

As instrumentation and understanding of experi-
mental systems advance, significant applications of 
spectroscopy for bioreactor monitoring and control 
are beginning to emerge. Such applications are using 
large sets of industrially relevant data for calibration 
and validation of models [66,86,90–91], and are generally 
applicable to enable control of bioreactor conditions 
based on real-time feedback of analytes [32]. Trends are 
also emerging in terms of which types of instruments 
are best for particular analytes in a given system and 
how best to combine them and maximize the collec-
tion of meaningful information [68,85]. These successful 
demonstrations of the potential of these measurements, 
as well as use of spectroscopic data to enable sophisti-
cated analysis of cell metabolism [51], will lead to ear-
lier implementation of these technologies by process 
development groups and further advancement of these 
methods. Recent advancements in the use of spectros-
copy for measurements of cell productivity and prod-
uct quality [71,77,80] and an increasing understanding of 
how medium compositions impact cell metabolism will 
further enable the routine application of PAT and QbD 
principles in manufacturing settings.
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