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Adenosine and adenosine receptors in rheumatoid arthritis

Rheumatoid arthritis is one of the most important chronic, progressive and disabling inflammatory diseases 
characterized by joint destructive process associated with synovial proliferation and secretion of high levels 
of proinflammatory mediators including cytokines and growth factors. Early diagnosis and effective 
therapy are crucial in order to prevent unfavorable outcome with joint deterioration and functional 
disability. Treatment of rheumatoid arthritis has progressed thanks to the advent of biologic drugs targeting 
different specific molecules and pathways involved in the inflammation. Considerable advances could be 
achieved in the identification of novel inflammatory biomarkers, good predictors of outcome. Adenosine, 
a well-known purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors, is a potent 
endogenous inhibitor of inflammatory processes involved in the pathophysiology of a variety of CNS and 
peripheral diseases. As a consequence, selective agonists and/or antagonists of adenosine receptors could 
be useful in the treatment of chronic inflammatory diseases such as rheumatoid arthritis, as they are 
already in other disorders in which inflammatory status is a clinical feature.
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Rheumatoid arthritis: background 
Rheumatoid arthritis (RA) is a chronic, 
progressive and disabling inflammatory disease 
characterized by joint destructive process 
associated with synovial proliferation and 
secretion of high levels of proinflammatory 
mediators including cytokines, metalloproteases 
and growth factors. 

RA is usually characterized by symmetric 
inf lammatory polyarthritis and affects 
approximately 0.5–1% of the general population 
worldwide [1]. Like for other rheumatic diseases, 
the pathophysiology of RA is not yet fully 
understood. One potential synthesis of the 
data available on pathogenesis suggests that 
the innate immunity activation and a favorable 
genetic background are the basis of the induction 
phase that gets the joint ready for the subsequent 
coming of inflammatory and immune cells [2,3]. 
The proinflammatory mediators released act on 
different cell populations including lymphocytes, 
neutrophils, endothelial cells, synoviocytes, 
osteoclasts and chondrocytes by inducing the 
maintenance of a Th1 inf lammation with 
angiogenesis and chemotaxis [4]. The relative 
abundance of Th1 cells and cytokines suggests 
that the synovium resembles a Th1-like delayed-
type hypersensitivity reaction. Th2 cytokines 
and cellular responses that normally suppress 
Th1 activation are nearly absent, suggesting 
the possibility that the lack of T-cell activation 

along the Th2 pathway in RA contributes to 
disease perpetuation. Several studies indicate 
that a particular type of T cell, Treg cells 
(thymus-derived natural regulatory T cells), 
and in particular the subset characterized by 
the production of IL-17 called Th17 cells, may 
play an important role in the pathogenesis of 
RA. The circulating Th17 and Th17/Th1 
cell frequencies are different in patients with 
early or established RA, and active or inactive 
disease [5]. 

Among the released inflammatory mediators 
IL-1b, TNF-a and IL-6 are the pivotal 
cytokines in the physiopathology of the 
synovial inflammation that activate several 
cell types, including lymphocytes, neutrophils, 
endothelial cells, osteoclasts, chondrocytes 
and synoviocytes, and upregulate a number of 
pathways linked to the inflammation. Bone 
erosions are subsequently caused by osteoclasts, 
whereas cartilage dissolution results from 
proteolytic enzymes produced by synoviocytes 
in the pannus or synovial fluid neutrophils [2]. 

It is well reported that immunoreactivity can be 
identified before clinical disease and manifested 
by the production of rheumatoid factor (RF) and 
anticitrullinated peptide antibodies (ACPA) that 
contributes to erosiveness and severity [6–8].

Genes play a key role in susceptibility to 
RA and disease severity. Class II MHC genes, 
especially genes containing a specific five-amino part of
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acid sequence in the hypervariable region of 
HLA-DR4, are the most prominent genetic 
association. Newly defined genetic associations, 
including polymorphisms in the PTPN22 and 
PADI 4 genes, and many cytokine promoter 
polymorphisms, population-specific genes and 
other undefined genes are reported as genetic 
markers of diagnosis and prognosis [2,6,9].

It has been recognized that early therapeutic 
intervention improves clinical outcomes 
and reduces the accrual of joint damage and 
disability. The optimized use of old therapies and 
the availability of new drugs have dramatically 
enhanced the success of RA management [10]. 
Recently, a joint working group from the ACR 
and the European League Against Rheumatism 
(EULAR) revised the old criteria set and 
developed a new approach to classifying RA 
[11,12]. The work, which was among patients newly 
presenting with undifferentiated inflammatory 
synovitis, focused on identifying factors that 
best discriminated between those who were and 
those who were not at high risk for persistent 
and/or erosive disease, that is to say RA. In the 
new criteria set, classification as ‘definite RA’ is 
based on the confirmed presence of synovitis 
in at least one joint, absence of an alternative 
diagnosis that better explains the synovitis, 
and achievement of a total score of 6 or greater 
(of a possible  10) from the individual scores 
in four domains: number and site of involved 
joints (score range: 0–5), serologic abnormality 
(score range: 0–3), elevated acute-phase response 
(score range: 0–1) and symptom duration (two 
levels; range: 0–1). These new criteria focus on 
findings that facilitate earlier recognition of RA 
and outcome prediction.

Treatment of RA
Currently, optimal management of RA is needed, 
within 3–6 months after the onset of disease, 
since a narrow ‘window of opportunity’ is 
considered to be suitable to achieve remission [13]. 
Early prognostic assessment in order to establish 
the risk of aggressive disease is crucial to guide 
the therapeutic approach. A good early response 
to treatment predicts better long-term response 
in the following 5 years [14]. There is increasing 
acceptance of paradigms of adjusting therapy 
to achieve a predefined goal, such as remission 
or low-disease activity (‘treat to target’) with 
frequent monitoring and strategy adjustments, 
and if necessary (‘tight control’), until the target 
is reached [15–17]. The use of a composite measure 
of disease activity was recommended, such as 
the Disease Activity Score Assessing 28 Joints 

(DAS-28), the Simplified Disease Activity Index 
(SDAI) or the Clinical Disease Activity Index 
(CDAI) [18,19]. 

In recent decades, there was an inversion of 
the pyramid, with earlier and more intensive and 
innovative approach to RA treatment [20,21]. After 
a long time focused on the use of conventional 
disease-modifying antirheumatic drugs 
(DMARDs) alone or in combination, the advent 
of ‘biologic’ drugs, which are able to block the 
cytokine pathway and B- and/or T-cell activation, 
has profoundly changed the therapeutic scenario 
and, consequently, the current strategy adopted 
to cure RA [10,22]. Glucocorticoids have been, 
and continue to be, a part of the treatment 
strategy throughout the years [23]. The recent 
EULAR recommendations for the treatment of 
RA identify three phases of therapy [15]. Phase 
one is the initiation of DMARD treatment as 
monotherapy, immediately after diagnosis of RA. 
The recommended drug is methotrexate (MTX), 
widely seen as an anchor drug in RA [24,25]. Phase 
two is the escalation of therapy by switching to a 
different DMARD or to a combination therapy. 
If this approach fails to achieve the target of 
clinical remission (or low disease activity) 
within 3–6 months, and the patients have poor 
prognostic factors (high disease activity, early 
joint damage, high levels of RF or ACPA), the 
new escalation of therapy is the addition of a 
biologic drug, TNF blockers. However, to date, 
approximately one-third of patients treated with 
anti-TNF-a agents show an inadequate response 
or develop side effects requiring discontinuation 
of therapy [26]. Phase three is in case of anti-
TNF failure or lack of efficacy and/or toxicity, 
the recommended approach is to change the 
biologic treatment by switching to an alternative 
TNF antagonist (in combination with a synthetic 
DMARD) or replacing the biologic treatment 
with an alternative with different target therapy 
(B-cell-targeted therapy, IL-6, CTLA-4 
modulation). 

Under this point of view, it is very important 
to identify predictive factors related to a better or 
poor response or to major risk of toxicity aimed 
to guide the therapeutic choice and faster adjust 
the therapeutic intervention [17,26,27]. 

Adenosine & adenosine receptors
Adenosine is a purine nucleoside identified 
as an endogenous and ubiquitous molecule 
regulator of different tissues and cell functions 
[28]. Adenosine is generated in the extracellular 
space by the breakdown of ATP through 
a series of ectoenzymes, including apyrase 
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and ecto-5´-nucleotidase [29]. Adenosine is 
phosphorylated to AMP by adenosine kinase 
or degraded to inosine by adenosine deaminase 
[30]. Adenosine production from the hydrolysis of 
AMP is mediated by a cytosolic 5́ -nucleotidase 
or by the hydrolysis of S-adenosylhomocysteine 
[30]. The levels of adenosine in the interstitial 
fluids are in the range of 20–200 nM but they 
dramatically increase under metabolically 
unfavorable conditions [31]. Adenosine effects 
are widespread and mediated by the interaction 
with different adenosine receptor (AR) subtypes, 
which are able to modulate cell signaling 
transduction (Table 1) [32]. ARs are characterized 
by seven transmembrane domains with the N- 
and C-terminus in the extracellular side, and the 
presence of intracellular and extracellular loops 
[33]. A

1
AR stimulation through the interaction 

with Gi/Go proteins modulates different 
cellular effectors as adenylate cyclase (AC) and 
phospholypase C (PLC) [34]. The A

2A 
and A

2B
ARs 

through coupling with Gs proteins activate AC 
and increase cyclic AMP levels [31]. A

3
ARs

, 
via 

the interaction with Gi inhibit adenylate cyclase 
decreasing cyclic AMP accumulation and 
protein kinase A (PKA) activity. In addition, 
A

3
ARs via coupling with Gq proteins stimulate 

PLC, causing an increase of calcium levels from 
intracellular stores, and modulate the protein 
kinase C (PKC) activity (Figure 1) [35,36]. 

The widespread distribution in different 
cells and tissues of the ARs could suggest their 
potential involvement in various pathologies and 
the possible use as selective pharmacological 
targets.

�� A1 adenosine receptors
A

1
ARs are widely distributed not only in 

the CNS, but also in peripheral tissues [37]. 
Adenosine, by A

1
AR activation, produces 

inhibition of neurotransmitter release and 

induces neuronal hyperpolarization mediating 
sedative, anticonvulsant, anxiolitic and 
locomotor depressant effects [38]. Literature 
evidence has indicated the involvement of A

1
ARs 

in controlling pain transmission, producing 
antinociceptive effects in various animal models 
[39–42]. In the cardiovascular system, A

1
ARs 

mediate negative chronotropic, dromotropic 
and ionotropic effects, suggesting the potential 
use of A

1
AR agonists as cardioprotective agents 

and in the treatment of arrhythmias and atrial 
fibrillation [43]. In the kidney, A

1
ARs mediate 

vasoconstriction, decrease glomerular filtration 
rate, inhibit renin secretion and their inhibition 
could represent a novel strategy for the treatment 
of hypertension and edema [44]. The role of 
adenosine in regulating the respiratory system 
is well known and elevated levels of adenosine 
have been found in bronchoalveolar lavage 
(BAL), blood and exhaled breath condensate of 
patients with asthma and chronic obstructive 
pulmonary disease (COPD). A

1
AR antagonists 

could also be used in asthma and in COPD since 
adenosine induces acute bronchoconstriction via 
stimulation of A

1
ARs [45,46]. 

�� A2A adenosine receptors 
It is well known that A

2A
ARs are found 

ubiquitously in the body, and their expression 
is highest in the immune system and the 
striatopallidal system in the brain [47,48]. Several 
studies have suggested the possible involvement 
of A

2A
ARs in the pathogenesis of neuronal 

disorders, including Huntington’s disease and 
Parkinson’s disease. In particular, an aberrant 
increase of A

2A
AR density in peripheral blood 

cells of Huntington’s disease and Parkinson’s 
disease patients in comparison with age-
matched healthy subjects has been demonstrated 
[49,50]. Accordingly, A

2A
 antagonists currently 

constitute an attractive nondopaminergic 

Table 1. Adenosine receptor subtypes, distribution and G protein coupling.

Receptor subtype Distribution Receptor coupling

A
1
AR Brain (cortex, hippocampus, cerebellum), spinal cord, 

eye, adrenal gland, atria, liver, kidney, adipose tissue, 
salivary glands, esophagus, colon, atrium and testis

Gi, Go

A
2A

AR Striatopallidal GABAergic neurons, immune cells, 
heart, lung and blood vessels

Gs, Golf

A
2B

AR Spleen, cecum, colon, bladder, lung, eye, mast cells 
and vasculature

Gs, Gq/11

A
3
AR Lung, liver, immune cells, kidney, brain, heart and 

gastrointestinal tissues
Gi, Gq/11

AR: Adenosine receptor; Gi: Inhibitory G protein; Go: Go protein; Golf: Olfactory G protein; Gq/11: G-protein q/11; 
Gs: Stimulatory G protein.
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option for use in the treatment of Parkinson’s 
disease [51]. Adenosine has important protective 
effects on the cardiovascular system. Activation 
of the A

2A
AR subtype on coronary smooth 

muscle cells, endothelial cells and monocytes/
macrophages results in vasodilation, neo-
angiogenesis and inhibition of proinflammatory 
cytokine production [52,53]. An upregulation of 
A

2A
AR was found in peripheral circulating cells 

of end-stage chronic heart failure patients [54]. 
Literature evidence reports an important role of 
A

2A
ARs in chronic airway diseases, as suggested 

by the genetic removal of A
2A

AR that leads to 
enhanced pulmonary inf lammation, mucus 
production and alveolar airway destruction [55]. 

�� A2B adenosine receptors
A

2B
AR is expressed in the brain, spleen, lung, 

colon, heart and kidney, where it is primarily 
localized to the vasculature [56]. A

2B
AR expression 

has been detected in vascular endothelium and 
smooth muscle cells where it has been implicated 
in the regulation of vascular tone through receptor-
mediated vasodilatory effects [57]. Activation 
of A

2B
ARs prevent cardiac remodeling after 

myocardial infarction and exert protective effects 
from infarction in ischemic postconditioning 
[58]. Degranulation of mast cells and subsequent 
mediator release is an important component of 
the bronchoconstriction observed in asthma 
[59,60]. Importantly, investigation of ARs on mast 
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Figure 1. Principal signaling pathways activated by adenosine receptors. 
AC: Adenylate cyclase; AR: Adenosine receptor; cAMP: Cyclic adenosine monophosphate; cAMP-GEF1: cAMP-regulated guanine 
nucleotide exchange factor 1; CDC42: Cell division control protein 42; DAG: Diacylglycerol; Elk-1: E-26-like transcription factor-1; 
ERK: Extracellular signal-regulated kinase; Gαq/11: G-protein q/11 α-subunit; Gβ: G-protein β-subunit; Gg: G-protein g-subunit; 
Giα: Inhibitory G-protein symbol-subunit; Gsα: Stimulatory G-protein a-subunit; GSK3β: Glycogen synthase kinase 3β; IKK: Inhibitor of 
NF-kB (IkB) kinase; IP3: Inositol 1,4,5-trisphosphate; MAPK: Mitogen-activated protein kinase; MEK: Mitogen-activated protein kinase 
kinase; NF-kB: Nuclear factor-kB; PDZ-GEF1: PDZ domain-containing guanine nucleotide exchange factor 1; PI3K: Phosphoinositide 
3-kinase; PIP2: Phosphatidylinositol 4,5-bisphosphate; PKA: Protein kinase A; PLC-β: Phospholipase C-β; STAT3: Signal transducer and 
activator of transcription 3.
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cells implicate A
2B

AR signaling in degranulation 
and mediator release [61]. Identification of 
A

2B
AR signaling as a potential pathway in the 

pathogenesis of asthma prompted its investigation 
in other chronic conditions affecting the lung, 
including COPD and idiopathic pulmonary 
f ibrosis [62]. A protective role for A

2B
AR 

antagonists has been proposed in the resolution of 
pulmonary inflammation and fibrotic processes 
[63,64]. In addition, it has been observed that 
A

2B
ARs are downregulated in COPD patients 

probably due to oxidative/nitrosative stress [65]. 
It has also been reported that A

2B
ARs in intestinal 

epithelial cells mediated Cl- secretion through an 
increase in cyclic AMP levels [31].

�� A3 adenosine receptors 
The tissue distribution of A

3
ARs has been well 

investigated and suggests that these receptors are 
primarily expressed in lung, liver and immune 
cells. A minor expression of A

3
ARs is reported in 

kidney, heart, brain and gastrointestinal tissues [36]. 
It has been reported that A

3
ARs activation in the 

brain may contribute to neurotransmission. [66]. A 
proconvulsant effect of A

3
ARs has been observed 

in the immature brain, suggesting the possibility of 
facilitating seizure-induced neuronal damage [67]. 
A nociceptive role for A

3
ARs involving both CNS 

and proinflammatory effects in peripheral tissues 
has been highlighted [68]. Moreover, prolonged 
A

3
AR stimulation is able to transform the effects 

from protective to injurious, increasing the 
excitotoxicity [69]. Glial A

3
AR activation by high 

adenosine levels, caused by a brain injury, may be 
implicated in neuroinflammatory tissue responses 
[70]. There is also evidence that A

3
ARs enhance 

cellular antioxidant capacity that contribute to 
vasoprotection and reduce cardiac myocyte death, 
suggesting a strong support for an A

3
-dependent 

cardioprotective response including the reduction 
in infarct size, inhibition of apoptosis and 
improvements in postischemic contractile function 
[71]. Moreover A

3
ARs stimulate vascular growth 

acting with A
2B

ARs to promote angiogenesis 
via the expression of angiogenic factors in mast 
cells or stimulate HIF-1a and VEGF expression 
[72]. Transcript levels of A

3
ARs are elevated in 

lung biopsies of patients with asthma or COPD 
where their activation mediated the inhibition of 
eosinophil chemotaxis [73,74]. By contrast, mice 
treated with selective A

3
 antagonists resulted in a 

marked attenuation of pulmonary inflammation, 
reduced eosinophil infiltration into the airways 
and decreased airway mucus production [75]. 

Adenosine is present at high concentrations 
in cancer tissues and in the interstitial fluid of 

several tumors, at concentrations sufficient to 
interact with ARs [31]. A

3
ARs are present in 

different types of tumor cells and are involved in 
the tumor growth and the regulation of the cell 
cycle, and mediate both pro- and anti-apoptotic 
effects closely associated with the level of receptor 
activation [76–78]. A

3
AR density was upregulated 

in colon carcinoma tissues closely correlated to 
the disease severity. In addition, the alteration 
of A

3
ARs reflected a similar behavior shown in 

lymphocytes or neutrophils derived from colon 
cancer patients, suggesting that these receptors 
may represent an interesting biological marker [79].

ARs are present in many cell types including 
platelets, lymphocytes, eosinophils, neutrophils, 
mast cells and macrophages where they mediate 
pro- and anti-inflammatory effects [50,54,80]. 
Several authors have demonstrated that human 
circulating blood cells (platelets, lymphocytes 
and neutrophils) reproduce the same receptor 
alterations known to be at the basis of specific 
diseases mainly in the cardiovascular system 
and CNS [38,49,54,81,82]. As a consequence, 
peripheral blood cells could represent a useful 
and easily available model to monitor receptor 
changes during the course of chronic rheumatic 
inflammatory diseases and to assess the efficacy 
of specific pharmacological treatments [83–85].

Role of adenosine in the control of 
inflammation
Substantial lines of evidence suggest that A

2A
ARs 

are able to mediate the majority of anti-
inflammatory effects of endogenous adenosine 
[86,87]. In particular, the ability of A

2A
AR 

activation to suppress cytokine and chemokine 
expression by immune cells is probably the 
dominant mechanism involved. Expression of 
A

2A
ARs has been found on most inflammatory 

cells, where it exerts various anti-inflammatory 
actions [86]. In neutrophils, adenosine, acting at 
A

2A
ARs, regulates the production of different 

cytokines including TNF-a, macrophage 
inf lammatory protein (MIP)-1a, MIP-1b, 
MIP-2a and MIP-3a [88]. Studies using A

2A
-

knockout models have shown that A
2A

AR 
activation inhibits IL-2 secretion by naive CD4+ 
T cells thereby reducing their proliferation, 
confirming the immunosuppressive effects of A

2A
 

AR stimulation [89,90]. It has also been 
demonstrated that A

2A
ARs play an important 

role in the promotion of wound healing and 
angiogenesis [91]. Adenosine has been reported to 
reduce inflammation in several in vivo models, 
suggesting a potential value of this purine 
nucleoside as a therapeutic mediator of 
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inflammatory joint disease able to limit articular 
cartilage degeneration. In synoviocytes obtained 
from osteoarthritis patients, the activation of 
A

2A
ARs inhibited p38 MAPK and NF-kB 

pathways, as well as the production of TNF-a 
and IL-8 [92]. These results indicate that A

2A
ARs 

may represent a potential target in therapeutic 
modulation of joint inflammation. Activation of 
the A

2A
ARs during reperfusion of various tissues 

has been found to markedly reduce ischemia-
reperfusion injury. In particular, in a model of 
ischemia-reperfusion liver injury, A

2A
AR 

stimulation with the selective agonist ATL146e 
was associated with decreased inflammation and 
profoundly protects mouse liver from injury 
when administered at the time of reperfusion [93]. 
Adenosine, acting at A

2A
ARs, plays an important 

role in the pathogenesis of hepatic fibrosis in 
response to hepatotoxins. In particular, it has 
been demonstrated that A

2A
ARs are expressed on 

human hepatic stellate cell lines and A
2A

AR 
occupancy promotes collagen production by these 
cells. Furthermore, mice lacking A

2A
ARs are 

protected from developing hepatic fibrosis in two 
different hepatic fibrosis models [94]. It is well 
reported that hypoxia-induced accumulation of 
adenosine may represent one of the most 
fundamental and immediate tissue-protecting 
mechanisms, with A

2A
ARs triggering off signals 

in activated immune cells. In these regulatory 
mechanisms, oxygen deprivation and extracellular 
adenosine accumulation serve as ‘reporters’, while 
A

2A
ARs serve as ‘sensors’ of excessive tissue 

damage [95]. The hypoxia-adenosinergic tissue-
protecting mechanism is triggered by 
inf lammatory damage to blood vessels, 
interruption in oxygen supply, low oxygen tension 
(i.e., hypoxia) and by the hypoxia-driven 
accumulation of extracellular adenosine acting via 
immunosuppressive, cAMP-elevating A

2A
 

receptors [96]. Another area where A
2A

ARs 
signaling has received attention as a potential 
therapeutic target is the GI tract. Studies have 
highlighted the protective effects of A

2A
 receptor 

activation in various animal models of colitis, and 
these protective effects can be ascribed to two 
major mechanisms: decrease of inflammatory-cell 
infiltration and function in the mucosa, and 
increased activity of Treg cells [34,89,97]. A

2A
AR 

stimulation was found to attenuate gastric 
mucosal inflammation induced by indomethacin, 
blocking secondary injury due to stomach 
inf lammation through a reduction of 
myeloperoxidase and proinflammatory cytokines 
[98]. Adenosine levels are increased in the lungs of 
individuals with asthma or COPD, and ARs are 

known to be expressed on most, if not all, 
inflammatory and stromal cell types involved in 
the pathogenesis of these diseases [99]. In addition, 
pharmacological treatment of allergic rats with an 
A

2A
AR agonist resulted in diminished pulmonary 

inflammation [100]. A recent study in an ADA-
deficient model demonstrated that genetic 
removal of A

2A
ARs leads to enhanced pulmonary 

inflammation, mucus production and alveolar 
airway destruction [55]. Furthermore, A

2A
ARs 

induced on iNKT and NK cells reduced 
pulmonary inflammation and injury in mice with 
sickle cell disease, improving baseline pulmonary 
function and preventing hypoxia-reoxygenation-
induced exacerbation of pulmonary injury [101]. 
These data further confirm the involvement of 
A

2A
ARs in the anti-inflammatory networks in the 

lung. A study performed in peripheral lung 
parenchyma demonstrated that affinity and/or 
density of adenosine receptors are altered in 
patients with COPD compared with control 
smokers with normal lung function. Moreover, 
there was a significant correlation between the 
density and affinity of adenosine receptors and 
the forced expiratory volume/forced vital capacity 
ratio, an established index of airflow obstruction. 
In particular A

2A
, as well as A

3
ARs, was found to 

be upregulated in COPD patients [80]. This 
alteration may represent a compensatory response 

mechanism and may contribute to the 
anti-inf lammatory effects mediated by the 
stimulation of these receptors. Given the central 
role of inflammation in asthma and COPD, 
substantial preclinical research targeted at 
understanding the function of A

2A
ARs in models 

of airway inflammation has been performed. In 
Phase II trials for COPD the use of an A

2A
AR 

agonist named UK432,097 that was identified as 
an inhaled anti-inflammatory drug without an 
effect on blood pressure was reported with the 
aim to highlight the impressive pedigree of 
A

2A
ARs as a potential anti-inflammatory agent 

[102]. It is well known that the anti-inflammatory 
effect of adenosine is also mediated by the 
activation of A

3
ARs that are present in immune 

cells and involved in the physiopathologic 
regulation of inf lammatory and immune 
processes. Several results from in vitro and in vivo 
studies suggest that the activation of the A

3
ARs 

can be both pro- or anti-inflammatory depending 
on the cell type examined or on the animal species 
considered [103]. Binding and functional studies 
have shown that human neutrophils expressed 
A

3
ARs primarily coupled to the inhibition of 

adenylate cyclase and calcium signaling, 
mediating the inhibition of oxidative burst, 
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representative of anti-inflammatory activity [104]. 
A

3
ARs are also responsible for the inhibition of 

superoxide production and chemotaxis of mouse 
bone marrow neutrophils [105]. It has been 
reported that A

3
ARs are present on human 

eosinophils, coupled to signaling pathways linked 
to cell activation and are able to protect eosinophils 
from apoptosis and inhibit the chemotaxis process 
[76]. The effects produced by A

3
AR activation of 

macrophages seem to indicate an anti-
inflammatory effect of this receptor subtype. In 
particular, A

3
ARs suppressed TNF-a release 

induced by endotoxin CD14 receptor signal 
transduction pathway from human monocytes 
and murine macrophages [38]. A

3
ARs directly 

control histamine release by antigen-stimulated 
mouse mast cells, because the stimulatory effect 
of exogenous adenosine noted in wild-type mast 
cells is not observed in A

3
AR-knockout mast cells 

[106]. Literature data support a role for adenosine 
in dictating dendritic cell function, promoting 
the recruitment of immature dendritic cells to 
sites of inflammation and injury via A

3
AR [107,108]. 

It has been proposed that the anti-inflammatory 
effect elicited by A

3
AR activation could involve 

the inhibition of the PI3K/Akt and NF-kB 
signaling pathways [109,110]. The stimulation of 
A

3
ARs decreased proliferation and exerted a 

cytotoxic and proapoptotic effect on malignant 
mesothelioma cells and on human healthy 
mesothelial cells exposed to asbestos through the 
deregulation of the Akt/NF-kB cell survival 
pathway [111]. The possibility that A

3
ARs plays a 

role in the development of cancer has aroused 
considerable interest in recent years. In particular, 
A

3
ARs were found to be highly expressed in 

tumor cells and tissues but not in normal cells or 
adjacent tissue. Interestingly, high A

3
AR 

expression levels were found in peripheral blood 
mononuclear cells derived from tumor-bearing 
animals and cancer patients, reflecting receptor 
status in the tumors [79,112]. 

Adenosine pathway modulation  
in RA
Several studies have shown the relationship between 
the adenosine pathway and joint inflammation 
in RA in vitro and in vivo [84]. A

1
, A

2A
, A

2B
 and 

A
3
ARs have been characterized, by using binding 

and functional assays, in human synoviocytes 
that represent key cells closely associated to 
articular pathologies [92]. In  vitro stimulation 
of A

2A
 and A

3
ARs has been shown to alter the 

cytokine network by decreasing inflammatory 
cytokine secretion by macrophages. Recently, a 
phosphorylated A

2A
AR agonist was demonstrated 

to be a potent immunosuppressant in a model 
of arthritis acting by an upregulation of CD73 
and A

2A
AR expression [113]. In animal models of 

acute and chronic inflammation, nonselective 
AR antagonists reversed the anti-inflammatory 
effects of MTX. Furthermore, in A

2A
 and 

A
3
ARs-deficient mice, MTX failed to suppress 

inf lammation in the air-pouch model, thus 
suggesting the pivotal role of these AR subtypes in 
triggering an anti-inflammatory pathway in RA 
[91,114]. Studies on knockout animals have shown 
evidence that adenosine acting A

2A
 and A

3
ARs 

mediates the anti-inflammatory effects of low-
dose MTX. In adjuvant-induced arthritis in rats 
and in peripheral blood mononuclear cells from 
RA patients, MTX treatment has been shown to 
enhance the anti-inflammatory effects of typical 
A

3
AR agonists via an upregulation of A

3
AR 

expression. In RA patients, the overexpression 
of A

3
ARs has been directly correlated with high 

levels of pro-inflammatory cytokines acting via 
upregulation of NF-kB [115–118]. Recently, it has 
been proposed that synovial tissue expresses 
ARs and there is a relationship between MTX 
exposure and adenosine receptor expression 
within the synovium [119]. Besides, among 
the theories about the mechanism of action of 
MTX, the primary anti-inflammatory action is 
attributable to adenosine release. MTX increases 
levels of adenosine, via inhibition of amino-
imidazolo-carbossi-adenosine-ribonucleoside 
(AICAR) transformylase enzyme. The net effect 
of AICAR accumulation is a rise in intracellular 
AMP and adenosine levels [120]. 

Atherosclerosis is another interesting topic 
in which we can find correlations between 
RA and adenosine. RA patients have an 
increased mortality secondary to an increased 
atherosclerosis due to chronic inflammation 
and chronic steroid therapy. Adenosine pathway 
and MTX are involved in the atherogenesis. 
MTX, via adenosine, acting upon the A

2A
ARs 

and A
3
ARs produces an increased expression of 

important molecules of the reverse cholesterol 
transport system, a basic cholesterol homeostatic 
mechanism [121]. There are interesting data about 
A

2B
ARs and the regulation of atherosclerosis 

in a mice model but, certainly, we are a long 
way from using these agents for protection of 
atherogenenesis [122]. The overexpression of 
A

3
ARs in RA was directly correlated to high 

levels of proinflammatory cytokines acting via an 
upregulation of NF-kB, which is a key player in 
the pathogenesis of arthritis diseases [117]. In RA 
patients, adenosine suppressed the elevated levels 
of proinflammatory cytokines such as TNF-a 
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and IL-1b [123]. Recently it has been shown that 
A

2A 
and

 
A

3
ARs are upregulated in untreated 

RA patients and in MTX-treated RA patients. 
Treatment with anti-TNF-a normalized A

2A 

and
 
A

3
ARs expression and functionality [83]. It 

has been reported that A
3
AR agonists prevented 

cartilage damage, osteoclast/osteophyte 
formation, bone destruction and markedly 
reduced pannus formation and lymphocyte 
formation [124]. The A

3
ARs was also identified 

as a novel anti-inf lammatory target that is 
upregulated in RA, psoriasis and Crohn’s disease, 
if compared with healthy subjects it is associated 
with an altered PI3K-PKB/Akt signaling pathway 
and NF-kB activation [125]. The findings showing 
A

2A
ARs and A

3
ARs upregulation in RA patients 

suggest the utilization of these receptors as 
therapeutic targets, modulating them with 
specific and well-known agonists (Table  2). 
Clinical evidence in RA patients shows that A

3
AR 

agonist pharmacological treatment modulates 
an improvement in signs and symptoms [117]. 
In regard to A

3
ARs, there are data from animal 

models, healthy subjects (Phase I studies) and RA 
patients (Phase II studies). Upon oral treatment 
with the selective A

3
AR agonist named CF101 

the disease was ameliorated and a marked 
decrease in clinical manifestations was recorded. 

CF101 treatment reduced inflammation, pannus 
formation, cartilage destruction and bone 
resorption and lyses [126]. In a Phase I study in 
healthy subjects, CF101 was found to be safe 
and well tolerated with a linear pharmacokinetic 
activity [127]. In a Phase IIa study in RA patients, 
CF101 oral administration twice daily for 
12 weeks was shown to be safe, well tolerated 
and able to mediate an improvement of disease 
signs and symptoms, suggesting the development 
of these type of drugs as antirheumatic agents. 
Interestingly, the expression level of A

3
ARs at 

baseline was directly correlated with the high 
grade of efficacy, suggesting its use as a biomarker 
for the pharmacodynamic and therapeutic effects 
of this novel agent [116,117]. The anti-inflammatory 
effect of A

3
AR was also shown in fibroblast-like 

synoviocytes derived from synovial fluid of RA 
patients [109]. In particular, the effect of a novel 
A

3
AR agonist, CF502, with high human A

3
AR 

affinity and selectivity is now under investigation. 
CF502 induces a dose-dependent inhibitory effect 
on the proliferation of fibroblast-like synoviocytes 
via deregulation of the NF-kB signaling pathway. 
Furthermore, CF502 markedly suppresses the 
clinical and pathological manifestations of 
adjuvant-induced arthritis in a rat experimental 
model. Other data have shown that the use of A

2A 

Table 2. Adenosine receptors as an effectiveness target for treatment of rheumatoid arthritis: published 
experience.

Study (year) Pharmacological target Type of study Summary Ref.

Fishman et al. 
(2006)

A
3
AR agonist 

(CI-IB-MECA-CF101)
Animal model A

3
AR stimulation exerted a potent anti-inflammatory effect 

manifested in the improvement of the disease clinical and 
histopathological score (ten rats treated for 14 days)

[118]

Ochaion et al. 
(2006)

A
3
AR agonist 

(CI-IB-MECA-CF101)
Animal model MTX induces increased A

3
AR expression and potentiated the 

inhibitory effect of CF101 supporting combined use of these 
drugs to treat RA (ten rats treated for 25 days)

[115]

Ochaion et al. 
(2008)

A
3
AR agonist 

(MRS3558-CF502)
Animal model CF502 inhibited fibroblast-like synoviocyte growth and the 

inflammatory manifestations of arthritis, supporting the 
development of A

3
AR agonists for the treatment of RA (30 rats 

treated for 14 days)

[109]

Bitto et al. 
(2011)

A
2A

AR agonist (PDRN) Animal model PDRN ameliorated clinical signs of arthritis, improved histologic 
damage and reduced the cartilage expression of proinflammatory 
mediators (14 mice treated for 24 days)

[128]

Flögel et al. 
(2012)

A
2A

AR agonist
(chet-AMP)

Animal model Phosphorylated A
2A

AR agonists may serve as a promising new 
group of drugs for targeted immunotherapy of inflammation

[113]

van 
Troostenburg 
et al. (2004)

A
3
AR agonist 

(CI-IB-MECA-CF101)
Phase I (healthy 
subjects)

CF101 was safe and well tolerated in healthy subjects (parallel 
group, ascending dose, double-blind and placebo-controlled trial, 
15 healthy men for a single dose, 28 healthy men for a repeated 
dose for 7 days)

[127]

Silverman et al. 
(2008)

A
3
AR agonist 

(CI-IB-MECA-CF101)
Phase IIa 
(patients)

CF101 administered to 50 patients for 12 weeks resulted in 
improvement in signs and symptoms of RA (parallel groups, dose 
finding trial)

[117]

AR: Adenosine receptor; MTX: Methotrexate; PDRN: �Polydeoxyribonucleotide; RA: Rheumatoid arthritis.
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Executive summary

�� Rheumatoid arthritis (RA) is a chronic, progressive and disabling inflammatory disease characterized by a joint destructive process 
associated with synovial proliferation and secretion of high levels of proinflammatory mediators including cytokines, metalloproteases 
and growth factors.

�� It is widely accepted that RA must be treated early with effective therapy in order to prevent unfavorable outcome and disability. 

�� In the last 15 years, the therapeutic approach has undergone a series of innovative impulses directed towards an earlier and more 
aggressive treatment with a good efficacy. 

�� Since many patients show an inadequate response or develop side effects, researchers are always looking for new targets of therapy in 
the setting of RA. Exploration of adenosine mechanism revealed adenosine receptors as a potentially useful target of therapy in RA. 

�� Adenosine receptors are upregulated in active RA and stimulation of A
2A

 and/or A
3
 adenosine receptors mediated a reduction of 

inflammation via nuclear factor-kB signaling pathway and a decrease of proinflammatory cytokines. Although it is very early to include 
this target in the therapeutics and we are along way from using these agents, experimental data with A

2A 
and A

3
 adenosine receptors 

agonists could suggest the development of a novel treatment for RA based on adenosine receptor modulation inducing a marked 
anti-inflammatory effect. 

and A
3
AR agonists significantly reduces NF-kB 

levels and inhibits IL-1b, IL-6 and TNF-a 
release in mononuclear cells from peripheral 
blood samples of RA patients [85], suggesting the 
involvement of these ARs in the modulation of 
inflammatory response. It has also been found 
that the production of metalloproteinase (MMP) 
1 and 3 was inhibited by A

2A
 or A

3
AR agonists 

in RA patients more than in healthy controls, 
demonstrating the direct involvement of the 
adenosine receptor subtypes in the mechanism 
regulating joint damage in RA [85]. An inverse 
correlation between DAS and A

2A
ARs and A

3
ARs 

density was recently found, suggesting that an 
endogeneous activation of these ARs could 
attenuate the disease [85]. Thus, A

2A
 and A

3
ARs 

upregulation in RA can be seen as a compensatory 
mechanism to better counteract the inflammatory 
status. The A

2A
ARs modulation was investigated 

in an animal model where the administration of 
a homemade agonist significantly attenuated the 
development of arthritis and reduced the signs of 
the disease [128]. 

Future perspective
The role of adenosine in the modulation of 
chronic inflammation has been appreciated only 

in recent years. Interestingly, an overexpressed 
endogenous anti-inflammatory pathway may be a 
potential target therapy in RA. As a consequence, 
A

2A
 and A

3
ARs agonists may represent a novel 

pharmacological treatment alone or in combination 
with traditional therapy, such as MTX. In the 
future, more preclinical and clinical studies are 
warranted to investigate the effect of selective A

2A
 

and A
3
ARs agonists in RA in order to translate 

these important findings into valuable benefits for 
RA patients. Adenosine pathway modulation may 
one day find its place in the therapeutic setting, 
especially in patients who are not fully responsive, 
at first as combination therapy, to obtain a more 
complete anti-inf lammatory and, why not, 
atheroprotective effect. 
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