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Accelerating endothelialization of 
coronary stents by capturing circulating 
endothelial progenitor cells

  Device evaluation

Drug-eluting stents (DES) have become the standard of care for the treatment of coronary artery disease. 
However, late stent thrombosis has emerged as a major concern, especially in ‘off-label’ use. Pathologic 
studies of patients dying from late DES thrombosis demonstrate delayed arterial healing, characterized 
by persistent fibrin deposition and poor endothelialization. In recent years, a novel prohealing device was 
developed that captures circulating endothelial progenitor cells (EPCs) by immobilized antihuman-CD34 
antibody as a surface coating. EPCs have the ability to migrate to areas of vascular injury and aid in the 
regeneration of damaged and dysfunctional endothelium. Preclinical results of the EPC-capture stent have 
shown promise in accelerating endothelialization as compared with bare metal and DES. Clinically, the 
safety and efficacy of the EPC-capture stent has been proven in numerous clinical trials with low incidence 
of late stent thrombosis. In this article, we discuss the relevance of the EPC-capture technology and the 
significance of current preclinical and clinical studies.
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Over the past few decades, percutaneous inter-
ventions have emerged as the preferred treatment 
of choice for coronary artery disease. In the USA 
alone, more than one million percutaneous 
interventions are performed annually and more 
than 80% involve the use of coronary stents. 
Although coronary bare metal stent (BMS) 
had a dramatic impact on reducing restenosis 
rates, restenosis still occurred in up to 30% of 
cases [1,2]. The restenotic process consists pre-
dominantly of smooth muscle cells (SMCs) in 
a proteoglycan and type III collagenous matrix. 
The limitations of BMS led to the development 
of drug-eluting stents (DES), a more promising 
technique for the treatment of coronary artery 
disease.

First-generation DES (Cypher™, Cordis 
Corp., FL, USA and Taxus™, Boston Scientific, 
MA, USA) showed a significant reduction in res-
tenosis rates as compared to BMS and became 
the standard of care for the treatment of coro-
nary artery disease [3,4]. Antiproliferative drugs, 
cytostatic or cytotoxic, eluted from first-gener-
ation DES successfully inhibited SMC prolif-
eration, resulting in suppression of neointimal 
growth. However, these drugs are not selective 
in their suppression of SMCs and also inhibit 
endothelial cell (EC) proliferation. Therefore, 
it is not surprising that late stent thrombosis 
(LST), a rare but life-threatening complication, 
has emerged as a major safety concern [5,6]. In 

addition to antiproliferative drugs, polymers 
used to coat DES, along with stent malap-
position, may also play a role in LST [7]. The 
physiopathology of LST varies with the type 
of DES used and the underlying target lesion 
being treated. Nevertheless, there is a univer-
sal finding in all DES of delayed arterial heal-
ing, which is characterized by persistent fibrin 
deposition, sparse SMC coverage and incomplete 
re-endothelialization [7,8]. Our autopsy studies 
demonstrate that the most powerful predictor 
of stent thrombosis is endothelial coverage [9].

Because antiproliferative drugs deployed on 
DES do not specifically target SMCs, these 
drugs adversely impact endothelial prolifera-
tion, migration and function [10,11]. ECs, which 
line the arterial lumen, play a major role in the 
maintenance of vascular homeostasis includ-
ing, the transportation of plasma molecules, 
regulation of vascular tone and synthesis of a 
large variety of antithrombotic factors. The 
adverse impact of antiproliferative drugs used 
on DES has been demonstrated by our group 
in preclinical models at 14 and 28  days to 
inhibit the regrowth of ECs and decrease the 
expression of platelet endothelial cell adhesion 
molecule (PECAM-1) and thrombomodulin. 
There was also an upregulation of mRNA and 
a decrease in VEGF production as compared to 
bare metal controls [11]. Similar findings have 
been confirmed in autopsy samples, in other 
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words, the lack of endothelial coverage in DES 
even beyond 18 months in first-generation DES 
which led to the development of thinner stent 
struts in second-generation DES (Endeavor™, 
Medtronic Vascular, CA, USA and Xience™ V, 
Abbott Vascular, CA, USA), with less or rapid 
drug release, and more biocompatible polymers 
that allow faster healing and accelerated endo
thelialization [12,13]. These changes have, in gen-
eral, resulted in a reduction of LST, however the 
antiproliferative drugs are likely to remain in the 
diseased tissues especially in ‘off-label’ use for 
some time and are a concern for the continued 
potential of LST.

Another approach is to bypass antiproliferative 
drugs and instead accelerate the healing proc-
ess (i.e., to restore the endothelium early after 
injury). During stenting, the endothelium is 
denuded and leads to focal fibrin and plate-
let aggregation, especially in the peri-strut 
regions where it is accompanied by inflamma-
tion, which is also dependent on the severity of 
injury [14]. Adherent platelets and leukocytes of 
nonendothelialized surfaces can release growth 
factors and cytokines, which initiate SMC pro-
liferation and migration [15]. It has been demon-
strated that proliferating SMCs accumulate in 
areas that are not fully re-endothelialized [16]. 
ECs produce a significant number of factors that 
regulate SMC differentiation and proliferation, 
like the cytokine TGF, angiotensin II and oth-
ers similar to prostacyclin and nitric oxide that 
prevent platelet aggregation and SMC prolif-
eration [17,18]. Therefore, ECs may themselves 
maintain the mitogenic quiescence of SMCs by 
growth-inhibitory factors [19].

The Genous™ stent
Besides the vessel wall cells, circulating pro
genitor cells have also been implicated to play a 
role in vascular healing following injury [20]. It 
has long been hypothesized that blood and ECs 
may share a common progenitor, known as the 
hemangioblast [21]. A single-cell-resolution fate 
map demonstrated that these cells in the early 
zebrafish experiments were capable of giving rise 
to both hematopoietic cells and ECs [22]. Asahara 
et al. first described endothelial progenitor cells 
(EPCs) and showed that circulating bone mar-
row-derived cells are capable of migrating to 
areas of vascular injury and aid in the regenera-
tion of damaged and dysfunctional endothelium 
[20]. Therefore it is not surprising that biomedi-
cal engineers have thought of using circulating 
progenitor cells to accelerate the healing of the 
vessel wall.

The Genous™ stent, a bioengineered EPC-
capturing stent (Genous Bioengineered R 
stent™; OrbusNeich Medical Technologies Inc., 
FL, USA) is a novel ‘prohealing’ stent design 
that aids in recruiting circulating EPCs. The R 
stent has unique dual helix designed specifically 
for flexibility, radial strength and natural con-
formability. The R stent is made from medical 
grade 316 stainless steel with a strut thickness of 
0.0040 inches (102 µm). The R stent is coated 
using an immobilized antihuman-CD34 mono-
clonal antibody designed to capture circulating 
EPCs (Figure 1). The design of the Genous stent 
is therefore to accelerate endothelialization by 
early and continued recruitment of EPCs. The 
Genous stent was introduced in 2005 in the 
European market for use in patients eligible 
for stent placement with symptomatic ischemic 
heart disease due to de novo and/or restenotic 
coronary artery lesions.

Recently, a second generation of the 
Genous stent (Genous Bio-engineered Cobalt 
Chromium stent) was introduced to the market 
(CE mark in April 2010). The stent platform 
is made from the L605 cobalt–chromium alloy 
with strut thickness of 0.0032 inches (81 µm), 
a 20% reduction in strut thickness as compared 
with the original Genous stainless steel design, 
with greater stent flexibility and reduced stent 
profile. As in the previous design, the surface of 
the Genous Bio-engineered Cobalt Chromium 
stent is comprised of a polysaccharide matrix 
with CD34+ antibodies.

Bench-top & preclinical assessment 
of the Genous stent
The efficacy of immobilized CD34+ antibody-
treated stainless steel surfaces was first tested by 
Kutryk et al. demonstrating rapid enhancement 
of bound ECs with the antibody substrate after 
5 min with confluence being reached at 60 min 
[23]. The biological activity was evaluated using 
f luorescently labeled KG1a cells (immature 
hematopoietic cell line that express the CD34 
antigen) and demonstrated uniform distribution 
of adherent CD34+ cells after incubation for 1 h. 
Recently, a similar in vitro assessment of the spe-
cificity of the immobilized CD34 antibody was 
tested using human peripheral CD34+ cells [24]. 
In the in vitro capture system, Genous and BMS 
were deployed in silicone tubing and were exposed 
to a cell mixture of PKH26 red fluorescent-
labeled human monocytes (1 × 106  cells/ml) 
and PKH2  green fluorescent-labeled human 
CD34+ cells (2 × 105  cells/ml), under a con-
stant rotation speed of 0.3 revolutions per min 
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for 2 h. Confocal microscopy assessment of the 
stent struts showed that a significantly greater 
number of CD34+ cells adhere to the Genous 
stent as compared to the BMS (500 ± 158 vs 
17 ± 8 cells/cm2; p < 0.001; Figure 2), whereas 
monocyte adherence was not significantly dif-
ferent between the two stents (79 ± 44 vs 58 
± 39 cells/cm2; p = 0.07), although a trend was 
observed for less monocytes on the Genous stent. 
Overall specificity of the Genous stent to capture 
CD34+ cells was significantly higher when com-
pared with the BMS, with 86% of the attached 
cells being CD34+ compared with only 26% on 
the BMS.

Recent in vivo studies have also demonstrated 
enhanced endothelialization of the Genous 
stent, having an immobilized antihuman CD34 
antibody coating. In the study by Larsen et al., 
acute (7 day) endothelialization rates were com-
pared between the Genous stent and the BMS 
in a rabbit aorta and ilio-femoral injury model 
[24]. Scanning electron microscope (SEM) ana
lysis revealed greater cell coverage between and 
above struts in the Genous stent versus the BMS 
(p < 0.01). Moreover, quantitative PCR showed 

increased levels of endothelial markers on the 
Genous stent for Tie-2 (p = 0.02) and P-selectin 
(p = 0.05) as compared with BMS, whereas for 
CD34 (p = 0.08) and CD31 (p = 0.07) levels 
there was a trend towards significance, thus 
indicating that the Genous stent promotes 
endothelialization.

van Beusekom et al. compared the perform-
ance of the Genous EPC capture stent to a 
BMS in a normal swine coronary stent model 
for early endothelialization (2 and 5 days) and 
neointimal thickness at 28 and 90  days [25]. 
Endothelialization by light microscopy and 
SEM confirmed higher rates of strut coverage 
in the EPC capture stent as compared with the 
BMS (2 days: 68 ± 29 vs 53 ± 36%; p = 0.028). 
At 5  days, both stent groups showed similar 
endotheliazation rates (>95%). Longer durations 
(28 and 90 days) showed no differences between 
the groups in terms of neointimal thickness.

Genous stent performance has also been 
compared to sirolimus-eluting stents (SES) in 
a swine coronary model, with the results show-
ing significantly greater endothelial coverage 
at 14  days by SEM analysis on the Genous 

Coronary blood flow

EPCs circulate in
the bloodstream

Immobilized antibodies
on the stent surface

EPCs are captured
by antibodies

EPCs differentiate
into endothelial cells

A mature, functional
endothelium is formed

Genous™ stent strut

Figure 1. Endothelial progenitor cell capture coating technology. The concept of the Genous™ stent is to capture circulating EPCs, 
which originate from the bone marrow, onto the strut surface by immoblized human anti-CD34 coating. 
EPC: Endothelial progenitor cell. 
Reproduced with permission from OrbusNeich Medical Technologies, Inc., FL, USA.
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stent  [26]. Confocal microscopy also showed 
greater endothelial maturation by quantitative 
analysis of PECAM-1/CD31 expression on the 
Genous stent as compared with SES. Neointimal 
evaluation by optical coherence tomography 
revealed similar neointimal thickness between 
the Genous, SES and everolimus-eluting stents 
(Xience V) at 28 days (0.30 ± 0.16 vs 0.36 ± 0.23 
vs 0.31 ± 0.25), however on histologic examina-
tion, there was a trend towards greater neointi-
mal thickness for the Genous stent, rather than 
the SES or everolimus-eluting stents (0.29 ± 0.12 
vs 0.21  ±  0.02 vs 0.15  ±  0.05, respectively). 
Nakazawa et  al. compared the performance 
of the Genous stent versus SES for endotheli-
alization in the porcine model and showed by 
SEM and confocal microscopy greater endothe-
lialization as well as higher PECAM-1 expres-
sion in the Genous stent as compared with 
the SES at 3 days (endothelialization 76 ± 8 
vs 7 ± 3%; PECAM-1 expression 59 ± 25 vs 
0 ± 0%) and 14 days, (endothelialization 98 ± 
2 vs 53 ± 20%; PECAM-1 expression 96 ± 7 
vs 41 ± 20%) [27]. Endothelialization was also 
compared when the Genous stent was over-
lapped with another Genous stent as compared 
with Genous + SES, and SES + SES overlapped. 
SEM of the overlapping zone showed enhanced 

rate of endothelial coverage above the strut in 
the Genous + Genous group (95 ± 6%) and 
the Genous + SES group (79 ± 5%) compared 
with SES + SES group (36 ± 14%; p = 0.007) 
(Figure 3). The nonoverlapping proximal and dis-
tal segments from all three combinations showed 
higher endothelialization rates above the Genous 
segments (98 ± 3 and 100 ± 0% in Genous + 
Genous) as compared with the Genous + SES 
or SES + SES segments (62 ± 33% in Genous; 
46 ± 20% in SES; p = 0.0003). Thus confirming 
that the Genous stent irrespective of whether it 
was overlapped with SES or not, always showed 
greater endothelialization versus SES.

Genous clinical results
�� First-in-man

The HEALING First-In-Man (HEALING-
FIM) registry investigated the safety and fea-
sibility of the Genous stent in a single-center, 
prospective, nonrandomized study [28]. A 
total of 16 stable or unstable angina or silent 
ischemia patients were enrolled. Patients 
received dual antiplatelet therapy (DAPT) for 
1 month after stent deployment. At 6 month 
angiographic follow-up, Genous stent showed 
a 0.63 ± 0.52 mm late lumen loss and in-stent 
restenosis of 27.2 ± 20.9% as determined by 
intravascular ultrasound (IVUS). The 9 month 
composite major adverse cardiac event (MACE) 
rate (included cardiac death, stroke, myocar-
dial infarction [MI] and target vessel revascu-
larization) was 6.3% with no evidence of stent 
thrombosis.

�� Genous clinical trials in stable 
patients
Duckers et al. further evaluated the safety and 
efficacy of the Genous EPC capture stent in a 
multicenter, prospective nonrandomized registry 
study (HEALING II) [29]. Sixty three patients 
with single de novo native coronary artery lesions 
were enrolled. The composite MACE (death, 
MI, emergency coronary artery bypass graft and 
clinically driven target lesion revascularizaion 
[TLR]) rate was 6.3% at 9 months and 7.9% at 
18 months, and the clinically driven TLR was 
6.3% at both 9 and 18 months. Patients received 
DAPT for 1 month, similar to BMS, and showed 
no incidence of acute or subacute thrombo-
sis. A significant late regression of neointimal 
hyperplasia was also observed between 6 and 
18 months on quantitative coronary angiography 
(late lumen loss: 6 months = 0.78 ± 0.39 mm vs 
18 months = 0.59 ± 0.31 mm; p = 0.001; 24.4% 
reduction) (Figure 4) and by IVUS (in-stent volume 

Monocytes CD34+

Bare metal stentGenous™ coronary stent

Figure 2. Specificity of the Genous™ stent to CD34+ cells. (A & B) Confocal 
images demonstrate successful fluorescent labeling of human monocytes (PKH26 
red fluorescent-labeled) and CD34+ cells (PKH2 green fluorescent-labeled). 
Scanning electron microscopy shows the morphology of the cells. (C) A 
representative confocal image of a Genous stent demonstrating greater adherence 
to CD34+ cells as compared with bare metal stent.
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obstruction: 6  months  =  22.94  ±  13.65% vs 
18 months = 20.29 ± 14.34%; 11.4% reduc-
tion). The authors also correlated neointi-
mal late loss to circulating levels of EPCs and 
showed that patients with normal EPC titers 
(>6.5/100 µl) at 6 months follow-up had low 
lumen loss (0.53 ± 0.06 mm, n = 25) as opposed 
to patients with low EPC titers (late lumen loss = 
1.01 ± 0.07 mm, n = 24) [30]. In addition, statin 
therapy was associated with a 1.9-fold increase 
in EPC numbers (10.5 ± 1.12 vs 5.4 ± 0.94; 
p = 0.001) and improved angiographic outcome 
(late lumen loss: 0.50 ± 0.05 vs 0.65 ± 0.05 mm; 
p < 0.001).

The beneficial outcome of statin therapy in 
the HEALING II study lead to the design of 
the HEALING IIB study that aimed to assess 
the safety and efficacy of the Genous stent in 
conjunction with optimal statin therapy to stim-
ulate EPC recruitment in 100 elective patients 
with de novo native coronary artery lesion [31]. 
Within 2 weeks after initiation of high-dose 
atorvastatin (80 mg once daily) pharmacother-
apy, relative EPC levels increased by 5.6-fold 
and maintained elevated levels during a 30 day 
follow-up. Despite effective EPC recruitment, 
angiographic follow-up of late lumen loss data 
demonstrated no significant differences as com-
pared to HEALING II at 6 months (0.76 ± 0.50 
vs 0.78 ± 0.39 mm). Remarkably, comparable 
with the HEALING II study, angiographic late 
loss was shown to be significantly reduced from 
6 to 18 months (late lumen loss: 0.76 ± 0.50 vs 
0.67 ± 0.54 mm; 11.8% reduction; p = 0.001).

The largest study completed to date to test 
the safety and efficacy of the Genous stent is 
the eHEALING registry, a worldwide, multi-
center prospective study [32]. Approximately 
5000 patients were included between October 
2005 and 2007 from 144 centers in Europe, 
Asia/Pacific, Middle East, Africa and Latin 
America. The objective of the eHEALING reg-
istry was to assess the clinical outcome up to 
12 months after placement of the Genous stent 
in a ‘real world’ population with a nonurgent per-
cutaneous coronary intervention (PCI). Patients 
undergoing PCI with at least one lesion suitable 
for stenting with the Genous stent (diameter: 
2.5–4.00 mm, length 9–33 mm) were enrolled. 
DAPT was administered to 83% of patients 
for 30  days, 59% at 6  months and 34% at 
12 months. The cumulative event rate of cardiac 
death, MI and TLR, was 7.9 % at 12 months. 
Target vessel failure (TVF) was 1.7, 5.7 and 8.4% 
at 30 days, 6 months and 12 months follow-
up, respectively. Definite stent thrombosis was 

0.6%, with the majority of cases having subacute 
(n = 17, 0.3%), followed by late (n = 8, 0.2%) 
and acute (6, 0.1%) stent thrombosis. In a post-
hoc analysis of the eHEALING study, patients 
who continued DAPT from 30 days through 
6  months (n  =  2654) were compared with 
patients on DAPT for only 30 days (n = 4249) 
and showed a similar incidence of cumulative 
event rate (6.5 vs 6.3%, p = 0.89). Definite or 
probable stent thrombosis increased, although 
not significantly between patients with contin-
ued DAPT as compared to those who stopped 
(0.2 vs 0.6%, p = 0.16) [33]. Several substudies 
focusing on elderly patients undergoing nonur-
gent PCI [34] and diabetic patients [35] have been 
published from the eHEALING registry. The 
data demonstrated that TVF occurred signifi-
cantly more often in elderly patients compared 
with younger patients (age <65 years; 7.0% vs 
age 65–74 years; 11.7% vs age ≥75 years; 11.7%; 
p < 0.001).

Recently, a prospective randomized trial 
evaluating the Genous stent in combination 
with or without a paclitaxel-coated balloon was 
performed in 120 patients with de novo coro-
nary artery lesion [36]. Angiographic follow-up 
at 6 months (follow-up rate 96%) demonstrated 
treatment with paclitaxel-coated balloon plus the 

Genous™ Genous + Genous Genous + SES SES + SES

Overlapping stents

SES

Single stent

Figure 3. Scanning electron microscopy images in the pig coronary model 
at 14 days following deployment of Genous™ and sirolimus-eluting stent 
in single and overlapping configuration. Low (15×) power images reveal 
greater endothelial coverage of the Genous stent as compared with SES. In the 
overlapping region (arrows), endothelial coverage is greater in the Genous + 
Genous and Genous + SES as compared with SES + SES. 
SES: Sirolimus-eluting stent. 
Adapted with permission from [27].
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Genous stent was superior to Genous stent alone, 
with an in-stent late loss of 0.34 ± 0.45 versus 
0.88 ± 0.48 mm (p < 0.001). The re-stenosis 
rate was reduced from 23.2 to 5.1% (p = 0.006) 
with no definite or probable stent thrombosis in 
either group.

Overall, in stable patients, the Genous stent 
has performed well with MACE rates no greater 
than 17.3% at 1 year with the exception of a sin-
gle-center prospective study where MACE rates 
were 28.0% at 1 year for the treatment of older 
patients (≥75 years) with de novo lesions [37]. 
In this study, a total of eight deaths occurred, 
five of which were cardiac deaths. Additionally, 
two patients suffered from nonfatal acute MI 
and 22 patients had clinically justified TLR. 
Definite ST was also observed in an additional 
two patients.

�� Genous clinical trials in high-risk 
patients
A summary of the clinical results of the Genous 
stent in high-risk patients is provided in Table 1. 
High risk, in general, was defined as meeting two 
or more of the following criteria: diabetes, acute 
coronary syndrome, heart failure, proximal ves-
sel disease, multivessel disease, B2/C type lesion, 
bifurcation lesion and long lesion. Miglionico 
et al. studied the outcome of 80 high-risk patients 
treated with Genous stent with 14 ± 4 months 
follow-up who received aspirin indefinitely, 
whereas clopidogrel was discontinued 2 months 
after angioplasty (patients with acute coronary 
syndromes were continued for 9 months) [38]. 
The incidence of MACE was 16%; ten patients 
underwent percutaneous TLR and three patients 
had reintervention of a nontarget vessel. There 
was no incidence of stent thrombosis. Similarly, 
the study by Low et al. showed no evidence of 
Academic Research Consortium defined stent 
thrombosis at a mean follow-up of 34 months 

with MACE rates at 16% in patients with ST 
elevation MI (STEMI) [39]. 

In the TRIAS trial, 193 patients with lesions 
carrying a high risk of restenosis were randomly 
treated with the Genous stent or the paclitaxel-
eluting stent (PES) [40,41]. At 1 year, the rate of 
TVF was 17.3% in the Genous stent and 10.5% 
for the PES. No incidence of stent thrombosis 
was observed in the Genous stent, however in 
the PES, four patients (4.2%) on DAPT had 
a definite stent thrombosis. At 2 years, a non-
significant difference in TLR between the 
Genous stent and PES was observed (20.4 vs 
15.8%). Stent thrombosis was again absent in 
the Genous group at 2  years as compared to 
five lesions (in four patients) in the PES group. 
However, results of the TRIAS HR trial, an 
investigator-initiated, prospective, multicenter, 
single-blind, randomized clinical trial did not 
establish noninferiority when comparing the 
Genous endothelial capturing stent with DES 
in patients carrying lesions with a high risk of 
restenosis at 12 months (target lesion failure 
[TLF]: 17.4 vs 7.0%) [42].

Co et al. assessed the use of the Genous stent 
in primary percutaneous intervention in 120 
patients with acute STEMI without cardio-
genic shock [43]. DAPT was given for 1 month 
and statin therapy started immediately after the 
procedure. The cumulative MACE event rate 
was 4.2% at 30 days, 5.8% at 6 months and 
9.2% at 1 year. Definite stent thrombosis rate 
at 1 year was 1.7%, one patient presented with 
an acute and another patient with subacute stent 
thrombosis, and no incidence of LST.

Chong et  al. studied the intermediate-
term efficacy and safety of the Genous with a 
sirolimus-eluting bioabsorbable polymer stent 
(CURA) and BMS in patients undergoing pri-
mary PCI for acute MI. The number of patients 
enrolled in the study was 366, treated with 95 
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were treated with the Genous stent, 53 with 
CURA and 218 with BMS [44]. At 2  years, 
MACE rates for the Genous stent was 13.7% 
which were comparable with BMS (19.7%) and 
DES (15.1%) (p = 0.38). One patient in the 
Genous group had an acute stent thrombosis 
with no incidence of LST.

Beijk et al. evaluated 1-year clinical outcome 
in patients treated with the Genous stent for 
bifurcation lesions using provisional T-stenting 
techniques and compared these to historical con-
trol groups with an identical BMS [45]. A total 
of 178 consecutive patients with de novo bifurca-
tion lesions treated with the Genous stent were 
compared with 465 consecutive patients treated 
with BMS. At 1 year, the cumulative rate of the 
primary end point was 12.4% in the Genous 
group as compared with 17% in the BMS group. 
The cumulative rate of definite ST was 0.6% 
in the Genous group as compared with 0.4% 
in the BMS group. These results showed favo-
rable outcomes in the treatment of bifurcation 
lesions, however, the results were statistically 
nonsignificant.

In the largest high risk patient study, Lee 
et  al. investigated the effectiveness of the 
Genous stent in treatment of patients with 
acute STEMI [46]. A total of 321 patients 
receiving 357 Genous stents with a cumulate 
MACE event rate of 8.1% at 30 days, 10.0% 
at 6 months and 12.2% at 1 year. One patient 
developed acute stent thrombosis and another 
two had subacute stent thrombosis with no 
incidence of LST. Similar MACE rates were 
also observed in other high-risk studies except 
in a single study where the authors report 
MACE rates of 24% at 6 months with high-
est incidence of stent thrombosis (6%) in the 
Genous stent as compared with none in the 
bare cobalt–chromium group [47].

In a more recent study, Klomp et al. assessed 
the 1 and 3 year clinical outcome in a large 
cohort of unselected patients treated with the 
Genous stent [45,48]. Four hundred and five 
unselected patients were treated with the EPC-
capturing Genous stent, with the majority of 
patients having complex lesions and high risk of 
restenosis. At 1 year, TLF (the composite cardiac 
death, MI and TLR) was 13.3% with the occur-
rence of definite LST at 0.5%. At 3 years, TLF 
rates were at 18.3% with no further incidence 
of very LST. Patients with a high risk of rest-
enosis also showed a higher incidence of TLF as 
compared with those with low risk (1 year: 16.4 
vs 8.7%; p = 0.03). Overall, Genous stent out-
comes of high-risk patients have been promising, 

in particular in patients unable to receive DAPT 
for long periods of time.

Technological advancement of the 
Genous coronary stent
The ability to capture circulating EPCs on the 
stent surface to accelerate healing could have 
an advantage over BMS or DES, especially in 
high-risk patient populations. EPCs have the 
capability to migrate, proliferate and differenti-
ate into endothelial lineage cells [20]. In culture, 
EPCs have been shown to differentiate into 
mature ECs as assessed by molecular markers 
and function [49]. EPC-derived ECs have also 
been used to develop endothelialized blood ves-
sels, a field that routinely seeks novel autologous 
cell sources to develop patient-specific tissue, 
as nonendothelialized blood vessels are prone 
to thrombosis [50]. Moreover, enhancement 
of EPCs has been shown indirectly to inhibit 
in-stent restenosis in preclinical models [51,52].

The immobilized antihuman CD34 coating 
of the Genous stent is unique, as it represents the 
only coronary stent on the market that promotes 
healing by sequestering circulating EPCs. The 
Genous bioengineered surface features antibodies 
immobilized on the stent surface, a significant 
bioengineering feat that provides a stable shelf-
life technology that allows the capture of circulat-
ing EPCs. Although there are many surface anti-
gens present in circulating EPCs (e.g., CD133, 
CD34, CD31, CD45, von Willebrand factor, 
CD146 and VEGFR2) that promote EPC mobi-
lization, CD34 has been shown to be more spe-
cific for capturing EPCs [53]. However it is worth 
noting that not all captured CD34+ EPCs will 
either differentiate into mature ECs or acceler-
ate endothelial adhesion, as the CD34+ marker 
used to phenotype EPCs is nonspecific, and it 
is also expressed by both hematopoietic stem 
cells and mature ECs [54]. Overall, the circulat-
ing peripheral blood contains <1% of circulating 
endothelial precursor cells that express CD34, 
VEGFR2 and AC133 [54]. A subpopulation of 
CD34+ hematopoietic stem cells, which has been 
shown to play a role in vascular maintenance and 
repair, are the CD34+/KDR+ cells [55]. These cells 
(CD34+/KDR+) are not directly mobilized from 
bone marrow but are generated from circulating 
multipotent CD34+ cells following interaction at 
platelet-rich sites of vascular injury and exposure 
to shear stress [55]. This mechanism is consistent 
with the EPC capture in a recently stented ves-
sel implanted with the Genous stent. Ultimately 
though, the heterogeneity in cell capture will 
need to be better characterized, nevertheless, 
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the therapeutic concept of rapid endothelializa-
tion using autologous progenitor cells is exciting. 
Other attempts to modify the stent surface to 
promote greater cellular healing include increas-
ing surface roughness [56] and binding of the 
Arg-Gly-Asp (RGD) peptide [57], however, these 
technologies need further validation.

Conclusion
DAPT certainly helps prevent thrombotic events 
following stenting, however, DES still remain at 
risk of LST. Autopsy studies of patients dying 
from LST have shown that stents with >30% 
uncovered struts are at nine-times greater risk 
of thrombosis. Given the increased concern of 
late thrombosis following DES implantation, 
EPC-based technologies and strategies that 
enhance endothelialization are of great inter-
est in order to accelerate healing. The Genous 
stent was designed to capture circulating EPCs 
with the idea that DAPT following stenting can 
be shortened or eliminated as compared with 
DES in patients at high risk of thrombosis. 
Moreover, the recovery of endothelial function 
would prevent platelet and inflammatory cell 
adhesion to stented surfaces and decrease late 
loss. Preclinical studies have successfully dem-
onstrated that Genous stents endothelialize at a 
faster rate as compared with BMS and DES. In 
clinical studies, the overall safety and efficacy of 
the Genous stent has been demonstrated in sev-
eral nonrandomized studies and large registries. 
Angiographic follow-up studies have shown peak 
late lumen loss at 6–12 months in the range of 

0.6 to 1.1 mm, with significant reduction at 
18 months. Clinical results have also shown, 
in stable patients at 6–24 months, that MACE 
rates ranged from 6 to 20%. Furthermore, stent 
thrombosis rates were lower in comparison to 
DES. In STEMI patients, stent thrombosis rates 
have shown similar incidences of stent thrombo-
sis in the Genous stent as compared with BMS, 
except in one randomized study. Further studies 
are warranted to demonstrate the efficacy of the 
Genous stent in randomized trials comparing 
the Genous and BMS as well as comparison to 
current DES in both stable and unstable patients 
with increased risk of stent thrombosis including 
acute MI, left main and vein grafts.

Future perspective
Although the Genous stent has displayed excel-
lent results in terms of stent thrombosis, the late 
lumen loss has been inferior to current DES. 
Therefore, a next-generation Genous stent, the 
‘Combo’ stent, has been developed in which 
the EPC-capturing technology (on the luminal 
surface) is combined with an antiproliferative 
drug (on the abluminal surface) to minimize the 
hyperproliferative reaction to the damaged vessel 
wall to suppress late loss. The efficacy and safety 
of the Combo stent has recently been investi-
gated in a preclinical model demonstrating supe-
rior results in terms of endothelialization and 
equivalency of neointimal thickness as compared 
to first- and second-generation DES [26,27].

Fully biodegradable coronary stents are cur-
rently being introduced to the market because 

Executive summary

Background
�� Delayed healing, characterized by incomplete endothelialization, is the primary substrate underlying drug-eluting stent (DES) thrombosis.
�� Endothelial progenitor cells (EPCs) possess the ability to migrate to areas of vascular injury and differentiate into mature endothelial cells.
�� Recruiting EPCs to injured arterial segments after stenting is an attractive approach to accelerate healing.

Genous™ bioengineered stent
�� A novel ‘prohealing’ stent coated with immobilized antihuman CD34 monoclonal antibody was designed to capture circulating EPCs.
�� The Genous is based on the R stent platform, a unique dual helix design made from 316 stainless steel. Recently, a second generation 

has been developed from cobalt–chromium with thinner struts (81 µm).
�� Preclinical studies have shown accelerated endothelialization of the Genous stent as compared with bare metal stents and DES.
�� A first-in-man study provided the safety and efficacy of the Genous stent with no evidence of stent thrombosis at 9 months.

Genous clinical performance
�� In de novo stable lesions the Genous stent major adverse cardiac event rates range from 6 to 20% at 6–24 months with a low rate of 

stent thrombosis (<2%).
�� In high-risk ST elevation myocardial infarctions, the major adverse cardiac event rates range from 12.2 to 28% at 12 months with stent 

thrombosis between 0 and 6%.
�� Late lumen loss at 6–12 months are in the range of 0.6 to 1.1 mm, greater than DES, however, late loss has been shown to decrease 

significantly at 18 months.

Future perspective
�� Prohealing approach in combination with antiproliferate drugs will help reduce late loss while maintaining low stent thrombosis.
�� Fully biodegradable stents could potentially alleviate adverse events associated with permanent polymer metallic DES.
�� Better characterization of the plaque prior to stenting may help lower late stent thrombosis.
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they could potentially ease adverse events such 
as LST. As these stents degrade over time, 
the potential for LST due to nonendothelial-
ized strut or remaining polymer is alleviated. 
Moreover, biodegradable stents can negate some 
of the other issues related to permanent metallic 
stents such as overhang at ostial lesions and the 
potential for long-term positive remodeling of 
the stented vessel (i.e., no long-term ‘jailing’ of 
the vessel).

Major changes for optimal treatment of coro-
nary disease, however, may not come from new 
devices but rather from accurate assessment 
of the extent and type of disease by catheter-
based imaging techniques. Second-generation 
IVUS and, more impressively, optical coherence 
tomography, can provide plaque morphology 

of tissue components, including identification 
of high-risk thin cap fibroatheroma. This will 
require clinical proof and the economic cost will 
have to be weighed before they can be utilized 
in routine clinical practice.
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