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While sophisticated analytical tools and models for operations and supply chain 
management are increasingly used in many industries, the biopharmaceutical industry 
lags many others in terms of applying these approaches. We survey the (relatively 
small number of) papers that explore the use of analytical models to address various 
strategic, tactical and operational issues in biopharmaceutical operations and supply 
chain management, discuss gaps in current knowledge, and identify opportunities to 
further extend the state-of-the art in this area.

Keywords:  biopharmaceutical • operations management • optimization • production 
 planning • simulation • supply chain management

Over the past 30 years, analytical tools and 
models have made a dramatic impact on 
both the theory and practice of operations 
and supply chain management. Increasingly 
powerful computers combined with advanced 
algorithms, have enabled firms to simultane-
ously increase responsiveness and decrease 
costs in their supply chains. Raw material and 
finished goods inventories have been reduced 
while customer service levels have increased, 
new product roll-outs are carefully managed 
to fully utilize manufacturing capacity while 
meeting demand and controlling costs, risk 
management strategies hedge against demand 
and supply risks as well as natural and man-
made disasters, long term capacity strategies 
are carefully designed and tested, production 
plans and schedules are optimized and logis-
tics planning decreases costs while increas-
ing on-time deliveries – overall, resources are 
fully and effectively utilized through the use 
of innovative strategies supported by detailed 
quantitative models, tools and algorithms [1–3]. 
(Indeed, over the past ten years, almost half of 
the finalists for the Franz Edelman Award for 
Achievement in Operations Research and the 
Management Sciences, one of the most pres-
tigious awards given to firms for the applica-
tion of analytics to business, have applied these 

tools to operations and supply chain manage-
ment [4]). Both in our experience working with 
biopharmaceutical firms who are members of 
our National Science Foundation-sponsored 
Industry/University Cooperative Research 
Center [5], and in a recent survey of bio-
pharmaceutical managers [6], we have observed 
that the biopharmaceutical industry, while it is 
in most ways on the cutting edge of innova-
tion, lags many other industries in terms of 
the application of advanced operations and 
supply chain management analytics. In this 
paper, we augment the survey referenced above 
with a survey of the (relatively small number 
of) recently that explore analytical models for 
operations and supply chain management in 
the bio pharmaceutical industry, with the twin 
goals of introducing these papers to practitio-
ners, and of identifying additional research 
opportunities for academic research. We start 
by introducing the key issues that these models 
and tools must address.

We first observe that the position of this 
industry with respect to analytical tools and 
models for operations and supply chain man-
agement is in many ways similar to the posi-
tion the semiconductor industry found itself 
in thirty years ago. For many years, the focus 
of that industry was on developing superior 



62 Pharm. Bioprocess. (2015) 3(1) future science group

Review    Kaminsky & Wang

technology, with manufacturing and supply chain 
management as afterthoughts. However, as the indus-
try matured and competitive pressures grew, firms 
focused on risk, inventory and supply chain manage-
ment, leading to significant advances in the science of 
operations management. Biopharmaceutical firms now 
find themselves in a similar position. Over the past 
several decades, billions of dollars have been invested 
in the research and development of medicines, lead-
ing to groundbreaking advances in the treatment of 
many severe illnesses. There has been significantly less 
development, however, in the advancement of indus-
try operations and supply chain management, and in 
particular on the development of analytical tools and 
models for this purpose [5].

The combination of fundamental characteristics 
inherent in biopharmaceutical discovery, production 
and distribution make the modeling and analysis of 
operations and supply chain management particularly 
challenging. These include:

•	 The uncertainties inherent in biological produc-
tion: Yields are uncertain, and difficult to predict. 
Analysis takes time, which can delay production. 
Long testing lead times make production schedul-
ing and efficient use of manufacturing equipment 
difficult. Molecules are difficult to characterize. 
Contamination and cross-contamination can be 
difficult to discover, and have difficult-to-detect 
characteristics;

•	 The difficulties associated with pharmaceutical 
production: regulation makes process improve-
ments difficult, GMP requirements add to manu-
facturing costs, quality control testing times delay 
production, production failures can cost lives, and 
so on;

•	 The difficulties associated with industries where 
technologies and processes are changing rapidly: 
Planning is difficult when increasing titers (concen-
trations) effectively change facility capacities. Long 
production lead times combined with advancing 
technology make facility design decisions difficult. 
Unique production technologies may make out-
sourcing inappropriate. Intellectual property con-
cerns are significant;

•	 The challenges associated with industries where 
demand is uncertain and facilities are extremely 
expensive: The outcome of a single trial or compet-
itive event can drastically change capacity require-
ments. Capacity investment decisions are challeng-
ing in this environment. Government policies can 
radically alter the nature and timing of demand;

•	 The challenges faced by industries that outsource 
production, or certain production steps: pro-
duction may be difficult to plan or control, and 
detailed production information may take some 
time to obtain;

•	 The difficulties faced by firms that must continue 
to track, report and even potentially stop selling 
products after they have started producing and 
selling them;

•	 The challenges that arise when attempting to opti-
mize a supply chain in which different stakehold-
ers have conflicting strategic objectives, making 
modeling difficult and implementation of solutions 
even more of hurdle.

Of course, none of these challenges are unique to 
biopharma – many are present to some degree in small 
molecule (that is, pharmaceutical non-biotech) pro-
duction, and all of them appear in some form in other 
industries. However, this combination of challenges is 
unique to biopharmaceuticals, and indeed, many (but 
not all) of these characteristics are more pronounced 
in biopharma:

•	 Time-to-market is relatively long for biopharma-
ceuticals: It takes on average 10–15 years for a 
new biopharmaceutical medicine to complete the 
journey from initial discovery to the market [7–9]. 
This time span is about 50% longer than a typical 
pharmaceutical product [10], and thus important 
strategic decisions, such as facility construction and 
expansion, need to be made as early at the start of 
clinical trials;

•	 Research and development costs are relatively high 
for biopharmaceuticals: Recent studies show that 
the average R&D investment for biopharmaceuti-
cal products ranges from US$1.2 to US$1.8 billion 
[11–13], while the R&D cost for traditional small 
molecule pharmaceutical products is only approxi-
mately US$0.8 billion [14]. Overall, only two of 
every ten brand name medicines earn sufficient 
revenues to recoup R&D costs [15];

•	 Capacity planning is particularly challenging for 
biopharmaceuticals: Capacity constraints con-
tinue to be an issue for commercial-scale biophar-
maceutical manufacturers. Building and licens-
ing a new traditional commercial-scale capacity 
can take 4–5 years and cost up to US$800 mil-
lion (see, e.g., [16,17]). Thus, it is often necessary to 
make capacity investment decisions early in the 
trial process, when there is considerable risk that 
the capacity will not be used for its intended pur-
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pose. Even if a firm plans to produce the drug in 
an existing facility or outsource the product to a 
contract manufacturing organization, it typically 
takes several years and costs US$100s of millions 
to make necessary modifications, develop an effec-
tive approach for technology transfer and complete 
US FDA licensing [16]. Because biopharmaceuticals 
are difficult to analytically characterize, biophar-
maceutical licensing is tied to the facility in which 
the product is made. Thus, changing or adding to 
manufacturing capacity after a product is licensed 
is expensive and risky;

•	 Biopharmaceutical manufacturing is uncertain 
and highly regulated: Because of the uncertainty 
inherent in the fermentation process, biopharma-
ceutical manufacturing is often highly variable in 
both output quality and quantity. Consequently, 
biopharmaceutical firms face the challenge of pro-
ducing the target protein consistently in sufficient 
quantity and quality to meet demand plans. Since 
products often cannot be completely analytically 
characterized, pharmaceutical manufacturing 
p rocesses tend to be very highly regulated;

•	 Moreover, since economies of scale combined with 
relatively small amounts of required active ingre-
dients often dictate the production of multiple 
products in a single production facility, production 
scheduling is often a complex and multi-faceted 
process;

•	 Clinical trials of biopharmaceuticals are complex, 
time consuming and uncertain: While at 30.2% 
[18] the overall clinical success rate for biopharma-
ceutical products is about 10–15% higher than the 
traditional pharmaceutical products [12,19] clinical 
trial designs and procedures are becoming more 
and more complex. They cost more, take lon-
ger and have more detailed eligibility criteria [20]. 
Indeed, managing the clinical trial supply chain is 
becoming an increasingly important and complex 
problem [21].

In addition, firms are increasingly aware of the 
potential market impact as generic forms of biophar-
maceuticals are beginning to be introduced into the 
marketplace [22].

Overall, biopharmaceuticals are not so much char-
acterized by any single complexity that is not present 
in other industries, but by a large set of complexities, 
which combined with the life-saving nature of many 
products, makes the supply chain particularly chal-
lenging to manage. In spite of this, and perhaps due 
to the relative youth of the industry, there has been 

a limited amount of research focusing on the model-
ing and analysis of operations and supply chain-related 
issues within the biopharmaceutical industry, or even 
within the broader pharmaceutical industry. As the 
biopharmaceutical industry grows and matures, how-
ever, the challenging issues facing the industry are 
attracting more and more attention in academia. In 
this paper, we review recently published papers that 
employ analytical tools and models to address impor-
tant issues in operations and supply chain management 
in the biopharmaceutical industry, and relevant papers 
with a focus on the broader pharmaceutical industry. 
We conclude in the section ‘Future challenges’ with a 
d iscussion of directions for research in this area.

Research method
To develop a comprehensive and concrete review of the 
recent academic research literature focusing on analyti-
cal tools and models for biopharmaceutical operations 
and supply chain management, we employed a three 
step approach:

•	 We conducted a rigorous literature review of ana-
lytical models and tools for operations management 
closely related to the bio/pharmaceutical industry;

•	 We categorized each model into one of three deci-
sion levels based on its focal point: strategic, tac-
tical and operational decisions (we explain this in 
more detail in the section ‘Key research areas’);

•	 We carefully considered each model, focusing 
on the identification of unique characteristic and 
potential shortcomings, as well as on the simi-
larities and difference between models that tackle 
analogous problems.

In the first step, we searched in Google Scholar and 
the Web of Science Database using combinations of 
keywords including ‘biopharmaceutical’, ‘pharmaceu-
tical’, ‘supply chain’, ‘capacity planning’, ‘manufac-
turing’, ‘management’, ‘simulation’ and ‘portfolio’. In 
addition, we identified one key relevant survey paper 
focusing on the pharmaceutical industry (Shah [23]). 
We checked the references in that survey, as well as the 
papers citing that survey, with a focus on papers pub-
lished after 1999. Statistics cited in the sections ‘Intro-
duction’ and ‘Research method’ above come primarily 
from [7]. If there are conflicting numbers, we used the 
most recent one.

We ultimately compiled a set of 24 journal articles 
and two working papers. The largest number of these 
papers appeared in Industrial & Engineering Chemis-
try Research (six references) and Computers & Chemi-
cal Engineering (five references). The remaining papers 
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appeared in a variety of journals, including Operations 
Research for Health Care (two references), Biotechnol-
ogy Progress (two references), Chemical Engineering 
Research and Design (two references) and European 
Journal of Operational Research (one reference).

Key research areas
As mentioned previously, we categorize the key relevant 
research areas into three decision levels: strategic, tacti-
cal and operational. By strategic decisions, we mean 
those that directly relate to the company’s objectives 
and impact long-term performance. Such decisions 
are usually made by the highest level of management, 
and once executed, are extremely difficult and costly to 
change. Typical strategic decisions include new facil-
ity construction, existing facility expansion, facility 
design, product selection, capacity planning and risk 
management.

Tactical decisions are relatively short-term (on the 
order of months) decisions that support longer term 
strategic policy, and that define the approaches that 
firms use to achieve their objectives. Typical tactical 
decisions range from process and pipeline development 
to manufacturing planning, supply chain coordination 
and high-level campaign scheduling.

Operational decisions include the detailed daily 
decision making necessary to operate the biopharma-
ceutical supply chain. Typical operational decisions 
include operator assignment, detailed facility sched-
ules, transportation plans, maintenance scheduling 
and detailed inventory planning.

In subsequent subsections, we survey the s  tate-of-
the-art in these areas.

Strategic decisions
Capacity planning & product selection utilizing 
mathematical modeling
Given the high cost, long lead times and uncertainty 
inherent in biopharmaceutical product development 
and clinical trials, the selection of a portfolio of poten-
tial projects to develop and test is critical to company’s 
success. This same uncertainty and long development 
time, coupled with the high cost of manufacturing 
facilities and the importance of ramping up produc-
tion as soon as products are approved, leads to a chal-
lenging long-term capacity planning problem. Indeed, 

the trade-off between deferring capacity expansion 
decisions to accrue more information and expedit-
ing capacity expansion to decrease time-to-market 
and increase effective patent life is fundamental to 
 biopharmaceutical planning.

To address this planning problem in the pharma-
ceutical industry, researchers have turned to two-stage 
 stochastic programming. The first-stage decisions 
in this context include product selection and initial 
capacity investment. Deferred second-stage decisions 
can utilize additional information from clinical trials 
as it becomes available, which includes capacity alloca-
tion, reallocation, expansion and abandonment. The 
second stage is typically modeled as massive number of 
scenarios based on clinical trials outcomes.

To illustrate this concept using a simple example, 
consider two products A and B, both with success 
probability 0.5, which results in four scenarios: Both 
A and B are successful with probability 0.25; A is suc-
cessful but B fails with probability 0.25; A fails but B 
is successful with probability 0.25; and Both A and B 
fail with probability 0.25. In more complex settings, 
this example can be generalized to encompass multi-
ple clinical trial stages, multiple products at different 
times, etc. Each scenario has an associated likelihood 
and revenue. Consequently, the natural performance 
measure (although by no means the only possible per-
formance measure) when considering investment across 
these scenarios is expected net present value (ENPV), 
where a positive ENPV indicates an attractive decision, 
while a negative ENPV means an inefficient decision. 
Furthermore, the distribution of the NPV is one way to 
characterize the risk of a given decision.

Models based on this approach are typically for-
mulated as mixed-integer linear programs (MILP). 
Given the large number of potential scenarios in most 
realistic settings, however, MILPs are difficult to solve 
to optimality. Researchers have developed a variety of 
heuristic algorithms to address realistic problems.

Rotstein et al. [24] first develop a stochastic model 
for simultaneous product selection and capacity plan-
ning that incorporates binary clinical trial uncertainty 
(i.e., success/failure). They develop a heuristic cut-off 
procedure to address larger size instances. This proce-
dure selects scenarios with higher probabilities until the 
cumulative probability across these scenarios exceeds 
some predetermined level α, and then the problem 
is solved in this reduced scenario space. Experiments 
demonstrate that an α value around 0.5 yields satis-
factory results while reducing the computational effort 
drastically. However, their proposed model is limited 
to the case of single-site capacity planning.

Gatica et al. [25] extend previous work by defining 
four potential clinical trials outcomes for each product 

Key terms:

Stochastic programming: Mathematical programming 
models that incorporate uncertainty.

Heuristic algorithms: Algorithms that find good,but not 
necessarily optimal, solutions to optimization problems.

Stochastic model: A model that incorporates randomness.
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Figure 1. Tree representation of clinical trails outcomes. 
Reproduced with permission from [25].
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at each stage (high, target, low and failure), and mod-
eling these scenarios in a scenario tree. An example of 
this type of clinical trial scenario tree with associated 
probabilities is shown in Figure 1. Each new poten-
tial product entering clinical trial leads to four-times 
more scenarios in this model, which in turn leads 
to a significantly more complex scenario tree (with 
{EQ 4\s\up5(N)} scenarios for N products) than other 
models with only binary outcomes. Combined with 
capacity expansion variables, the overall problem is 
formulated as a large-scale MILP, which is impractical 
to solve for even a small number of potential products 
– the examples in this paper thus consider only small 
numbers of products.

Papgeorgiou et al. [26] propose a deterministic multi-
site, multi-period capacity planning model to select 
promising products and decide when and where to pro-
duce them and how to allocate and expand the capacity. 
In their model, all potential products are free of clini-
cal trials uncertainty and they assume a known certain 
demand. On the other hand, this model emphasizes 
the importance of modeling transfer pricing and the 
taxation framework, as well as manufacturing details, 
including setup, scale-up, qualification and manufac-
turing suite structure. In their illustrative example, 
different production sites have distinct tax structures, 
capital costs and operating costs, all of which have the 

potential to significantly impact planning decisions. In 
contrast to stochastic models that feature exponential 
numbers of scenarios, this model (at least their example 
with seven products) can be solved using commercial 
integer programming software.

To incorporate the uncertainty of clinical trials, 
Levis et al. [27] extend the previous deterministic long-
term multi-site planning model by explicitly includ-
ing binary clinical trial uncertainty. This results in 
a large-scale MILP with {EQ 2\s\up5(N)} scenarios. 
The authors propose a ‘hierarchical solution approach’ 
to this problem. They first formulate a relatively small 
approximate model by aggregating variables related 
to the detailed manufacturing plan in the original 
model. This aggregated model mainly focus on strate-
gic decisions such as selecting product candidates and 
production sites. Then they fix the solution obtained 
from aggregated model and solve the original detailed 
model in a reduced decision variable space. This hier-
archical solution approach is able to find an effective 
solution with up to seven products using a reasonable 
amount of time. In all of their examples, they find this 
approach outperforms the cut-off procedure proposed 
in Rotstein [24].

Sundaramoorthy et al. [28,29] use a version of the 
model discussed above to explore the value of inte-
grated facilities, where raw materials through the active 
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ingredients to final products are processed seamlessly 
within a single facility. This is an approach used in 
pharmaceutical manufacturing, although not yet to 
our knowledge in biopharmaceutical manufacturing. 
Researchers have found that this continuous approach 
can save 9–40% over traditional batch manufacturing 
(see Schaber [30]). They formulate this capacity plan-
ning problem as large scale MILP with 2N scenarios, 
and utilize a hierarchical solution approach using a 
duality-based decomposition method, called noncon-
vex generalized Benders decomposition. Using the non-
convex generalized Benders decomposition algorithm, 
they heuristically solve instance up to 16  products.

Overall, these papers introduce the use of powerful 
mathematical programming tools to optimize product 
selection and capacity planning decisions. However, 
even within the context of applied mathematical pro-
gramming, there are a variety of potential research 
directions that as yet have not been pursued. All of 
these papers focus on pharmaceutical production, 
rather than on biopharmaceutical production, and so 
many of the key characteristics of biopharmaceutical 
manufacturing, including process specifics, produc-
tion uncertainties and the outsourcing of parts of the 
production process, have not yet been modeled. In 
addition, these kinds of models could be extended to 
capture issues such as supply chain risk and disrup-
tion mitigation, product roll-out issues, time-varying 
demand due to markets where products are sold in 
response to tender offers, and so on. Finally, a variety 
of new mathematical programming-based approaches 
have been introduced in recent years to model and 
solve similar problems in related industries, including 
sample average approximation and robust  optimization 
(see [31–33], and references therein).

Capacity planning & product selection utilizing 
simulation
As an alternative to mathematical programming 
approaches, simulation-based approaches can be used 
to characterize in more detail the risk inherent in prod-
uct selection decisions. Instead of focusing on detailed 
capacity planning at the commercial-level manufactur-
ing stage, most of the papers we review in this sub-

section focus more on the selection and sequencing of 
drugs at the development and trial stages, where opti-
mizing product portfolio risk is most critical. Since 
limited manpower, capital and equipment resources 
prevent firms from concurrently developing a large 
number of potential products, the sequence in which 
drugs enter the development pipeline have a significant 
impact on the firm’s profits. The problem is further 
complicated by the dependencies among candidate 
drugs. In contrast to optimization-based approaches, 
however, simulation approaches are descriptive – they 
can be used to analyze the risk inherent in any particu-
lar decision, but they must be combined with detailed 
experimental designs to assess the optimal values for 
decision variables.

Blau et al. [34] study the problem of product selection 
and development sequencing while managing risk. 
Input data for each potential product focuses on three 
key sets of characteristics: clinical trials success prob-
abilities, development capital cost and sales if the prod-
uct passes clinical trials. A bubble chart combining all 
of these characteristics (see Figure 2) is used to screen 
out unpromising products. The position of each bub-
ble is determined by the corresponding product’s mean 
reward/loss ratio and success probability, while the size 
of the bubble is proportional to the resources required 
to develop the product. By accounting for the firm’s 
attitude toward risk, a portfolio can thus be selected. 
After products are selected, a simple heuristic approach 
using Monte Carlo simulation is employed to sequence 
the portfolio in the pipeline. Different sequences are 
compared based on their ENPV. One drawback of the 
proposed approach is its inability to explicitly enforce 
resource constraints. To address this, the authors pro-
pose to track resource constraint violations, but the 
firm must decide if those violations are acceptable.

Rajapakse et al. [36] develop a computer-aided tool 
using Monte Carlo simulation that models the risk and 
the rewards of alternative strategies for biopharmaceu-
tical drug development and portfolio management. 
The tool is built around a hierarchical framework that 
integrates resource management, manufacturing activ-
ities and clinical trials. The tool is employed in a case 
study, where the impact of a variety of different param-
eters and scenarios are explored. For instance, for the 
case explored in the paper, the tool is used to dem-
onstrate that of the possible manufacturing strategies, 
outsourcing production is the least risky strategy due 
to capital savings. These savings in this case outweigh 
the risks associated with using a CMO, such as delays 
in negotiation and material delivery.

Later, Rajapakse et al. [37] extend this simulation-
based modeling framework to aid in portfolio selec-
tion. In contrast to the more ad-hoc approach described 

Key terms:

Mathematical programming: A set of techniques to 
solve optimization models.

Optimization: A set of mathematical techniques for 
finding the minimum or maximum value of a function 
possibly subject to a set of constraints. An optimization 
model of an industrial problem expresses that problem 
mathematically so that the tools of mathematical 
programming can be used to solve it.
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Figure 2. Sample bubble chart for all candidate products. 
Reproduced with permission from [35].
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in Blau, Rajapakse utilizes Monte Carlo simulation 
to characterize the efficient frontier (see Figure 3) of 
ENPV and risk (standard deviation of the NPV dis-
tribution) for portfolios selected from a set of pos-
sible candidate drugs. Any portfolio that lies on the 
efficient frontier is a candidate for selection, but the 
final decisions will be a function of the firm’s risk pro-
file. In computational studies, the authors demonstrate 
most interestingly that given a higher resource level, 
increasing the number of products in a portfolio could 
n egatively impact both ENPV and risk level. 

Blau et al. (2004) [38] study product selection and 
sequencing with a particular focus on modeling the 
dependencies among various development activities, 
including resource dependencies, manufacturing cost 
dependencies, financial return dependencies and tech-
nical success dependencies. For example, if more drugs 
targeting the same disease are successfully developed, 
then the profit for each drug will be lower. This paper 
is also the first we are aware of in this problem domain 
to combine simulation and heuristic optimization: 
simulation is used to obtain the NPV and its distri-
bution given a selection of candidate drugs and their 
sequence to enter the pipeline, and a single-objective 
genetic algorithm is used to optimize the product 
selection and sequencing. This approach improves the 

ENPV by 28% when compared with the sequence 
suggested by the bubble chart approach, but the pro-
posed simulation-based method is computationally 
demanding. It takes about 60 h for the algorithm to 
examine 1000 sequences. One intriguing result shows 
that the ENPV of portfolios that lie on the efficient 
frontier first increases and then decreases as the risk 
increases, in other words, the efficient frontier is 
not monotone. The authors conclude that the tradi-
tional insights of financial portfolio management do 
not apply in  biopharmaceutical industries because of 
 interdependencies.

Based on the discrete event simulator presented in 
the previous paper, Pérez-Escobedo et al. [35] introduce 
an innovative interval analysis to tackle the uncertain-
ties inherent in the product sequencing. This approach 
aims to quantify uncertain model parameters using 
intervals rather than random variables. For example, in 
the previous paper using probabilistic approach, Phase 
I cost is modeled as a triangular distribution from 
70 to 90 with most likely value 80 (M$). In contrast, 
the interval-based approach simply represents the Phase 
I cost by (76, 83) (M$), the interval of possible val-
ues. However, the interval analysis approach is unable 
to incorporate failure probabilities from clinical trials 
stage. In addition, results from the interval approach are 
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Figure 3. Using efficient frontier to select portfolio. 
Reproduced with permission from [37].
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also intervals, making it difficult for decision makers to 
tell which drug is actually better. Hence the authors 
conclude that traditional probabilistic approaches are 
preferable.

As mentioned above, the majority of the papers con-
sidered in this subsection focus on portfolio selection 
– there is ample opportunity to use the same types of 
tools and approaches to more explicitly consider the 
details of capacity planning and acquisition within 
the biopharmaceutical industry. In addition, recent 
developments in simulation optimization, including 
sophisticated statistical approaches for ranking dif-
ferent options, gradient approximation methods for 
optimization of parameter settings and techniques 
for rapidly completing large numbers of simulation 
experiments, could likely be beneficially applied to 
 biopharmaceutical planning problems (see [39] and 
r eferences therein).

Tactical decisions
Manufacturing planning & campaign scheduling
In terms of tactical production planning, biopharma-
ceutical manufacturing shares a number of key char-
acteristics with small molecule pharmaceutical and 
other chemical manufacturing processes, particularly 
those that take place in multi-purpose facilities where 

production is divided into campaigns of multiple con-
secutively produced batches of the same product. How-
ever, in the highly regulated biopharmaceutical indus-
try, significant time and resources must be devoted to 
changeovers between campaigns of different products, 
making campaign scheduling particularly crucial for 
efficient capacity utilization. Also, because interme-
diates are often unstable and products are typically 
perishable, product lifetime plays an important role in 
planning.

Sequencing and campaign scheduling for batch 
manufacturing has long been studied in chemical 
manufacturing (see Shah [40] and Papageorgiou [41]). 
Artiba et al. [42] considers the case of a parallel multi-
product and multi-machine production planning 
problem in a pharmaceutical manufacturing plant. 
Focusing specifically on a biopharmaceutical context, 
Lakhdar et al. [43] consider medium term (1–2 years) 
planning for a multiproduct biomanufacturing facil-
ity with the goal of maximizing operating profit. They 
model details of biomanufacturing processes including 
fermentation and purification, and use their model to 
determine campaign durations and sequences. Fol-
lowing the approach used in nonindustry-specific 
models, they formulate the problem as MILP, and use 
this formulation to optimize several examples with 
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suite-specific manufacturing and differing produc-
tion throughput rates. They compare their solutions 
to simple experience-based industrial rules, and are 
able to improve profitability from 13–40%. Lakhdar 
et al. [44] builds on the models developed previously 
in order to consider multiple facilities and multiple 
objectives – cost, service level and capacity utilization. 
These (potentially) conflicting objectives results from 
the differing concerns of different supply chain stake-
holders. The authors adopt a goal programming frame-
work, where the mathematical programming objective 
is to  minimize deviations from targets for each of the 
 objectives.

The campaign planning models discussed to this 
point consider deterministic production and demand; 
Lakhdar et al. [45] modify the deterministic medium-
term planning model presented in Lakhdar [43] to 
account for uncertain fermentation titer, a critical 
driver impacting both the cost of manufacturing and 
production throughput in biopharmaceutical manu-
facturing. The authors model the variable production 
rate using three discrete levels: low, medium and high, 
and assume that the true rate is revealed at the begin-
ning of the planning horizon, so that the problem can 
be formulated as a two-stage stochastic MILP with 
3N scenarios. An iterative heuristic algorithm is pro-
posed for realistic-sized problem with ten products and 
18 time periods. The heuristic algorithmic saves con-
siderable computational time relative to optimally solv-
ing the stochastic MILP, while finding a better solution 
than the solution found by the deterministic model.

As with research focusing on applying mathemati-
cal programming to product selection and capacity 
planning, there is opportunity to extend mathemati-
cal programming-based modeling of planning and 
scheduling models to capture more key characteristics 
of biopharmaceutical operation, including demand 
uncertainty, cost uncertainty, contamination events, 
outsourcing, disruptions, etc. In particular, risks of all 
kinds can be modeled in more detail, and alternative 
solutions can be presented with associated risk profiles. 
Again, mathematical programming-based approaches 
such as sample average approximation and robust opti-
mization might prove fruitful if these lines of research 
are pursued.

In addition, the emergence of novel production 
approaches and technologies, such as disposable pro-
duction trains and perfusion production, suggests the 
need to extend existing planning and scheduling mod-
els, and to develop new ones. For example, Bu et al. 
explore planning in the context of semi-batch perfu-
sion processes, a technology that is increasingly used 
in biopharmaceutical manufacturing [Bu D, Kaminsky P. 

Production lot sizing with immediately observable random 

production rate. Working paper, Department of Industrial 

Engineering and Operations Research, University of Califor-

nia, Berkeley (2014); submitted]. The authors develop and 
compare a series of heuristics intended to determine 
when to ‘cut-off ’ processing of an individual ‘batch’ 
and when to switch between different products.

Supply chain coordination
While the bulk of tactical level biopharmaceutical 
operations papers focus on production and campaign 
planning and scheduling, there are a variety of other 
tactical issues that researchers are beginning to explore. 
For instance, Meijboom et al. [46] investigate the sup-
ply chain of an internationally operated pharmaceuti-
cal company. Using an integer programming model, 
the authors compare two potential organizational 
structures for the company, functional unitary form 
(U-form) and multi-divisional form (M-form). In the 
U-form organization, the company is divided based on 
its three basic functions: supply, production and distri-
bution, and decision making is centralized, while the 
M-form company is divided geographically, and deci-
sions are made within each of its division. In their case 
study with a pharmaceutical firm, the authors show 
that the M-form firm is easy coordinate using a trans-
fer pricing mechanism, while the U-form organization 
is more difficult to coordinate.

Operational decisions
Inventory management
Even fewer authors explicitly consider operational deci-
sion making in biopharmaceutical manufacturing and 
supply chain, perhaps reflecting the traditional lack of 
emphasis on optimizing operational decisions within 
the industry.

Boulaksil et al. [47] study the problem of determining 
safety stock levels in a complex multi-product multi-
stage supply chain, and develop an approach that solves 
a rolling horizon MILP in a simulation setting. Com-
bined with the results of multiple simulation runs, the 
proposed approach is used to determine effective safety 
stock levels in order to achieve desired customer service 
levels. The authors describe an implementation of their 
approach at a biopharmaceutical firm, where they are 
able to decrease the safety stocks by 20–50% from the 
current setting while maintaining desired customer 
service levels.

Using an approach called Retrospective Optimiza-
tion Integer Programming (ROIP), Kaminsky and 
Liu [48] address similar biopharmaceutical inventory 
control parameter setting problems. ROIP uses an 
integer program to optimize inventory parameter set-
tings along a sample path. The authors demonstrate 
the effectiveness of this approach in biopharmaceutical 
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supply chain settings. While very complex supply chain 
settings lead to big, difficult to solve integer programs, 
the authors develop an approximate approach based on 
stochastic gradient search methods. A numerical study 
demonstrates that a hybrid approach that combines 
integer programming with stochastic gradient search 
can reduce solution times from over 20 h to just a few 
seconds while finding solutions that are a fraction of a 
percent away from the solutions found by the integer 
program.

Another stream of research focuses on inventory 
modeling in the downstream portion of the pharma-
ceutical supply chain (i.e., a hospital or clinic) using 
mathematical modeling. Baboli et al. [49] investigate 
replenishment policies between a warehouse and a hos-
pital, focusing on comparing centralized and decen-
tralized replenishment approaches accounting for 
transportation costs. The authors develop heuristics 
to determine the timing and quantity of orders, and 
compare the performance of these heuristics. In their 
numerical experiment, they show a 24% saving for 
centralized replenishment policy. Kelle et al. [50] focus 
on pharmaceutical inventory management in a single 
care unit, and propose a multi-product inventory man-
agement model using an (s, S) policy for each product. 
The full model with consideration of product volume 
and space constraints proves difficult to solve, so the 
authors develop several simplified models. The authors 
demonstrate that implementing these simplified mod-
els can result in reduction in inventory expenditures of 
up to 80%.

As firms become increasingly focused on efficiency 
and cost–effectiveness, there are many more opportu-
nities to develop model-based approaches to improv-
ing operational decisions. Detailed scheduling models, 
labor utilization tools, delivery coordination, detailed 
process and operations simulation, logistics optimiza-
tion, etc., all present opportunities to adapt and modify 
tools, techniques and approaches that have proved fruit-
ful in many other industries to account for the details 
and complexity of biopharmaceutical  operations.

Future challenges
Our goal with this survey was to highlight existing 
literature with a hope of making it more accessible to 
practitioners, and clarify research opportunities with 
respect to developing and applying analytical tools and 
models to biopharmaceutical operations and supply 
chain management. As we discussed above, however, 
there is relatively little relevant published research that 
will be useful to practitioners, and many opportunities 
for researchers to develop tools and models to address 
important industry problems. Throughout this survey, 
we have identified specific knowledge gaps and future 

research opportunities. At a strategic level, for exam-
ple, in the context of mathematical modeling-based 
tools for capacity planning and product selection, there 
is opportunity to capture more of the details specific 
biopharmaceutical processing, including specific pro-
cess characteristics, as well as the details of commonly 
used supply chain structures (e.g., in-house manufac-
turing with outsourced filling and labeling.) Simula-
tion-based strategic tools can similarly be generalized 
to more explicitly capture details of  biopharmaceutical 
processes and supply chains, and in particular the 
various sources of variability and uncertainty that are 
 specific to biopharmaceutical production.

At a tactical level, scheduling and planning models 
can be extended to capture critical biopharmaceutical 
production characteristics, by modeling demand and 
production uncertainty, contaminations, quality assur-
ance-related delays and the impact of outsourcing, and 
by presenting alternative solutions with  different risk 
profiles.

Finally, at the level of operational decision making, 
little has been published. Several papers explore inven-
tory optimization in biopharmaceutical supply chains, 
but there is ample opportunity to develop that tools 
that will optimize day-to-day scheduling, and labor 
and resource allocation.

There are many other related areas where novel 
developments could make an important contribution 
to the industry. As novel technologies such as dis-
posal processing equipment and continuous processes 
becoming more prevalent, a variety of strategic, tac-
tical, and operational issues around investment in, 
acquisition of, and use of, these technologies needs to 
be addressed. As Quality by Design (QbD) becomes 
more prevalent, flexible operations will be increasingly 
necessary to ensure efficient batch release [51]. As the 
risk of supply chain disruption, and the importance of 
effectively managing this disruption, become more evi-
dent, tools and analyses that address operational issues 
around supply chain risk become more critical. As 
products increasingly serve smaller and smaller popu-
lations, and as the nature of clinical trials and initial 
product roll-out changes [52], tools to manage opera-
tions in this environment will turn to be more crucial.

In addition, the increasing availability of large 
amounts of data is presenting challenges and oppor-
tunities to most industries, and the biopharmaceutical 
industry is no exception. Detailed process, produc-
tion, logistics, data and demand data can lead to more 
efficient production and supply chain operations, but 
there is far too much of this data to analyze by hand – 
sophisticated tools will be necessary.

These are all difficult problems. However, from a 
technology standpoint, recent developments in the 
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tools of optimization and simulation have great prom-
ise for addressing the problems of the industry. Opti-
mization software continues to get faster more power-
ful, and the technology for incorporating uncertainty 
into optimization models is becoming more and more 
sophisticated, with the increasing development of 
techniques such as sample average approximation and 
robust optimization. A variety of approaches for simu-
lation optimization, including novel approaches for 
ranking and selection of alternatives, gradient-based 
search methods for variable optimization, are increas-
ingly being refined, and even incorporated into com-
mercial software. Finally, tools that work with larger 
and larger sets of data are entering the mainstream. 

Very few of these concepts have been applied to bio-
pharmaceutical operations, and we suspect that great 
strides will be made as they are applied in the future.
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Executive summary

Background
•	 The biopharmaceutical industry has a unique set of operations and supply chain challenges.
•	 The biopharmaceutical industry lags behind other industries in applying advanced analytical tools and 

techniques to address these challenges.
Research method
•	 A comprehensive survey of the recent academic research focusing on analytical tools for biopharmaceutical 

operations and supply chain management was completed.
Key research areas
•	 A strategic level, existing model-based operations and supply chain management research explores the use of 

optimization and simulation tools for capacity planning and product selection.
•	 At a tactical level, existing literature analyzes planning, campaign scheduling and coordination issues.
•	 Operations-focused work explores supply chain inventory decision making.
•	 Opportunities exist to investigate the use of novel mathematical programming techniques that have been 

developed to model and optimize supply chains in other industries, to extend models to capture more of 
the characteristics of the industry, to address issues of risk mitigation and to integrate optimization and 
simulation, among others.

Future challenges
•	 Many industry problems have yet to be addressed in a rigorous, analytical and model-based fashion.
•	 As more data becomes available, the opportunity to make data-driven decisions is becoming more readily 

available, but tools must be developed to do so.
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