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Advances in multiple sclerosis imaging: 
neurocognitive imaging

  review

cortical lesions also involve the juxtacortical 
region to some extent [10,19]. There is strong evi-
dence that GM demyelination is underestimated 
by conventional MRI techniques, limiting their 
use for assessing disease severity [10].

Clinical presentation 
Multiple sclerosis is characterized by wide vari-
ability and diversity of symptom presentation, 
which may be mono- or multi-focal. Visual 
presentations include optic neuritis (Figure 1) and 
diplopia. Sensory symptoms include pain, par-
esthesia and disturbance of micturition, while 
motor symptoms are also common and include 
limb weakness and gait disturbance [5]. 

Neuropsychiatric abnormalities are frequent 
symptoms in MS. They are divided into disor-
ders of mood, affect, and behavior and cognitive 
dysfunction. Depression is the most common 
pressing clinical problem seen in nearly half of 
MS patients, which is triple that of the preva-
lence in the healthy population  [20]. Cognitive 
dysfunction is common, affecting 40–65% of 
MS patients. Attention, information processing 
speed, working, semantic and episodic memory, 
executive function, and verbal and visual–spatial 
abilities are the predominantly affected cognitive 
domains [21,22]. MS patients also have difficulty 
both acquiring and retrieving information [23], 
and their ability to accurately assess their own 
memory, a function termed ‘metamemory’, is 
impaired [24]. Procedural memory on the other 
hand is unaffected [25]. One of the hallmarks of a 
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groups characterized by their clinical pattern 
of disease progression: relapsing–remitting MS 
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and primary progressive MS (PP-MS). RR-MS is 
characterized by exacerbations of the disease fol-
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tion at initial presentation [3,4]. SP-MS is seen in 
40% of RR-MS patients after 10 years and 90% 
after 25 years disease duration. PP-MS represents 
5–10% of the MS population; this group is char-
acterized by progressive symptom onset from 
the disease commencement [5]. Although MS is 
regarded primarily as a white matter (WM) dis-
ease, gray matter (GM) disease burden is increas-
ingly emphasized [6–13]. Recent imaging studies 
support an interdependent relationship between 
normal-appearing white matter (NAWM) and 
GM damage [14]. Demyelinating lesions, meta-
bolic and structural abnormalities are reported in 
the cerebral cortex, thalamus and basal ganglia 
(BG) [15–18]. Approximately 26% of lesions occur 
outside of the WM, with 5% of these reported 
within the cortex [19]. Other studies have found 
cortical involvement in 53–80% of cases [11–13]. 
Several studies have demonstrated that the 
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‘subcortical’ dementia is impaired attention and 
slowness of thinking  [26]. The poor performance 
of MS patients on neuropsychological paradigms 
such as the Paced Auditory Serial Addition Task 
(PASAT) and the symbol–digit substitution test 
illustrates this well [24]. Studies assessing infor-
mation processing speed have found deficits 
across all domains in cognitively impaired MS 
patients  [27]. Problems with concept formation 
and abstract reasoning also occur in MS [28]. An 
attempt to ascertain the constituent abnormali-
ties in problem solving led Beatty to conclude 
that the central difficulty in MS patients is their 
difficulty in identifying concepts rather than 
perseveration  [29]. The functional integrity of 
the frontal lobes is considered central to these 
cognitive processes. While injury of the critical 
links between cortical and subcortical circuits 
results in memory dysfunction [30], the deline-
ation of widely dispersed neural networks helps 
explain why patients with nonfrontal pathology 
may, on occasion, perform poorly as well  [27]. 
Similarly, MS patients have difficulty with verbal 
fluency measured by the Controlled Oral Word 
Association Test, which, like problem solving, is 
also sensitive to frontal function, but not wholly 
subserved by it [31]. Neuropsychological testing 
is the most sensitive means of detecting cogni-
tive difficulties, but testing is time consuming, 
expensive and not always available. Several brief 
screening instruments have been developed that 
do not require neuropsychological expertise and 
can be completed in 30 min or less [21,32]. These 
tests lack the sensitivity of a complete neuro
psychological assessment and their use should 
therefore be confined to screening patients. 
The Minimal Assessment of Cognitive Function 
in MS is a 90-min neurocognitive test, recently 
proposed by an expert panel for clinical moni-
toring and research [33]. This comprises of seven 
tests covering five cognitive domains commonly 
impaired in MS, including processing speed, 
memory, executive function, visual–spatial 
processing and word retrieval. The validity of 
the Minimal Assessment of Cognitive Function 
test has recently been confirmed [32,34,35]. MS 
patients showed significantly lower performance 
than normal controls in all tests at medium to 
very large effect sizes. 

Cognitive impairment is more prevalent 
with increasing duration of the disease and is 
most often seen in patients with SP-MS and 
RR-MS [6]. Although cognitive impairment in 
MS is often mild, negative impact on occupa-
tional and social life is reported with a decline 
in performance of everyday tasks. 

Role of vascular disease in MS 
The underlying etiology of MS is still largely 
unknown. It is believed that MS is related to an 
autoimmune process in genetically susceptible 
individuals [5]; however, there is increasing evi-
dence that microvascular impairment plays a role 
in MS pathogenesis, contributing to neuroax-
onal degeneration [36–38]. Blood–brain barrier 
disruption is recognized as a crucial step in the 
evolution of MS [39,40], mediated by inflamma-
tory processes. A recent study using susceptibil-
ity-weighted images showed diffuse diminished 
visibility of WM cerebral vasculature [41]. More 
controversially, it has recently been suggested 
that vascular stenosis may in fact be a possible 
primary event in disease evolution. Impaired out-
flow is postulated to be responsible for alterations 
in mural shear stress, resulting in inflammatory 
activation [42–44]. To date, the work remains con-
troversial; it has not been replicated in other cent-
ers [45–47] and no proven link is reported between 
these apparent underlying vascular stenoses and 
cognitive impairment. 

Diagnostic criteria of MS
Conventional MRI, in combination with clinical 
and paraclinical studies, aids the diagnosis of MS 
and facilitates disease progression monitoring. 
Guidelines have been proposed to standardize the 
use of MRI in MS. The McDonald criteria were 
introduced in 2001 based on dissemination of MS 
lesions in time and space on conventional MRI 
(Figure 2), the presence of oligoclonal IgG bands 
in cerebrospinal fluid (CSF) analysis and visual 
evoked potential in addition to comprehensive 
objective clinical assessment  [48]. These criteria 
were revised in 2005 to simplify and clarify issues 
considered confusing to the clinician, such as the 
role of spinal cord lesions in MS diagnosis, and 
to expedite diagnosis while maintaining adequate 
sensitivity and specificity [49].

GM lesions, cortical atrophy & 
correlates of cognitive dysfunction 
Gray matter lesions are underestimated using 
conventional MRI. The reasons for this include: 

�� Cortical lesions are less conspicuous on 
T

2
-weighted imaging (T

2
-WI) because of 

longer lesion relaxation times resulting in poor 
lesion-to-cortex contrast resolution [9,50]; 

�� Partial volume effects from surrounding CSF 
obscure GM lesions; 

�� Small lesions may be below the spatial resolution 
of current clinical scanners [51];
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�� GM lesions have a reduced amount of inflam-
mation compared with those located in WM 
upon pathological study [52]. 

Higher cortical cellular density may not 
allow sufficient extracellular space expansion 
to allow cortical relaxation time increase com-
pared with WM lesions. Attenuating CSF using 
fluid-attenuated inversion recovery sequence 
increases MS cortical lesion detection com-
pared with T

2
-WI  [53]. Further improvement 

is achieved with double inversion recovery 
imaging [54]. The use of 3D double inversion 
recovery imaging allows better detection, defi-
nition and classification of MS lesions as intra
cortical, juxtacortical or mixed gray–white 
matter lesions [50]. 

Cortical lesion load has been demonstrated 
to correlate with cognitive impairment [21,55]. 
Older studies using conventional spin-echo 
MRI sequences showed moderate correlations 
between verbal memory, attention, verbal flu-
ency and spatial reasoning, T

2
-WI hyperintense 

lesions, total lesion burden and regional lesion 
volume [56]. Complementing these studies is 
a recent report showing that the change in T

2 

hyperintense lesions over 2 years correlated with 
cognitive performance 13 years later  [57]. One 
study reported a correlation with T

2
 hyperin-

tense lesions in subcortical GM with neuropsy-
chological dysfunction [34]. Total lesion area 
was found to correlate with neuropsychological 
deficits [58]. High lesion volume in the left fron-
tal lobe was found to predict impaired abstract 
problem solving, memory and word fluency 
while left parieto-occipital involvement pre-
dicted deficits in verbal learning and complex 
visual-integrative skills [59]. 

Enhancing lesions on contrast-enhanced 
short time of repetition spin-echo images (con-
trast-enhanced T

1
-WI) were regarded as active 

lesions. Contrast-enhanced T
1
-WI were found to 

detect 85% of all new active lesions compared 
with 26% observed on long time of repetition 
spin-echo images [12]. The presence of enhanced 
lesions was found to correlate with poor PASAT 
performance, indicating negative impact on 
cognitive function [60]. 

In addition to lesion load, cerebral atrophy 
is considered an imaging hallmark of MS. It 
is also an important potential marker of cog-
nitive decline [61,62]. Ventricular enlargement, 
one index of brain atrophy, is associated with 
abnormalities on various cognitive tests [62,63]. 
Progressive GM loss has been demonstrated to 
be important in the context of MS-associated 
cognitive impairment [64]. A more recent study 

showed more cortical lesions and more severe 
cortical atrophy in RR-MS patients with cog-
nitive impairment when compared with cogni-
tively preserved patients [65]. Ventricular dilata-
tion and atrophy of corpus callosum were found 
to correlate with lower neuropsychological per-
formance  [66]. Greater lesion area and signifi-
cant atrophy of corpus callosum were found in 
patients with severe cognitive impairment [67]. 
The performance of MS patients on verbal 
fluency tasks was found to be strongly affected 
by the atrophy of anterior corpus callosum, 
implicating the importance of corpus callo-
sum in interhemispheric transfer of cognitive 

Figure 1. Coronal fat-saturated T2 through 
the mid orbit of a 30-year-old female 
presenting with a 5-day history of 
progressive vision loss. There is enlargement 
of the right optic nerve and increased T

2
 signal 

(white arrow) consistent with optic neuritis.

Figure 2. Para-sagittal fluid-attenuated 
inversion recovery in a 35-year-old female 
with new-onset paresthesia and sensory 
disturbances 3 months after symptom 
onset. Multiple elongated T

2
 fluid-attenuated 

inversion recovery hyperintense lesions 
(so-called ‘Dawson’s fingers’) radiate from the 
callosal surface into surrounding deep white 
matter. Together with the number of lesions 
present and additional juxtacortical and 
posterior fossa lesions, the patient fulfilled 
McDonald criteria for multiple sclerosis.
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information [68]. Cross-callosal information flow 
was found to be reduced in MS patients with 
corpus callosum atrophy [69]. 

Numerous MRI segmentation techniques 
exist, facilitating the creation of separate esti-
mations of GM, WM and lesion volume in 
MS. Discussion of these techniques is beyond 
the scope of this review but described in other 
literature [70–72]. In general, these techniques 
require variable degrees of user input, ranging 
from completely manual, to semi-automated 
needing limited user input, to fully automated. 
The initial processing involved usually requires 
multisequential high-quality imaging such as 
proton density T

2
-WI and 3D-T

1
 to remove 

nonbrain tissues (skull, muscle, fat and dura) 
and divide brain tissues into three main tissue 
types: GM, WM and CSF (Figure 3), then esti-
mate the volume of the region of interest [70–72]. 
A study examining the relative contributions of 
segmented GM and WM volume versus lesion 
burden to cognitive performance and neuropsy-
chiatric symptoms found a unique association 
between GM atrophy and verbal memory. By 
contrast, WM atrophy accounted for significant 
variance in the performance of mental process-
ing speed and working memory tasks, likely 
indicating slow communication between brain 
regions via damaged WM tracts [73]. 

Advanced MRI techniques correlate 
with cognitive dysfunction 
Advanced MRI techniques reveal structural 
abnormalities beyond the resolution of conven-
tional MRI, and several quantitative MRI stud-
ies have displayed similar radiological findings 
in GM to those described in WM. 

�� Magnetization transfer imaging
Magnetization transfer imaging is based on the 
exchange of magnetization between free water 
protons and tissue macromolecules. Selective 
saturation of the bound protons reduces the 
signal intensity of the whole image. This reduc-
tion is expressed as a magnetization transfer 
ratio (MTR) [74]. Although MTR is slightly 
reduced by inflammation and edema, profound 
MTR reduction is described in demyelina-
tion. MTR may be used to quantify the degree 
of tissue integrity disruption in MS. Previous 
studies have shown correlation between MTR 
and MS duration, suggesting progressive lesion 
accumulation. Also described is MTR reduction 
remote to MS plaque confirming global brain 
disease including abnormality within normal-
appearing WM and GM [75]. The NAWM and 

normal-appearing GM changes may be seen 
in early RR-MS where  minimal disability is 
manifest clinically  [62,76]. MTR is correlated 
with clinical disability and neuropsychological 
impairment [75,77] and a histogram analysis of 
cortical and subcortical brain tissue showed that 
all histogram-derived measures were signifi-
cantly different between cognitively impaired 
and unimpaired MS patients [13]. 

�� Diffusion-weighted & diffusion 
tensor imaging 
Diffusion is the microscopic random transla-
tional motion of molecules. The water molecular 
diffusion can be measured in vivo using diffu-
sion-weighted imaging (DWI), which consid-
ers the magnitude of diffusivity. The motion of 
molecules is affected by the presence of structural 
barriers such as WM fibre tracts in the brain; 
hence, diffusion measurement varies with the 
direction of measurement. Diffusion is affected 
by the properties of the medium where molecular 
motion occurs; therefore, measurement of tissue 
diffusivity using DWI and diffusion tensor imag-
ing (DTI) (Figure 4) provides information about tis-
sue structures at a microscopic level. Echo planer 
pulse sequence for isotropically weighted diffu-
sion imaging has been used to measure the mean 
diffusivity (MD) in lesions larger than 5 mm 
and NAWM in RR-MS patients, and compared 
with diffusivity in the WM of a normal control 
group. Both lesion and NAWM MD were signifi-
cantly higher than the WM in controls, indicat-
ing global tissue disruption in MS patients [78]. 
DWI studies show a correlation with cognitive 
dysfunction [15,79]. Fractional anisotropy (FA) 
provides additional means for quantification of 
degree of neuronal damage [80,81]. Correlations of 
MD, FA and cognitive dysfunction are shown in 
several other diseases including Huntington’s dis-
ease, Alzheimer’s and HIV-associated dementia 
[82–84]. However, reports of DTI correlation with 
cognitive function in MS are limited. Mesaros 
found a correlation between cognitive impair-
ment and increased MD in corpus callosum 
NAWM in benign MS (BMS) [85]. A decreased 
FA correlated with PASAT, measuring processing 
speed and working memory. However, Rovaris 
et al. found no correlation between cognitive 
function and subcortical/WM DTI metrics in 
BMS patients [86]. Lin et al. reported significant 
correlation between corpus callosum apparent 
diffusion coefficient and PASAT score in RR-MS 
patients; a moderate correlation between global 
cognitive impairment and corpus callosum MD 
was found [87]. Vrenken et al. reported moderate 
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correlation between an MS functional composite 
score (which included a cognition measure) and 
tissue damage in NAWM and GM with a higher 
correlation in SP-MS than RR-MS patients [88]. 

A study using a comprehensive, MS-specific 
neurocognitive tool, the minimal assessment of 
cognitive function in MS, identified a correla-
tion between PASAT, Benton Visual Retention 
and California Verbal Learning Test scores and 
reduced FA in various regions [89]. Both increased 
and reduced MD and increased FA in the BG 
and thalamus have been reported [14,15,30,90,91]. 
A study of 36 patients with early PP-MS found 
lower FA and higher MD in the NAWM con-
sistent with prior studies; however, significantly 
increased FA and a trend of MD reduction was 
reported in the BG when compared with con-
trols [14]. These results were replicated in a sec-
ond study of 39 patients with various types of 
MS [90]. Two studies found an increased MD in 
the BG and one study confirmed increased FA in 
the thalamus and BG [30]. Finally, Fabiano et al. 
found a higher apparent diffusion coefficient in 
the thalami of MS patients [15]. 

�� Functional MRI 
Functional MRI (fMRI) is a physiologic imag-
ing technique that has rapidly evolved and made 
a major transition from a purely research to a 
highly useful imaging technique. During the 
fMRI study, the signal change on echo pla-
nar images  in response to neural activation is 
attributable to local change in cerebral deoxy-
hemoglobin blood level and cerebral blood flow 
(CBF). Activation of certain brain regions in 
response to specific tasks increases the local syn-
aptic activity, resulting in increased blood flow, 
oxygen consumption and deoxyhemoglobin, 
causing echo planar image signal change [92,93]. 
The use of blood oxygen level-dependent imag-
ing in fMRI allows assessment of sensorimotor 
function and visual function, in addition and 
to more complex functions such as language, 
memory, reasoning functions and slow process-
ing speeds. The first report of reduced activity 
in MS patients was described in the visual cortex 
of a patient with optic neuritis [94]. Abnormal 
cortical activation was reported in all MS types 
and related to altered recruitment of regions 

A B C

Figure 3. Brain segmentation analysis. Volumetric T
1
 is used with or without other co-registered 

imaging such as proton density and T
2
 to create a segmented image. (A) Typically, the extra-cranial 

structures are removed followed by (B) a segmentation procedure that segments different brain 
components including gray matter (dark gray), white matter (light gray) and cerebrospinal fluid 
(blue). (C) Finally cerebrospinal fluid may be divided into sulcal (blue) and ventricular (yellow) 
cerebrospinal fluid.

Figure 4. Diffusion tensor imaging through the basal ganglia. (A) The diffusion tensor image is (B) masked with the gray and 
(C) white matter compartments of the segmented image. (D) A lobar mask is then rotated into diffusion tensor image acquisition space 
and (E) merged with the masked diffusion tensor image to produce diffusion statistics for selected brain regions of interest. 
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normally devoted to perform specific tasks, with 
recruitment of additional areas not typically acti-
vated by healthy people for that given task. The 
recruitment of these new areas is referred to as 
cortical reorganization and considered to be an 
adaptive mechanism that likely contributes to 
limit the functional impact of structural damage 
in MS [95,96]. 

In patients with RR-MS, PASAT and 
recall tests were used to assess multiple cog-
nitive functions including sustained atten-
tion, information processing, speed, working 
memory and memory retrieval. Results showed 
altered patterns of activation during these 
tasks. During PASAT, greater activation was 
seen in MS patients than controls for several 
brain regions including the inferior and mid-
dle frontal gyrus, inferior parietal lobule, sup-
plementary motor area, lateral premotor area, 
superior and middle temporal gyrus, insula, 
BG, bilateral thalamus, vermis and brainstem. 
New areas of recruitment were demonstrated 
in the anterior cingulate and superior parietal 
lobule of the right hemisphere. During recall 
tasks, patients showed similar or greater acti-
vation of brain areas compared with healthy 
controls including the inferior and middle 
frontal gyrus, superior and middle temporal 
gyrus, inferior parietal lobule, supplementary 
motor area, left lateral premotor area, right 
anterior cingulated, bilateral BG, lateral pre-
motor area and right hemisphere insula. The 
fMRI activity was greater in patients with 
better cognitive function, indicating better 
adaptive properties  [97]. Increased activation 
of specific cortical areas and the cerebellum 
was seen in BMS during performance of the 
Stroop task, which might represent preserved 
adaptive properties [98,99]. Increasing lesion vol-
ume was reported to correlate with increased 
magnitude of brain activation during fMRI 
in RR-MS patients, which is thought to indi-
cate increased neural recruitment with higher 
disease burden [100]. 

A recent study assessed attention and infor-
mation processing, verbal and visual–spatial 
memory, abstract reasoning, linguistic abili-
ties, lexical access and spatial cognition in 
cognitively impaired PP-MS, cognitively pre-
served patients and a control group. Cognitively 
impaired patients had increased activations of 
the secondary sensorimotor cortex, cerebellum 
and insula. Compared with controls, increased 
activations of the right precentral gyrus and 
reduced recruitment of the left prefrontal cortex 
were found [101]. 

A study used education and vocabulary knowl-
edge as an estimate of lifetime intellectual enrich-
ment and brain atrophy to estimate MS burden 
and has shown that brain atrophy negatively 
impacted verbal learning and memory, while 
higher lifetime intellectual enrichment lessened 
this negative impact [102]. When fMRI was used 
to investigate the relationship between intellectual 
enrichment and cerebral activity in MS patients, 
less recruitment of prefrontal cortices was noticed 
in patients with higher intellectual enrichment, 
indicating that intellectual enrichment protects 
against cognitive dysfunction [103,104]. 

�� Perfusion imaging 
Cerebral perfusion is defined as the volume of 
the blood flowing through a given volume of 
tissue per unit of time. Dynamic susceptibil-
ity contrast MRI is the most commonly used 
method to investigate hemodynamic changes in 
tissue after intravenously injected contrast agent 
(Figure 5). The use of 3 Tesla (3T) MRI in clini-
cal practise facilitates higher spatial resolution, 
increased signal to noise and shorter acquisi-
tion time compared with 1.5T [105]. Cerebral 
perfusion is, under normal circumstances, cou-
pled to parenchymal metabolism and provides 
a measure of the extent of neuroaxonal loss or 
dysfunction considered a crucial factor in irre-
versible disability in MS patients [106]. Perfusion 
of MS lesions and NAWM in MS patients has 
been evaluated on different nuclear medicine 
and magnetic resonance studies. Hypoperfusion 
in NAWM has been shown on nuclear medicine 
studies [107–109]. A study using SPECT demon-
strated significantly reduced CBF in frontal 
GM in PP-MS patients [109]. PET and SPECT 
studies have shown coupled reduction in WM 
and cortical/subcortical GM oxygen utiliza-
tion and blood flow [110]. Magnetic resonance 
perfusion has distinct advantages over PET and 
SPECT imaging including shorter scan dura-
tion, absence of ionizing radiation and higher 
resolution. Early dynamic susceptibility contrast 
MRI perfusion studies focused on MS lesions 
measuring relative values expressed as a ratio 
of the contralateral side [111,112]. More recent 
studies employ absolute perfusion measures 
but have concentrated largely on WM abnor-
mality. These studies demonstrated reduced 
CBF in the NAWM of patients with RR-MS 
presumed secondary to underlying microvas-
cular impairment  [113,114]. Elevation of CBF 
and cerebral blood volume are also reported in 
NAWM as early as 3 weeks prior to blood–brain 
barrier breakdown and plaque formation on 
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MRI perfusion [111]. These studies suggest that 
bolus-tracking perfusion techniques may pro-
vide a sensitive measure of disease activity and 
treatment effect [111]. Few studies have focused 
on GM or cortical perfusion abnormality, espe-
cially utilizing quantitative MRI techniques. 
Rashid et al. found decreased perfusion in corti-
cal GM, deep GM and subcortical WM regions. 
Gradation of change was most pronounced 
in PP-MS and SP-MS subgroups compared 
with other subgroups, reflecting the severity 
of neuroaxonal loss; however, no correlation 
with neurocognition was made [114]. Changes 
in CBF and cerebral blood volume have been 
demonstrated to correlate with degree of cog-
nitive impairment [115]. A gradation of cortical 
and GM hypoperfusion in MRI is previously 
demonstrated [114] with highest levels in PP-MS, 
followed by SP-MS and BMS. This gradation 
mirrors the severity of neuroaxonal loss, high-
lighting the potential role for perfusion imaging 
in noninvasive assessment of disease severity. 

�� Proton magnetic  
resonance spectroscopy 
Proton magnetic resonance spectroscopy has 
enabled the measurement of certain metabolites 
that are affected in a variety of CNS patholo-
gies. These metabolites include N-acetyl aspartate 
(NAA), choline (Cho), creatine (cr), myoinositol 
and lipids. 

In normal subjects NAA, used as a neural 
marker, is the largest peak, resonating at 
2.0 ppm. Cho is a precursor of acetylcholine 
(a vital cell membrane constituent) and phos-
phatidylcholine is a critical neurotransmitter 
involved in memory, mood and cognition. 
Therefore, Cho, with its peak at 3.2 ppm, is used 
to reflect cell membrane turnover. Myoinositol 
is a metabolite that is involved in hormone-
sensitive neuroreceptors (3.56  ppm). In MS 
patients, the hallmark finding is NAA reduc-
tion. Reduction is more prominant in chronic 
MS plaques, ref lecting axonal loss  [116,117]. 
In acute MS plaques, NAA may temporarily 
reduce with subsequent restoration following 
acute-phase resolution. This reversibility indi-
cates that axons have not been permanently 
damaged, or that the NAA could be related 
to reversible causes such as edema [118]. Cho 
and lactate may both be increased in the acute 
stage of the disease. The presence of free lipid 
between 1.2 and 1.6 ppm during acute disease is 
thought to indicate myelin breakdown [119,120]. 
Elevated myoinositol is additionallysreported in 
MS plaques [121]. Metabolite alteration is also 

detected in NAWM beyond lesions  [122,123]. 
Multislice echo planar spectroscopic imaging 
has been used to measure global brain metabo-
lite changes in cognitively impaired MS patients 
compared with cognitively intact patients and 
controls. A correlation between NAA:Cr ratio 
and cognitive dysfunction factor was found with 
a significant decrease of the NAA:Cr ratio in 
cognitive impairment [124]. Expected advances 
in spectroscopy may provide new opportunities 
for the detection of additional metabolites that 
are relevant to MS [125]. 

Figure 5. Cerebral perfusion imaging. 
(A) Cerebral blood flow map with co-registered 
combined segmented gray, white, basal 
ganglia, normal-appearing white matter and 
white matter lesion regions of interest 
superimposed. (B) A gray matter flood 
is applied.
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Conclusion 
Although MS is traditionally considered a WM 
disease, GM involvement is increasingly recog-
nized, largely due to progress in more physi-
ological or functional MRI techniques. The 
more widespread brain involvement demon-
strated by these techniques may better explain 
the diversity in clinical symptoms and cogni-
tive impairment. It is anticipated that use of 
advanced magnetic resonance techniques will 
continue to contribute to a better understanding 
of MS etiology and pathophysiology. 

Future perspective 
Advanced MRI is expected to provide new 
means for the evaluation of disease burden, pre-
viously unmeasured or grossly underestimated 

with conventional MRI techniques. We expect 
that these modalities will, in the near future, 
be included in routine clinical practise and pro-
vide useful surrogate markers of disease burden 
and response to disease-modifying drugs. 
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Executive summary

�� Multiple sclerosis is the most common inflammatory demyelinating disease of the CNS. More recently, the role of gray matter 
involvement has been increasingly recognized.

�� Cognitive impairment is an important detractor of the quality of life in multiple sclerosis and is an important target for pharmacological 
intervention. The development of advanced MRI markers of disease burden that correlate with impaired cognition will facilitate more 
rapid assessment of therapeutic end points. 
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