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Our improving understanding of disease biology has reinforced the idea that many 
diseases are heterogeneous collections with different causal mechanisms. As such, the 
biomedical field has focused on developing targeted therapies, effective in only some 
subset of the population with a given disease. However, characterizing these subsets 
has been a challenge – often there is insufficient information until well into large-
scale trials. In this manuscript, we will discuss adaptive enrichment designs: clinical 
trial designs that allow the simultaneous construction and use of biomarkers, during 
an ongoing trial. We detail three common scenarios where adaptive enrichment 
designs can be much more effective than classical designs. We discuss which adaptive 
strategies are most applicable in each scenario.
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Classically, for any given disease, therapeu-
tics have been developed with the intent to 
treat the entire population with that dis-
ease. This has been extremely successful in 
the past: broad spectrum antibiotics have 
nearly eliminated deaths from many bac-
terial infections; prednisone and immune-
suppressants brought hope to many 
autoimmune conditions; chemotherapy has 
been key to eliminating traces of cancer.

However, there are many cases for which 
this approach has been unsuccessful. We 
have come to understand that each of these 
diseases is not a homogeneous collection 
of cases with identical underlying biology. 
Instead, we have heterogeneous collections 
that manifest in phenotypically similar 
ways, but with different causal mechanisms 
and different protective mutations. As such, 
we cannot hope to successfully treat all 
patients with the same therapy [1–3].

To combat this, we have begun to create 
targeted therapeutics with which we only 
intend to treat a subset of the diseased popu-
lation. Here, in addition to developing ther-
apeutics, we must also develop companion 
biomarkers to inform our treatment 

decisions. Targeting has seen some amaz-
ing success stories: Herceptin [4,5] / Tamoxi-
fen [6] for HER-2/ER positive breast cancer, 
Vemurafenib [7] for melanoma with certain 
B-Raf mutations, Cetuximab [8] for colon 
cancer without mutant KRAS, among 
others [9–12].

The development of these targeted drugs 
and companion biomarkers has raised new 
questions in clinical trial design [13,14]. When 
our biomarker is not a clear binary variable, 
how do we select a cutoff? How do we select 
from and/or combine several candidate 
biomarkers? When must these decisions be 
made? (Before Phase I? After Phase II? Or 
perhaps even during Phase III?) Is there an 
efficient way to run a clinical trial which can 
both test overall efficacy and search for the 
subset of patients driving that efficacy?

In this manuscript, we will give an over-
view of what has been done to tackle this 
problem. We will discuss approaches for 
three common scenarios. We will also 
talk about open challenges related to these 
designs that may limit their effectiveness, 
and directions of attack that we believe one 
might take to address these challenges.
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Before we continue we would like to draw a dis-
tinction. There are many different flavors of ‘Adaptive 
Clinical Trial Design.’ Adaptive enrichment designs 
are those that use adaptation to best find the subgroup 
of patients who will benefit from a treatment (over 
control). These are randomized designs that look to 
inform us on treating future patients. This is in con-
trast to adaptive designs that adjust randomization 
ratios (often away from control) to most effectively 
treat patients during a trial [15,16]. For very rare diseases 
(where nearly all patients with the disease are actually 
enrolled in the trial) or extremely effective treatments, 
these adaptive randomization designs may be an ethi-
cal necessity, however, this adaptive randomization 
can significantly decrease power to detect a significant 
effect [17]. In contrast, adaptive enrichment designs 
may vastly increase power, especially when only a small 
subset of patients drive treatment response. In this 
manuscript, we discuss adaptive enrichment designs.

Enrichment designs
In an ideal scenario, before we begin our pivotal 
Phase III trial we have a strong characterization of our 
target population (those we believe will benefit from 
treatment). In particular, I mean we have a reproduc-
ible assay, and a rule, based on this assay, which we can 
use to determine who we believe will benefit from treat-
ment. Potential biomarkers include, but are not limited 
to, disease histology, mutation status, expression of vari-
ous genes or proteins, or epigenetic abnormalities. When 
we do have a strong characterization of this population 
before Phase III trials we should employ an enrichment 
design [18–20]. Rather than enrolling all diseased patients 
into the trial (provided they meet the usual broad enroll-
ment criteria; for example, sick enough but not too sick, 
etc.), we instead assay potential patients, and enroll 
only those our biomarker indicates will benefit. Once 
enrolled these patients are still randomized to treatment 
and control. By choosing not to enroll patients who 
will clearly not benefit we improve in two ways: first, 
we estimate efficacy of treatment for only our intended 
treatment population, and second, we run a more effec-
tive clinical trial. Enrolling patients who clearly will not 
benefit would decrease our effective sample size and add 
additional noise to our estimates [21].

Unfortunately, we often only have a broadly charac-
terized target population entering Phase III trials. We 
may have a biological rationale and some experimen-
tal evidence for a candidate biomarker, however, we 
generally do not have strong evidence of its predictive 
strength in humans. In addition, even if we have an 
assay which we strongly believe is related to the effec-
tiveness of treatment, we often still have questions: if 
the assay is continuous, what is the optimal cut point 

for treating versus not? If the marker is categorical (say 
different mutations on a gene of interest), we may be 
interested in which categories the drug is effective for. 
In these cases we may not want to restrict enrollment 
too heavily at the beginning of our trial. However, as 
the trial progresses and we gain more information we 
may be able to use that information to address some 
of these questions and better characterize our target 
population. As we have a more complete characteriza-
tion, we may decide to use it to restrict enrollment and 
enrich the population in our trial. We call designs of 
this nature adaptive enrichment designs.

What is done in practice?
Before we discuss adaptive enrichment, let us briefly 
touch on the nonadaptive designs that are currently 
used when the intended treatment population is not 
well characterized (and so enrichment cannot be used 
at the beginning of the trial). In these cases, a carefully 
prespecified analysis strategy is necessary to form sci-
entifically valid conclusions [22–26]. In these nonenrich-
ment designs, no special restriction is placed on enroll-
ment. Generally the type 1 error allowance is split 
between testing for a full population effect, and a sub-
group effect using a prespecified rule (a 0.04/0.01 split 
is common). There are two main approaches to speci-
fication and testing of the candidate subgroup: first, a 
best guess is made based on data available before the 
trial (often quite arbitrary); second, sample splitting is 
used to characterize the subgroup in a ‘training’ sam-
ple and evaluate that subgroup in a ‘test’ sample [27–29]. 
This second method is more flexible and still provides 
control of the type 1 error.

These nonadaptive designs all have a potential sig-
nificant downside: if it turns out that the target popu-
lation is only a small fraction of the enrolled population 
then the trial will have correspondingly low power. A 
test of overall efficacy will suffer from the noise added 
by a large number of patients for whom treatment has 
no effect and a subgroup test (even with a correctly 
characterized subgroup) will likely have too small a 
sample size to find significance.

Adaptive enrichment
Adaptive enrichment designs allow us to use data from 
a trial in progress to update eligibility criteria and adap-
tively enrich the enrolled population. This flexibility 
alleviates issues from nonadaptive designs. Rather 
than making potentially underinformed decisions 
about enrollment criteria before a trial begins or wait-
ing until the end of the trial and only using a subset of 
the data, adaptive enrichment designs allow the enroll-
ment criteria to organically evolve – as we improve our 
characterization of the target population, we update 
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our enrollment criteria. By using these designs we can 
increase power without increasing sample size. It is 
not difficult to find reasonable scenarios where adap-
tive enrichment can increase power 10–20% over 
a traditional fixed design in the presence of a strong 
biomarker.

I will discuss three common scenarios, in which 
adaptive enrichment may be beneficial, and strategies 
in these scenarios.

Single categorical biomarker
Some candidate biomarkers are naturally categorical. 
One example is disease histology. Another is muta-
tion status on a gene or pathway of interest – while 
we may know dysregulation of a specific pathway is 
implicated in a subgroup of diseased patients (and 
targeted in our treatment), the exact mechanism may 
be unknown. To explore, one might want to consider 
groups characterized by several different mutations in 
that same pathway.

This categorical variable defines strata for our 
patients. One, more classical, nonadaptive approach 
would be to run a separate clinical trial on each stra-
tum [30,31]. Within each stratum, patients would be 
randomized to treatment and control. At the end of the 
trial a significance test would be run on each stratum 
and after adjusting for multiple testing [32,33], we would 
call the drug effective on each stratum for which there 
was a statistically significant effect.

The upside here is that the analysis is straight-
forward and labeling is quite simple – the intended 
treatment population is just those strata for which 
we found significance. The downside is that infor-
mation cannot easily be shared between these trials, 
which may decrease efficiency. In addition, one may 
be interested in an overall test of efficacy (is the treat-
ment effective on average in the general population? 
and/or does there exist some subpopulation for which 
the treatment is effective?), and these questions are less 
natural to answer in this framework.

This approach can be improved using adaptation. 
The main strategy here is to run a group sequential 
trial and to potentially drop strata at interim analyses: 
as treatment reveals itself to be ineffective in certain 
strata, patients from those strata are no longer recruited 
for the trial [34–39]. Or, in the case of multitreatment 
trials, after an interim analysis, patients in different 
strata are preferentially randomized to treatments 
which appear to be more effective for them. Two large-
trial examples, the I-SPY-2 and BATTLE trials [40,41], 
use Bayesian methods to update these randomization 
ratios. These Bayesian methods can be quite effec-
tive at selecting the most effective treatment for each 
stratum [42], however, they often do not provide a 

robust test of no-treatment-effect that can strongly 
control type 1 error. This was not as large an issue for 
the I-SPY-2 or BATTLE trials because the purpose was 
to select from already approved drugs.

Single continuous biomarker with unknown 
cut point
Another common scenario is to have a single continu-
ous candidate biomarker, perhaps expression of a single 
surface protein, or of an inflammatory cytokine, which 
we believe characterizes our population. However, we 
are often uncertain of the cutoff to use for prescrib-
ing treatment. There are generally two questions: is 
there some cutoff above which treatment is more effec-
tive than standard of care? If so, what is that cutoff? 
Sometimes the first question is roughly answered in 
the affirmative in Phase I/II trials, but rarely are those 
trials sized to give an accurate estimate of the cutoff.

One approach to this problem is to break our con-
tinuous biomarker into several predetermined discrete 
categories. This moves us back to the regime of a cat-
egorical biomarker. There are several downsides to 
this approach. First, it does not leverage the ordering 
of the categories: suppose we expect higher expression 
levels to benefit more from treatment. If we observe a 
very significant effect in the medium-expression stra-
tum and a more marginal effect in the high-expression 
stratum, we might like to incorporate our prior expec-
tation and reject both; however, the simple stratified 
approach will not accomplish this (there are some 
stratified designs that allow for this ‘nesting’ how-
ever [36]). The second issue is that we need to a priori 
choose our strata. If the true cut point should lie in 
the middle of a stratum, we lose efficiency, as we can-
not adjust the stratum definitions at interim analyses. 
There are approaches (generally combined Phase II/III 
trials) that attempt to alleviate this by allowing one to 
adaptively update hypotheses [43–46]

As an alternative approach we consider the work 
in [47]. They give a general block-sequential framework 
for testing that can be applied to this unknown cut-
point context. The philosophy they use is markedly dif-
ferent from what is done in the stratum-based approach. 
In contrast, we will refer to this as the Simon block-
sequential design (or Simon design). We will take this 
opportunity to go into their approach in more detail.

The Simon block-sequential approach
In the Simon design, patients are enrolled in blocks, 
however there are no predefined strata. Instead, after 
each block an attempt is made to characterize patients 
who do not benefit from treatment. The enrollment 
criteria are then changed to exclude those patients from 
being enrolled in future blocks of the trial. At the end 
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of the trial, a single hypothesis test is run. It tests the 
single null hypothesis: there exists no subgroup for 
which treatment is more effective than control. This 
is different than the null hypothesis in a stratified 
design; there we test for treatment effect in predefined 
strata: we generally test a set of null hypotheses, one 
for each stratum stating, ‘In this stratum, treatment 
is no more effective than control.’ Because the Simon 
design has no predefined strata, it must test a stronger 
null hypothesis.

In the first block of the Simon design, patients are 
enrolled without restriction. This allows an initial esti-
mate of response as a function of our features in both 
treatment and control groups. These models allow us 
to begin to characterize our target population: given 
any new patient, we can estimate his/her response on 
both treatment and control using the corresponding 
model we built. Assuming no toxicity, this patient will 
be in our estimated target population if our model pre-
dicts better response on treatment than on control; if 
the new treatment has some toxicity we may set the bar 
higher and require some minimum level of estimated 
response difference.

We use our estimated response models on treat-
ment and control to update our enrollment criteria 
for the second block. However, we must take into 
account that our estimated target population is only 
an estimate, and if the number of patients in the first 
block is small, the estimate may be poor. Thus, rather 
than only enrolling patients we predict to benefit from 
treatment in the second block, we may instead use a 
lower bar, and enroll all patients except those who we 
have strong evidence do not benefit from treatment. 
The Simon design as discussed in the original paper 
is quite general and does not give details on how one 
might make the choice in practice. One straight-
forward approach is to run a statistical test for each 
potential new patient: this test would check to see if 
the patient’s expected response on treatment is sig-
nificantly worse than expected response on control. 
This is a conservative approach – we only exclude 
those patients who we have strong evidence do not 
benefit. This conservatism protects us against being 
too adaptive: if we restrict our enrollment criteria too 
quickly without strong evidence, we may miss the tar-
get population altogether and fail a drug that should 
have been successful. Even in less extreme cases, we 
may successfully reject the null and bring the drug to 
market, but badly overcharacterize the target popula-
tion, and indicate the drug for only a small subset of 
the patients for whom it truly benefits.

At the end of the second block, we again update our 
two models and use these updated models to restrict 
enrollment in the third block. This continues until the 

end of the trial. At the conclusion of the trial we run a 
global test to see if there is a subpopulation that ben-
efits from treatment. This global test is quite simple; 
we calculate a two-sample t-statistic in each block and 
then consider the weighted sum (with prespecified 
weights) to a normal distribution.

The main downside of this approach, as opposed to 
the stratified design, is that when the null is rejected in 
the Simon design one may not have significance for any 
specific subpopulation. In particular, it may be difficult 
to make a labeling recommendation as the enrolled 
population changes after each block. One potential 
recommendation for the indicated population in a suc-
cessful trial is to use the population characterized by 
the enrollment criterion of the final stage of the trial. 
The upside of the Simon approach is that it allows the 
characterization of those patients who do not benefit 
to be constructed quite generally. This characteriza-
tion can be accomplished by building/updating sta-
tistical models for response on treatment and control 
after each block. By comparing estimated response 
between these models for a given biomarker level, one 
can determine whether a new patient is estimated to 
benefit from treatment (or one can check if the patient 
is significantly unlikely to benefit). Unlike standard 
stratified designs, this modeling approach allows more 
flexible, data-adaptive enrichment.

Another downside is that we may inappropriately 
restrict enrollment in the trial. In cases where treatment 
is globally (or near globally) effective, what we observe 
at interim analyses will just be the play of chance. 
Though excluding patients will not affect our power, 
if the trial is successful, those excluded patients who 
could benefit from treatment will not be indicated for 
it. If we adapt too aggressively, we run a higher risk of 
excluding patients who could benefit. Though, if we 
are too conservative, in scenarios where only a subset 
truly benefit from treatment, we will run a less power-
ful trial. In designing the trial we must make sure to 
explore our operating characteristics to balance these 
two scenarios. Ideally, from prior data we can make 
an educated guess about which scenario is more likely. 
In defense of the adaptive enrichment trial, while a 
successful adaptive enrichment trial may still exclude 
some patients from receiving the drug who could have 
benefitted, a failed classical trial will exclude all patients 
who could have benefitted from receiving the drug.

Unknown cut point revisited
Let us return to our example of a single continuous bio-
marker with an unknown cut point. Using the Simon 
design one might model the difference between response 
probability on treatment and control as a monotone 
function. The point at which the true function crosses 
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0 is the optimal cut point. As blocks of patients are 
enrolled, treated, and outcomes are measured, we can 
build and update an estimate of that monotone func-
tion. We can enrich the enrollment population by 
restricting enrollment to only those patients with bio-
marker values for which this estimated response differ-
ence is sufficiently large. ‘Sufficiently large’ will take 
on different meanings based on how aggressively we 
plan to restrict enrollment: it may mean greater than 
or equal to 0, or not so negative as to be statistically 
significantly different from 0. More specifics on this 
approach are included in the original manuscript [47].

Multidimensional biomarkers/combining 
multiple candidate biomarkers
The final scenario involves attempting to combine 
multiple sources of information into a single rule that 
characterizes the target population. These sources 
might be the expression of multiple genes [48–50] or 
proteins. The characterization might also combine dif-
ferent data-types like mutation status and epigenetic 
features (e.g., transcription factor binding or meth-
ylation in a nearby genetic region). Though the term 
‘biomarker’ is often used to refer to each individual 
source of information, we will use it here to refer to the 
‘rule’ that combines them all. This is the most general 
scenario, and in many ways the most difficult.

Stratification is only an option when we have a 
very modest number of potential features (one, two, 
or perhaps three). Where before, a small number of 
strata could capture the variability of the biomarker, 
here to allow for all possible configurations of the bio-
marker, we would need an impractically large number 
of strata. For example, with five candidate genes, even 
if we only consider ‘high’- and ‘low’-expression groups 
for each gene, in order to have a stratum for each pos-
sible configuration we need 2^5 = 32 strata.

The Simon design sidesteps these issues. In this 
design, one models the response on treatment and con-
trol arms separately as a function of the covariates. For 
continuous response, one might use a standard linear 
model; for binary response, a logistic model; and for 
time-to-event data, a Cox proportional hazards model. 
One caveat with time-to-event data is that one must 
make sure to model the baseline hazard as the same 
for treatment and control. Using strata is analogous to 
considering a model with all possible interactions (of 
all orders). In even moderate dimensional problems 
this is infeasible; statistics has long relied on linear 
or additive models as feasible alternatives. The Simon 
design allows this same option. One should note, 
however, that the validity of the hypothesis test in the 
Simon design does not rely on the correctness (or even 
approximate correctness) of those models.

Issues, solutions & open questions
Now that we have detailed approaches in some com-
mon scenarios, we will discuss additional issues that 
arise in employing adaptive enrichment designs. For 
some of these issues we will also mention solutions; 
others are still open questions.

Treatment Indication
Stratified designs, when applicable, have no ambigu-
ity in the indicated population. One just identifies 
the estimated target population as the set of strata for 
which we have found a significant treatment effect: 
treatment has shown an average positive effect over 
control in those strata.

In the Simon design, it can be a bit more compli-
cated. The enrollment population changes after each 
block. The simplest strategy is to use the estimated 
target population after the last block (the population 
for which our estimated treatment model predicts a 
better response than our estimated control model) as 
the target population to indicate in the label. One crit-
icism of the Simon approach is that it does not test for 
significance in this particular subpopulation. Even if 
the null hypothesis is rejected, it does not technically 
tell us anything about the population we are indicat-
ing for treatment – we have not formally tested that 
the indicated population benefits on average. This 
criticism is not without merit. However for most any 
sane model used to estimate the target population, 
if one rejects the overall null hypothesis (and finds 
that there is some subpopulation which benefits), the 
estimated target population will generally also show 
benefit. However, an extension to the Simon design 
that allows a formal test in the indicated population 
would be a welcome contribution.

A somewhat symmetric criticism can be applied to 
classical designs. There we test for overall treatment 
efficacy ignoring any potential biomarkers. When we 
do find a significant treatment effect, this is often 
driven by a small subset of patients for whom treat-
ment is effective. In a classical trial, however, we have 
not characterized that subset, so rather than trying 
to target treatment at all, we indicate it for the entire 
population, incorrectly treating many patients! At 
least with these adaptive designs, we give ourselves 
the opportunity to characterize the subpopulation. 
That said in a traditional trial, we do have a formal 
statistical test showing that on average treatment 
benefits our indicated population (in that case the 
entire diseased population). In the Simon adaptive 
design, though there is strong evidence that treat-
ment benefits the indicated population, a formal sta-
tistical test was not run on that hypothesis – because 
of how the enrolled population changes in each 
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block, we only have a formal statistical test to show 
that some subpopulation benefits rather than a for-
mal test to show that the indicated subpopulation 
benefits on average.

Estimating treatment effect size
In both the stratified and model-based designs, there 
are difficulties with estimating the size of the treat-
ment effect in the target population. In stratified 
designs, there is an obvious selection bias because 
we select as significant exactly those strata with the 
largest observed effect. By making our selection and 
inference using the same estimates we induce a bias 
– without some correction, our estimated effect sizes 
will on average be too large. While we already cor-
rected for this multiplicity in testing, we must also 
correct for it in estimation. There is a recently pro-
posed bootstrap method to remove the bias from 
these estimates and form corrected confidence inter-
vals [38]. In many cases however, the problem will not 
be as bad as one might fear. If the number of strata 
is small, and the effect-size estimates are relatively 
spread out (in relation to their estimated variabil-
ity), selection bias is not a major issue. In addition, 
designs that drop arms which do not meet prespeci-
fied efficacy thresholds at interim analyses suffer less 
from selection bias than those designs that select 
the one subgroup with largest observed treatment 
benefit. The degree to which a proposed design pro-
duces bias can and should be explored via simulation 
(as an operating characteristic) before the design is 
employed.

In the Simon design, selection bias is also an issue. 
Estimating effect size on the target population by 
simply taking our constructed models and averag-
ing the difference between treatment and control 
response on that target region (the region where 
the estimated treatment response is greater than 
control response) has a similar issue as in the strati-
fied approach. Because the models were used both 
for selecting the target population and estimating 
effect size, there is an upward bias in that estimate. 
One possible remedy is to estimate effect size on the 
target population without the model using patients 
from the final block of the trial. The estimate, based 
on this block, is just the response difference between 
the average response of treated patients and control 
patients in this block. This effectively removes the 
bias from selection; however, because our estimate 
is now based on only a small proportion of our 
sample, we will substantially increase our variance. 
In this flexible framework, a good solution for 
estimating treatment effect size would be a welcome 
contribution.

Updating enrollment criteria
Choosing a strategy to drop strata, or more generally a 
strategy to update the enrollment criteria of our trial, 
can be difficult. In stratified examples, there are several 
proposed options [34–38,51]. Generally, these involve a 
comparison of t-tests among our strata, and in the entire 
population at interim analysis points. For the more 
general model-based design this decision is still open. 
In [47], the authors give a recommendation in the case of 
a single univariate marker with unknown cut point, but 
no specific recommendation is given in the more gen-
eral setting. Two suggestions were mentioned in ‘The 
Simon block-sequential approach’ section of this manu-
script (using the current estimated target population; 
restricting enrollment of patients for whom a statistical 
test indicated a significant negative treatment effect). 
In practice, one should decide on the approach to use 
by considering its operating characteristics (e.g., power, 
specificity and sensitivity of the final estimated target 
population). These operating characteristics can be 
calculated via Monte-Carlo by simulating trials using 
different enrollment update rules. The data-generating 
models in these simulations should explore the range 
of effect sizes and target populations where research-
ers believe the truth might lie. More work needs to be 
done on developing optimality criteria (based on these 
operating characteristics) and on identifying optimal 
enrollment rules for these criteria.

Accrual time
Another critique of these adaptive designs is that by 
restricting our enrollment population we will increase 
the total amount of time it takes to run the trial. For 
example, if our target population is only 10% of the 
total population then accrual could take up to 10 
times as long. While this criticism is accurate, there 
are two caveats. First, this adaptive enrichment design 
will increase accrual time by no more than an enrich-
ment design (without adaptation) would. Second, in 
many cases, to achieve equivalent power to an adap-
tive enrichment design a standard design would need 
to enroll many more patients. In fact, often the num-
ber of additional patients needed is so extreme that the 
nonadaptive design would have a longer accrual time 
to attain the same power. This is also detailed in [47].

Discussion
In this manuscript, we have discussed several flavors of 
adaptive enrichment designs. We have detailed two gen-
eral design strategies: stratification and strata-free model-
based designs. We also discussed how these designs could 
be applied to three common biomarker scenarios: a cat-
egorical biomarker, a univariate continuous marker with 
an unknown cut point, or a more general multivariate 
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marker. The stratified approach is best suited to the cat-
egorical scenario, though it can also be effective in deter-
mining the cut point for a univariate continuous marker. 
The strata-free approach is applicable in all scenarios but 
really shines for building general multivariate markers.

In addition, we have mentioned several criticisms. 
There are issues with determining treatment indication 
and estimating treatment effect size in the indicated 
population. There are also questions about strategies 
to make optimal decisions for updating the enroll-
ment criteria in these adaptive trials. Finally, there is 
a concern about increased accrual time for strategies 
that exclude a large proportion of patients. We have 
addressed these concerns to varying degrees. Some of 
these questions are still very open (such as how to make 
enrollment decisions). Other concerns are relatively 
settled (e.g., accrual time: for a given power accrual 
time is often larger in nonadaptive trials).

With our increasing interest in the development 
of targeted therapies and their companion bio-
markers, there is a growing need for trials that can 
simultaneously validate the efficacy of both treat-
ment and biomarker. In addition, given the general 
difficulty we have characterizing the target popula-
tion before large-scale trials, there is a large space for 
adaptive enrichment designs, which can both build 
and validate a biomarker in the same trial. This 

manuscript has discussed recent approaches for, and 
open issues in, addressing this challenge.

Future perspective
As we continue to grow our understanding of disease 
biology, biomarkers will only become more impor-
tant in informing effective treatment decisions. For 
some blockbuster drugs, the target indication will 
be clear from the outset and these designs will be 
unnecessary. However, by and large medicine is a 
game of incremental improvement; there will con-
tinue to be uncertainty in the efficacy of new drugs, 
and there will similarly be uncertainty in their tar-
get populations. This will continue the trend of a 
growing demand for adaptive enrichment designs; in 
particular, designs that balance trial efficiency, ease 
of interpretation and administrative burden.
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Executive summary

•	 Adaptive enrichment designs can substantially increase power for targeted drugs for which the target 
population is inexactly characterized at the start of the Phase III trial

•	 There are two general classes of adaptive enrichment designs: strata-based or model-based (Simon design).
•	 For simple categorical biomarkers, strata-based designs are effective; for multivariate biomarkers, 

model-based designs are more effective. For univariate continuous biomarkers each choice has pros and cons.
•	 For model-based adaptive enrichment designs (the Simon design) care needs to be taken in interpreting what 

it means to reject the null in a successful trial.
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