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Description

Artificial Intelligence (AI) has gained rapid attention over the last years in cardiology 
scientific literature. One promising area of application is ECG automatic interpretation, 
as ECG signals are, by nature, more prone to be analyzed by machines than by humans 
[1]. The hopes are about enhanced efficiency-reducing time spent to analyzing visually 
complex signals-and improving diagnostic accuracy. Yet, despite a vast number of 
publications showing good performance, AI tools frequently fail to translate into 
clinical practice. Indeed, clinicians want more than results reported in scientific 
articles, they need to rely on regulatory-approved medical devices, for example with 
FDA clearance or CE marking, that they can use confidently in clinical practice. To 
reach this level of trust, demonstration of good performance through robust external 
validation is essential. These validations evaluate performance across independent 
patient populations, devices, and clinical sites not involved in training, ensuring real-
world generalizability. Here we discuss why external validation is vital and highlight 
some recent studies reporting such results with regulatory-approved devices aiming at 
analyzing ECG recordings.

Regulatory approval is essential to bring AI to practice but not enough 

Regulatory pathways serve as filters to ensure basic quality, safety, and clinical 
performance standards. In other words, products should perform as claimed by the 
manufacturer and should not harm the patients. However, especially for low-risk 
devices, substantial validation of AI methods in external settings is not mandatory 
and is rarely undergone. Many regulatory submissions are based on data handled by 
the manufacturer in a limited, often favorable environment, raising concerns around 
internal data biases. Performing external validation to test a trained model on entirely 
independent datasets from different sources is of paramount importance to demonstrate 
that device performance is as expected in different patients and environments. A lack 
of such validation remains a limiting factor for the hospital or physician to use a new 
medical device. In fact, the absence of true external validation is a common drawback 
in many academic AI-based cardiovascular models [2]. However, this should be tackled 
even more for products already in the market, in line with the regulators emphasizing 
that post-market evidence is essential. Finally, external validation results in the form of 
peer-reviewed articles enable a broader audience to assess credibility and transparency, 
which are core pillars of science, and should be among the main principles of the 
medical device business. It is worth mentioning that this quest for external validation is 
usually pursued whenever reimbursement or health technology assessment is targeted 
by manufacturers. Should we wait for this longer-term journey to perform external 
validation studies?  We believe in including as best practice the development, execution 
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and publication of well-designed external validation studies since 
the start of the product ideation.

Regulatory-approved and externally validated ECG models: 
Some recent examples

Among thousands of works published every year describing AI 
models for ECG records automatic analysis, there are very few 
related to the external validation of regulatory-approved medical 
devices. The purpose here is not to systematically appraise 
existing studies but rather to consider a few examples to illustrate 
our statement about the need for external validation. External 
validation can be executed in several forms, depending on the 
product maturity and yielding different levels of rigor and clinical 
relevance. The most common method consists of validating the 
model on an entirely independent dataset from training, obtained 
in a different setting or time period, to evaluate its performance 
in a new population. Generalizability and potential overfitting 
to the original data can then be assessed along with the need to 
recalibrate initial models or not. One step further, more robust 
and clinically meaningful validation can be achieved through 
prospective designs, such as pragmatic Randomized Controlled 
Trials (RCTs), where the model is deployed in real-world clinical 
workflows and its impact is compared against standard care. These 
RCTs not only deal with models' accuracy but also evaluate their 
effectiveness in improving clinical outcomes, making the evidence 
even more powerful for clinical adoption.

Attia, et al. evaluated an AI model designed to detect left 
ventricular systolic dysfunction in a completely independent 
cohort from Russia [3]. Trained on Mayo Clinic data, the model 
was externally tested using the “Know Your Heart” dataset, 
achieving an area under the curve of 0.82 but with low sensitivity 
(26.9%). Interestingly, the study raised the need for population-
specific threshold recalibration, emphasizing that even when 
a model meets regulatory standards, its performance may vary 
across different clinical environments. Validation cannot rely solely 
on internal test sets but must include diverse and representative 
populations to ensure generalizability.

We recently published an assessment of a CE-marked AI model 
for atrial fibrillation detection using over 8,500 publicly available 
single-lead ECGs from the PhysioNet Challenge [4]. High 
performance, including over 96% accuracy and strong F1-scores, 
was achieved despite the heterogeneity and noise inherent in real-
world ECG recordings. These results were obtained without any 
new training or recalibration of the AI model. To note, the model 
was not previously trained on data from the same ECG hardware. 
As a post-market evaluation of an already approved product, this 

study aligns with the evolving expectations from regulatory bodies, 
which increasingly emphasize the importance of ongoing evidence 
generation.

Lastly, Adedinsewo, et al. evaluated the performance of FDA-
cleared AI algorithms embedded in both 12-lead ECG and digital 
stethoscope platforms in detecting low ejection fraction [5]. The 
tested AI algorithms had shown effectiveness before in different 
retrospective and pilot prospective studies in the US. Their purpose 
was to conduct a pragmatic RCT among pregnant and postpartum 
women to evaluate whether AI-guided screening improves the 
diagnosis of pregnancy-related left ventricular systolic dysfunction 
in an obstetric population in Nigeria, compared to usual care. 
The study demonstrated excellent diagnostic performance for the 
detection of a left ventricular ejection fraction<50%, with areas 
under the curve of 0.928 and 0.976 for the ECG and stethoscope-
based models, respectively. AI-guided screening was associated 
with an increase in the diagnosis of cardiomyopathy compared to 
usual care. With this type of design, investigators may not only 
evaluate model performance but also clinical consequences and 
cost-effectiveness data into real-world workflows.

Conclusion 

All together, these studies highlight that external validation is 
not a regulatory formality but a scientific and ethical imperative, 
ensuring that AI tools perform as expected when applied in the 
diverse and dynamic conditions of clinical care. External validation 
studies should be numerous, transparent, and adapted to different 
designs according to their objectives. Future directions to embrace 
this mindset may include further guideline development, inclusion 
of reporting standards within scientific journal guidelines and 
regulatory updates related to AI medical devices.
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